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Abstract
We investigate when is it beneficial to simultaneously learn representations for several tasks, in low-resource settings. For this, we work
with noisy user-generated texts in Algerian, a low-resource non-standardised Arabic variety. That is, to mitigate the problem of the
data scarcity, we experiment with jointly learning progressively 4 tasks, namely code-switch detection, named entity recognition, spell
normalisation and correction, and identifying users’ sentiments. The selection of these tasks is motivated by the lack of labelled data
for automatic morpho-syntactic or semantic sequence-tagging tasks for Algerian, in contrast to the case of much multi-task learning for
NLP. Our empirical results show that multi-task learning is beneficial for some tasks in particular settings, and that the effect of each task
on another, the order of the tasks, and the size of the training data of the task with more data do matter. Moreover, the data augmentation
that we performed with no external resources has been shown to be beneficial for certain tasks.
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1. Introduction

New breakthrough results are continuously achieved for
various natural language processing (NLP) tasks, often
thanks to the availability of more data and computational
power. Likewise, various learning frameworks have been
proposed for NLP including multi-task learning. Multi-task
learning is about transferring knowledge learned in one task
to other tasks by sharing representations (Caruana, 1997).
The assumption is that the final learned shared representa-
tions are conditioned on the multiple tasks learned simul-
taneously, and as such they generalise better compared to
separate training for each task. This works well when the
jointly learned tasks are beneficial for each other, or in cases
where a well-performing (auxiliary) task with large data is
trained with a related (target) task with less data. However,
predicting when tasks are useful for each other remains an
open theoretical question and the reported results are still
experimental.
This paper is an attempt to take advantage of the state-
of-the-art advances in NLP, namely deep neural networks
(DNNs) and multi-task learning in order to mitigate the
problem of the scarcity of labelled data for colloquial Al-
gerian language (henceforth referred to as ALG). Our main
contributions are (1) the creation of a new dataset for code-
switched Named Entity Recognition for ALG. (2) An in-
vestigation of the settings where it is beneficial to share
representations learned between two or several tasks. To
this end, we jointly train 4 tasks (or subsets thereof): (1)
Code-Switch Detection (CSD), (2) Named Entity Recog-
nition (NER) —both framed as sequence tagging— (3)
Spelling Normalisation and Correction (SPELL) —framed
as a sequence-to-sequence task— and (4) identifying users’
sentiments (SA) —framed as a classification task.
We analyse (1) the effect of each task on another, (2)
whether task order matters or not, (3) whether word con-
text for the sequence-to-sequence task is important or not,
(4) whether the size of the training data of the task with
more data matters, and (5) whether it is useful to augment

the training dataset of sequence-to-sequence task (while not
requiring any extra resources). We believe that this in-
vestigation will extend the utility of multi-task learning in
low-resource settings, particularly for code-switched user-
generated data. In our experiments we increase the diffi-
culty of the tasks gradually, for instance learning the tasks
in pairs, 3 tasks, then 4 tasks, and increase the size of the
training data for SPELL progressively.
The paper is organised as follows. In Section 2 we review
related work. In Section 3 we describe our tasks and their
corresponding datasets. In Section 4 we present the archi-
tecture of our model. In Section 5 we describe our exper-
iments and discuss the results. In Section 6 we conclude
with the main findings and outline potential directions for
future improvements.

2. Related Work
In general, in the context of multi-task learning, the
definition of a task is vague: it can refer to an NLP
task (Martı́nez Alonso and Plank, 2017), to a domain (Peng
and Dredze, 2017) or to a dataset (Bollmann et al., 2018).
Multi-task learning has been applied successfully to a va-
riety of NLP tasks1 (Collobert and Weston, 2008; Luong
et al., 2016; Martı́nez Alonso and Plank, 2017; Bingel and
Søgaard, 2017), focusing on examining the effect of dif-
ferent auxiliary tasks on the performance of a target task.
Changpinyo et al. (2018) use joint learning of 11 sequence
tagging tasks, investigating whether doing so benefits all of
the tasks. Based on the previously reported results, multi-
task learning is a promising framework to improve learn-
ing with scarce data. Nevertheless, previous work has been
mostly limited to morpho-syntactic and semantic sequence
labeling tasks, inter alia, part-of-speech tagging, syntactic
chunking, supersense tagging, semantic trait tagging, se-
mantic role labeling, semantically related words, as well
as multi-perspective question answering, and named entity
recognition.

