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Abstract
In this paper, we present the NUIG system at the TIAD shard task. This system includes graph-based metrics calculated using novel
algorithms, with an unsupervised document embedding tool called ONETA and an unsupervised multi-way neural machine translation
method. The results are an improvement over our previous system and produce the highest precision among all systems in the task as
well as very competitive F-Measure results. Incorporating features from other systems should be easy in the framework we describe in
this paper, suggesting this could very easily be extended to an even stronger result.
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1. Introduction
Translation inference is the task of inferring new transla-
tions between a pair of languages, based on existing trans-
lations to one or more pivot language. In the particular
context of the TIAD task (Gracia et al., 2019), there is
a graph of translations shown in Figure 1 available from
the Apertium project (Forcada et al., 2011) and the goal
is to use this graph of translations to infer missing links
(shown with dotted lines), in particular between English,
French and Portuguese. This year, we combined two sys-
tems that had participated in a previous task (Arcan et al.,
2019; McCrae, 2019) and show that this combination can
improve the results. This combination consists of an unsu-
pervised cross-lingual document embeddings system called
Orthonormal Explicit Topic Analysis (McCrae et al., 2013,
ONETA) and the results of unsupervised machine transla-
tion using the multi-way neural machine translation (NMT)
approach (Ha et al., 2016). We also further extended this
system by developing a new methodology of analysing the
graph to find candidates and we show that most of the can-
didates (74.5%) that are likely to be correct are at a graph
distance of 2, that is they are discoverable using only a sin-
gle pivot translation, while quite a large amount of trans-
lations cannot be inferred using the graph (23.1%). This
shows that the use of more sophisticated graph metrics is
unlikely to gain more improvement in this task and that
attention should instead be directed to unsupervised NLP
techniques. We also analyzed the provided reference data
and found that the data seems to diverge quite distinctly
from the training data, suggesting that there may be a need
to look for more robust methods of evaluation for future
editions of this task.

2. Methodology
2.1. Graph Extraction
One of the principal challenges of working with the TIAD
data is that there are a very large number of entities and it
is difficult to predict which ones are likely to be good can-
didates for translation inference. Following, the intuition
that translations should be connected in the graph, we wish
to find for a pair of languages l1,l2 all the entities that are
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Figure 1: Languages available in the Apertium training data
(solid lines) and language pairs to be inferred in the trans-
lation graph (dotted lines)

connected. As the graph of all TIAD connections contains
1,053,203 nodes connected with 531,053 edges, calculating
all the possible connections between the edges of the graph
can be quite challenging when approached naively.
We developed the following approach to constructing the
set of distances between all nodes in two languages, based
on a set of translations Tli,lj by language and a lexicon of
words Wi for language li as shown in Algorithm 1.
The first step of this algorithm is to initialize two distance
lists dist1 and dist2 that measure the distance between
terms in l1 or l2 respectively and all terms in languages
other than l1 or l2. The next step is then to iterate through
all translations between languages other than l1 and l2 and
connect the distance metrics dist1 and dist2. In this way,
the first value of dist1 contains only terms in l1 and so they
can easily be implemented as an array of associative arrays
and hence kept quite sparse. Finally, we iterate through
the words of l1 and l2 and calculate the distance between
each word. This relies on the keys function which returns
the list of terms in a third language, which have a non-
infinite distance in dist1 and dist2. In practice, this is im-
plemented by taking the smaller of the associative arrays
associated with dist1 or dist2 and filtering the results ac-
cording to the presence in the larger associative array. As
such, while the worst-case performance of the algorithm is
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Graph Distance Correct Total Precision Recall

2 30,988 40,321 0.7685 0.7452
3 838 19,820 0.0423 0.0202
4 102 24,113 0.0042 0.0025
5 38 36,848 0.0010 0.0001
6 4 37,178 0.0001 0.0000
7 5 47,686 0.0001 0.0000
8 1 42,378 0.0000 0.0000
9 0 47,739 0.0000 0.0000

10 0 39,261 0.0000 0.0000
11 1 39,246 0.0000 0.0000
12 0 29,902 0.0000 0.0000
13 0 26,441 0.0000 0.0000
14 0 19,531 0.0000 0.0000
15 0 15,484 0.0000 0.0000
16 0 10,799 0.0000 0.0000
17 0 7,549 0.0000 0.0000
18 0 4,792 0.0000 0.0000
19 0 3,163 0.0000 0.0000
20 0 2,201 0.0000 0.0000
21 0 1,134 0.0000 0.0000
22 0 528 0.0000 0.0000
23 0 258 0.0000 0.0000
24 0 52 0.0000 0.0000
25 0 3 0.0000 0.0000

Unconnected 9,606 1.3× 109 0.0000 0.2310

Table 1: Evaluation of English-Spanish Apertium dataset based on graph distance

Algorithm 1: Distance calculation algorithm
Result: The distances between in l1 and l2: dist
for l ∈ L, l 6= l1, l 6= l2 do

for (s, t) ∈ Tl1,l do
dist1(s, t)← 1

end
for (s, t) ∈ Tl2,l do

dist2(s, t)← 1
end

end
for li ∈ L, lj ∈ L, li 6= l1, li 6= l2, li 6= l1, lj 6= l2 do

for (s, t) ∈ Tli,lj do
for u ∈W1 do

dist1(u, t)←
min(dist1(u, t), dist1(u, s) + 1)

end
for u ∈W2 do

dist2(u, t)←
min(dist2(u, t), dist2(u, s) + 1)

end
end

end
for s ∈W1 do

for t ∈W2 do
dist(s, t)←
minu∈keys(s,t) dist1(s, u) + dist2(u, t)

end
end

still O(|W1| × |W2| × |W ′
1,2|) where W ′

1,2 is the words in
all languages other than l1 and l2, in fact the calculation of
keys is

O[min(|X1(s)|, |X2(t)|)× logmax(|X1(s)|, |X2(t)|)]

Where:

Xi(s) = {u : disti(s, u) <∞}
In order to analyze the results of this analysis, we consid-
ered the provided Apertium training data holding out the
translations for one language pair, namely English-Spanish,
and the results are presented in Table 1. We see that there
are 46,004 terms in the English data and 28,615 terms in the
Spanish data meaning there are potentially 1.3 billion trans-
lations that can be inferred. Our algorithm found that only
496,427 of these term pairs are connected in the Apertium
graph, which overlaps quite well with the correct transla-
tions in the Apertium data. In fact, 23.1% of translations
from the gold standard are not connected whereas 76.9%
are connected at graph distance 2, that is inferred by a sin-
gle pivot translation. For this reason, we used this method
as the basis for generating candidate translations, in par-
ticular, we only considered translations that were at graph
distance 2 or 3, and in addition, we extracted the size of the
keys set for each translation as it was a useful and readily
available statistic.

2.2. ONETA
The OrthoNormal Explicit Topic Analysis (ONETA)
methodology used in the system was not much changed
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from how it was applied previously (McCrae, 2019), only
this time instead of just using a single language for finding
potential pivots, the results of the graph distance method
were used to select all translations at distance 2 or 3. For the
purpose of completeness, we will briefly recap the method-
ology here. ONETA aims to find a vector to represent a
term satisfying

φONETA(di)
TφTF-IDF(dj) = δij

It does this by constructing the TF-IDF vectors for each of
the words and organizing them in a matrix X and then the
vector for ONETA can be obtained as1:

φONETA(di) = X+φTF-IDF(dj)

Where:

xij = φTF-IDF(di)
TφTF-IDF(dj)

It was shown (McCrae et al., 2013) that this can be effi-
ciently approximated by organizing the matrix X into the
form

X '
(

A B
0 C

)
And using the following form of the projection:

φONETA(di) =

(
A+ −A+BC+

0 C+

)
φTF-IDF(dj).

2.3. Multi-way Neural Machine
To perform experiments on neural machine translation
(NMT) models with a minimal set of parallel data, i.e.
for less-resourced languages, we trained a multi-source
and multi-target NMT model (Ha et al., 2016) with well-
resourced language pairs. In our work, we have chosen par-
allel corpora in the Romance language family, i.e. Spanish,
Italian, French, Portuguese, Romanian, as well as English.
To train the multi-way NMT system, we used all possible
language combinations within the targeted Romance lan-
guage family, but excluded the English-Spanish, English-
French, English-Portuguese and Portuguese-French lan-
guage pair.

Neural Machine Translation Setup We used Open-
NMT (Klein et al., 2017), a generic deep learning frame-
work mainly specialised in sequence-to-sequence models
covering a variety of tasks such as machine translation,
summarisation, speech processing and question answering
as NMT framework. Due to computational complexity, the
vocabulary in NMT models had to be limited. To over-
come this limitation, we used byte pair encoding (BPE)
to generate subword units (Sennrich et al., 2016). BPE is
a data compression technique that iteratively replaces the
most frequent pair of bytes in a sequence with a single, un-
used byte. We used the following default neural network
training parameters: two hidden layers, 500 hidden LSTM
(long short term memory) units per layer, input feeding en-
abled, 13 epochs, batch size of 64, 0.3 dropout probability,
dynamic learning rate decay, 500 dimension embeddings.