1We cite here only a few examples.
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But what about the languages (domains) for which we do
not have labelled data for morpho-syntactic and seman-
tic tasks? Unfortunately many languages (or domains like
user-generated data) do not have labelled data to perform
such tasks. Indeed, NLP research is still focused largely
only on a few well-resourced languages, and models are
trained primarily on large well-edited standardised mono-
lingual corpora, mainly due to historical reasons or current
incentives. Additionally, in many cases the developed tech-
niques fail to generalise (Hovy and Spruit, 2016), even to
new domains within a single language (Jørgensen et al.,
2015), mostly because they are designed to deal with par-
ticularly structured corpora.
Accordingly, it is not clear whether the previously reported
results using multi-task learning for NLP generalise to low-
resource settings. In this work, we begin to answer this
question by applying multi-task learning to user-generated
data. As a case study, we take the language used in Al-
geria (ALG) which uses code-switching, non-standardised
orthography as well as it suffers from the lack of any NLP
processing tools such as a tokenizer or morpho-syntactic
parsers. Like Changpinyo et al. (2018), we examine the
settings in which our tasks benefit from multi-task learn-
ing, including pairwise tasks, order of the tasks and the size
of the training data for the task with more data.

3. Tasks and Datasets
3.1. Tasks
In multilingual societies people have access to many lin-
guistic codes at the same time. In diglossic situations peo-
ple have access to even different linguistic levels of the
same language (Major, 2002). It is the case in North Africa,
where for historical reasons many languages and language
varieties are used simultaneously to various extents, in-
cluding mostly Berber, Arabic and French (Sayahi, 2014).
These languages and language varieties coexist throughout
the region and they are actively used on a daily basis (Rick-
ford, 1990). Consequently in speech-like communications,
such as in social media, people tend to mix languages.

• CSD the task deals with the detection of the language
(in multilingual CSD) or language variety (in diglossic
CSD) of each word in its context for disambiguation (El-
fardy et al., 2013; Samih and Maier, 2016; Adouane and
Dobnik, 2017). This is challenging for ALG, because the
same script is used for all languages (MSA, local Arabic
varieties, Berber, French, and English). To further com-
plicate matters, vowels are omitted from the text.

On the other hand, the enormous spelling variations in
user-generated data for all languages and language va-
rieties (Eisenstein, 2013; Doyle, 2014; Jørgensen et al.,
2015) challenges the standard language ideology with re-
gards to whether human languages are universally stan-
dardised and uniform (Milroy, 2001). It also poses seri-
ous challenges to the current NLP approaches at all lin-
guistic levels.

• SPELL the task aims at reducing orthographic variation
and noise in the data, by context-dependent spelling cor-
rection and normalisation. Indeed, user-generated con-

tent in colloquial languages contains lots of spelling vari-
ations because these languages do not have standardised
orthography and the content is unedited. We stress that
SPELL is different from a usual spelling error correc-
tion task in that it deals with a non-standardised code-
switched language —there is no existing largely agreed
on reference spelling (Adouane et al., 2019).

• SA the task deals with identifying users’ sentiments from
their generated comments.

• NER the task deals with the detection and classification
of mentions referring to entities into pre-defined classes
(person, location, organisation, product, company, etc.).

3.2. Datasets
For each task we use a separate labelled dataset. Table 1
shows statistics about the CSD, SA and NER datasets. We
give more details for each dataset below.

CSD SA NER
Class Total Class Total Class Total
ALG 118,942 MIX 11,736 OOO 67,7191
MSA 82,114 POS 10,698 PER 7,262
FRC 6,045 NEU 7,262 LOC 4,641
BOR 4,025 NEG 6,424 PRO 3,682
NER 2,283 OTH 901
DIG 1,394 ORG 399
SND 687 COM 248
ENG 254
BER 99

Table 1: Statistics about the datasets: CSD (#tokens), SA
(#samples) and NER (#mentions).