1X+ denotes the Moore-Penrose pseudo-inverse

Connections

ONETA

Translations

Figure 2: Distribution of the features relative to correct
(blue) translations and incorrect (red) translations

Dataset for NMT training To train the multi-way model,
we used the DGT (Directorate General for Translation) cor-
pus (Steinberger et al., 2012), a publicly accessible resource
provided by the European Commission to support multilin-
gualism and the re-use of European Commission informa-
tion available in 24 different European languages. The En-
glish, Spanish, French, Romanian, Italian and Portuguese
languages were selected to train the multi-way NMT sys-
tem, from which we extracted 200,000 translated sentences
present in all six languages within the DGT corpus (Table
2).

3. Results
3.1. Results on Apertium
In order to develop and train our system, we used the avail-
able Apertium data as a gold standard. In this case, we held
out the English-Spanish translation data and tried to predict
the values in this dataset. From our methods, we had the
following features

Distance The graph distance, either 2 or 3.

Connections The size of the keys set used in calculating
the graph distance. To improve the result, we scaled
this logarithmically.

ONETA The score coming out of ONETA. We scaled this
geometrically to obtain a roughly even distribution of
values.

Translation & Inverse Translation The perplexity of the
translation. As the translation methodology is not
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Source Target

Multi-Way # Subwords # Uniq. Subwords # Subwords # Uniq. Subwords # Lines

train 131,146,463 32,180 121,544,872 32,161 4,400,000
validation 656,154 29,380 608,006 29,408 22,000

Table 2: Dataset statistics for the DGT corpus the combined multi-way dataset used to train the translation system

symmetric we obtained two scores for English →
Spanish and Spanish → English. As the perplexity
naturally decreases for longer outputs, we divided it
by the number of tokens in the output score.

An analysis of these features using 10-fold cross-validation
compared is shown in Table 3. Note that due to the lim-
itation of using only those translations that have a graph
distance of 2 or 3, the highest recall we could achieve is
0.76 and the highest F-Measure is 0.870.

Method Precision Recall F-Measure

ONETA 0.772 0.501 0.607
Connections 0.568 0.678 0.618
Translations 0.767 0.453 0.570

Random Tree 0.758 0.565 0.647
Random Forest 0.774 0.602 0.677

J48 0.822 0.599 0.693
Naı̈ve Bayes 0.821 0.518 0.635

Logistic Regression 0.821 0.591 0.687
SVM 0.820 0.583 0.681

Table 3: Performance of our system on predicting English-
Spanish Apertium data

3.2. Task Results
The official results from the organizers are reproduced in
Table 4. We can see from this that in all evaluations, the
system described in this paper (labelled ‘NUIG’), produced
the highest precision in its results. However, as we saw in
the Apertium analysis we had a significant drop in recall
compared to the baselines and these overall meant that the
system was 2nd or 3rd in terms of F-Measure. We also note
that the systems to beat ours were those based on one-time
inverse consultation (Tanaka and Umemura, 1994), and it
should be relatively easy to combine these results into our
architecture, suggesting that we could easily obtain a much
stronger result.

3.3. Discussion
The organizers of the TIAD task released a small part of
the evaluation dataset, and it appears that this dataset has
significant differences to the translations that form Aper-
tium. For example, in Table 5, the translation for chest-
nuts are given 2, and we see that the gold standard gives
‘châtaigne’ as does our system but also gives two more
terms ‘châtaignier’ and ‘marronnier’, which our system

2This is the second example given by the organizer for this
language pair

does not. These terms refer to chestnut as a tree and our
system correctly predicts that this is a translation of ‘chest-
nuttree’ and fails to generate a translation for these terms,
principally because they only occur in a single translation
language pair (French-Esperanto) and so are not connected
in any way to the English. More concerningly, the term
‘marron’ is missed in the gold standard, as well as by our
system, even though this is the translation preferred by sev-
eral online sources. In Figure 3, we see a relative plot of the
correct terms in the released gold standard versus the graph
distance calculated according to the training data. The dis-
tribution is quite different from the training data, with much
less of the data being connected by a single pivot translation
(that is at graph distance 1) and much more distant connec-
tions. It is especially surprising that some of the translations
are at a distance of 4 or 5, which for English-Portuguese
and French-Portuguese represents about 9% of the data but
in the training set, while the precision of such distant links
was less than 1% in the training set.

4. Conclusion
We have presented the results of our system for the TIAD
task that combined unsupervised document embedding, un-
supervised machine translation and graph analysis to pro-
duce a very high precision result. We have seen that the
graph metrics are a good initial filtering, but that the main
improvement can be achieved by incorporating metrics re-
lated to unsupervised multilingual NLP and the one-time
inverse consultation method. This leads us to some obvious
paths that can improve our results for future evaluations.
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