• CSD we use the dataset described by Adouane and Dob-
nik (2017) which consists of 10,590 user-generated texts
labelled at a token level (intrasentential), and includes 9
classes: Local Algerian Arabic (ALG), Berber (BER),
French (FRC), English (ENG), Modern Standard Ara-
bic (MSA), and Borrowing (BOR) (which refers to for-
eign words adapted to the Algerian Arabic morphol-
ogy), Named Entity as a general class (NER), interjec-
tions/sounds (SND) and digits (DIG).

• SPELL we use the dataset described in (Adouane et al.,
2019) which consists of a parallel corpus with 50,456
words and 26,199 types to be corrected or normalised.

• SA we use the dataset described by Adouane et al. (2020)
which consists of 36,120 user-generated comments la-
belled for 4 sentiment classes: positive (POS), negative
(NEG), neutral (NEU) and mixed (MIX).

• NER we could not get any dataset labelled for NER for
ALG that would serve directly our purpose. Therefore
we compiled a new dataset by combining the two datasets
used for CSD and SA, resulting in 46,710 user-generated
comments in total. Then with the help of two other native
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speakers, we manually labelled it for NER task by clas-
sifying every named entity mention in one of the 6 pre-
defined classes, following the labelling schema used in
OntoNotes Release 5.0 2. The classes are: person (PER),
location (LOC), product (PRO), organisation (ORG) and
company (COM). We tagged the rest of named entity
mentions like time and events as “other” (OTH) to dis-
tinguish them from non-named entities (OOO). In order
to identify multi-word expressions as one named entity
chunk, we use the IOB (Inside-Outside-Beginning) la-
belling scheme. The newly labelled corpus for NER task
has 17,133 named entities with IOB details.

4. Models

4.1. CSD and NER
We frame CSD and NER as sequence tagging tasks, i.e., the
task is to assign one of the pre-defined tags to each token in
an input sequence. We use an encoder-decoder architecture
similar the one described by Adouane et al. (2018). How-
ever, here the encoders are shared between the tasks, while
decoders are task-specific.

• The Token-level encoder (in dark orange in Figure 1) en-
codes the input sequence at the token level. It maps each
of 430 possible characters (including special characters
and emoticons) to a 100-dimensional representation. It
is composed of two convolution layers with 100 features
and a filter size of 5 with a dropout rate of 20%, followed
by ReLU activation and max pooling in the temporal di-
mension. In sum, it reads an input sequence character
by character and outputs character embeddings for each
token (constructs token representations).

• The Sequence-level encoder (in light orange) acts at a
sequence level. It takes the outputs of the token-level
encoder (character embeddings) and outputs word em-
beddings as a representation for the entire sequence. It
consists of two convolution layers with 200 features for
the first and 100 for the second, a filter size of 3, ReLU
activation and a dropout rate of 5%.

• The Dense layer (in dark green for CSD and light blue
for NER) with softmax activation maps the output of the
sequence-level encoder (word embeddings) to CSD or
NER tag sets respectively.

4.2. SPELL
We frame SPELL as a sequence-to-sequence prediction
task where the input is a user-generated sequence (text)
and the output is its normalised and corrected version (se-
quence). For this, we use an encoder-decoder architecture
(Cho et al., 2014) similar to the one described by Adouane
et al. (2019).

• The Encoder consists of the shared layers described
above in 4.1.

2https://catalog.ldc.upenn.edu/docs/
LDC2013T19/OntoNotes-Release-5.0.pdf

• The Decoder (in light green) and consists of one
Long Short-Term Memory (LSTM) layer (Hochreiter and
Schmidhuber, 1997). It takes the output of the sequence-
level encoder (word embeddings) as input and reads
it character by character. It has a vocabulary size of
430, 100 units, a token representation size of 100 and
a dropout rate of 10%. It is followed by a dense layer (in
light green too).

4.3. SA
We frame SA as a text classification task: i.e., assign one of
the pre-defined tag sets to an input sequence of any length.
We use the model described in (Adouane et al., 2020) which
consists of two sub-neural networks.

• The Encoder consists of the shared layers described ear-
lier in 4.1, namely the Token-level and the Sequence-
level encoders.

• The Dense layer (in yellow) with softmax activation
maps the output of the sequence-level encoder to SA tags.

All models are trained end-to-end for 50 epochs using a
batch size of 64 and Adam optimiser. Gradients with a
norm greater than 5 are clipped. As the main focus of the
multi-task learning, models share embedding and encoder
parameters. Each task is run for a full epoch before switch-
ing to the next task. Therefore there is no special code to
combine losses (each loss function remains the same for a
whole epoch).

5. Experiments and Results
In order to evaluate the performance of our model, we shuf-
fled the datasets and split them (with no overlapping parts)
as follows.
For CSD we use 30% (3,177 samples) as a test set, 10%
(1,059 samples) as a development set, and the remaining
60% (6,354 samples) as a training set.
For SPELL we use 20% (37,041 samples) as a test set, 5%
(9,261 samples) as a development set, and 75% (138,917
samples) as a training set.
For SA we use 17% (6,122 samples) as a test set, 10%
(3,612 samples) as a development set, and 73% (26,386
samples) as a training set.
For NER we use 30% (14,013 samples) as a test set, 10%
(4,671 samples) as a development set, and the remaining
60% (28,026 samples) as a training set.
Note that all datasets are separate and are labelled for
different tasks using different tag sets (depending on the
task). The hyper-parameters mentioned in Section 4 are
fine-tuned on the development sets. Given the small size of
the CSD dataset and the high sparsity of the SPELL dataset,
after fixing the hyper-parameters, we train both on the train-
ing and the development sets, following Yin et al. (2015).
To examine the effect of jointly learning the tasks, we ex-
periment with the following setups:

1. Pairwise tasks: To measure the effect of a task on a
single other task, we train them two at a time, as shown
in Table 2.

https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
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Figure 1: Multi-task model architecture.

2. Order of tasks: To check whether the order of tasks
affects the overall performance, we run sets of 3 and 4
tasks in various orders. We report the cases where the
order has a measurable effect (positive or negative) on
the performance.

3. Context of words: We are interested in measuring
the effect of the context for SPELL (sequence-to-
sequence). To do so we either feed the data word by
word or whole user-generated text at a time. In the
following SPELL will refer to the context-aware task,
and SPELL-token refers to the contextless task.

4. Size of SPELL training data: We want to investigate
the impact of the size of the training data, especially
considering that one of the tasks (SPELL) has much
more data than the other (CSD, SA and NER) tasks.
To do so, we vary only the size of the training data
of SPELL while keeping the training sets of CSD, SA
and NER fixed each time (as well as the test sets).

5. Training data augmentation: We experiment with
augmenting the training data for the SPELL task (fur-
ther referred to as augmented). In this experiment
the training data is a combination of tokens and se-
quence of tokens. (This is equivalent to jointly training
SPELL and SPELL-token.)

For each case we take models trained separately (single
tasks) as baselines. For pairwise tasks we report the de-
tailed results measured as the average Accuracy and macro
F-score on the test sets over 50 epochs, thus taking into ac-
count the speed of learning. For other experiments (2, 3,
4, and 5) we show the performance, measured as the over-
all Accuracy, of jointly learning the tasks at hand on the
test sets over 20 epochs (we found no significant gain when
training for longer and do not report further).

5.1. Pairwise tasks

Task Tasks Training Accuracy (%) Macro F-score

C
SD

CSD single 96.80 64.54
CSD + SPELL joint 96.32 62.27
CSD + SA joint 94.30 34.61
CSD + NER joint 97.20 71.29

SP
E

L
L

SPELL single 93.49
SPELL + CSD joint 93.60
SPELL + SA joint 93.20
SPELL + NER joint 93.71

SA

SA single 61.23 54.08
SA + CSD joint 61.35 53.31
SA + SPELL joint 60.74 51.50
SA + NER joint 59.82 53.46

N
E

R

NER single 99.80 49.68
NER + CSD joint 99.82 48.65
NER + SPELL joint 99.78 42.05
NER + SA joint 99.74 34.60

Table 2: Macro-average performance of the tasks trained
separately and pairwise. Underlined values are baselines.
Values in bold show positive effect of jointly learning the

tasks at hand.

In Table 2, results measured as Accuracy indicate that
learning SPELL, SA and NER tasks jointly with CSD im-
proves their performance over learning them separately —
by comparing the performance of single tasks to their per-
formance when jointly trained with CSD.
Note that the gain is mutual between CSD and NER, i.e.,
jointly learning the tasks benefits both, to different extents.
Nevertheless, SPELL and SA slightly benefit from CSD but
do not improve it. Interestingly whenever multi-task in-
cludes SPELL or SA tasks, the overall performance of the
second task (CSD or NER) drops compared to learning the
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task separately.

Figure 2: Accuracy (%) of jointly learning 2 tasks for 50
epochs.

A closer look at the results per epoch in Figure 2 indicates
that when beneficial, multi-task learning speeds up the per-
formance of the tasks for the first few epochs.
The same behaviour is observed in experiments below (Sec-
tion 5.2 for instance). This could be because (1) the gener-
ated shared representation is not wide enough to capture all
tasks perfectly —it needs more parameters in shared lay-
ers, or that (2) each task has enough data in itself to reach
maximum accuracy. (3) Another hypothesis, which contra-
dicts (2), is that the sparsity and noise in the SPELL and SA
training data effects negatively the other tasks.
Jointly training NER with CSD (in turquoise) outperforms
training the tasks separately. Furthermore, jointly learning
SA with CSD (in red) and SA with SPELL (in pink) out-
performs SA trained as a single task. These observations
refute hypothesis (2). We controlled for hypothesis (1) by
increasing the number of features in the shared layers. That
is to say, we tried different values and found that using 500
features in the CNN layers of the token-level encoder, and
500 and 1,000 features for the first and the second CNN
layers of the sequence-level encoder has slightly improved
the performance of SPELL. However, the overall behaviour
of jointly learning SPELL or SA with CSD or NER is still
the same. This means that hypothesis (1) does not hold,
i.e., it is likely that the noise and sparsity of the SPELL and
SA datasets have negative effects on training them jointly
with each other or with CSD and NER. Evaluating this hy-
pothesis requires further investigation, which we leave it as
future work.
We provide in Table 2 the macro-average F-score for each
setting which also reflects the overall impact of jointly
learning the tasks by treating all the classes equally. More-
over, since all our datasets are imbalanced both in terms of
class distributions and dataset sizes (certain classes have
more samples than others and some datasets are much
larger than others) we also show the micro F-score at a con-
vergence point for each setting to better analyse the effect
of jointly learning the tasks on each class.

Task Class CSD CSD + SPELL CSD + SA CSD + NER

C
SD

ALG 92.05 89.82↓ 83.90↓ 91.86↓
BER 74.29 71.43↓ 00.00↓ 64.71↓
BOR 77.10 62.45↓ 20.91↓ 72.22↓
DIG 99.93 99.93 99.25↓ 99.93
ENG 26.67 15.38↓ 00.00↓ 37.50↑
FRC 83.62 74.45↓ 44.93↓ 82.17↓
MSA 90.76 87.88↓ 81.71↓ 90.39↓
NER 58.62 26.74↓ 02.35↓ 62.83↑
SND 96.14 95.98↓ 80.37↓ 95.58↓
Class SA SA + CSD SA + SPELL SA + NER

SA

MIX 60.38 62.48↑ 64.20↑ 60.70↑
NEG 41.72 42.44↑ 31.88↓ 48.21↑
NEU 53.80 50.95↓ 54.95↑ 56.11↑
POS 75.59 75.92↑ 76.92↑ 75.48↓
Class NER NER + CSD NER + SPELL NER + SA

N
E

R

COM 21.54 29.55↑ 11.32↓ 00.00↓
LOC 80.77 81.50↑ 74.03↓ 66.05↓
OOO 99.50 99.59↑ 99.45↓ 99.42↓
ORG 09.57 06.67↓ 03.87↓ 00.00↓
OTH 26.39 27.41↑ 22.66↓ 18.75↓
PER 63.38 69.77↑ 54.36↓ 52.17↓
PRO 57.20 59.93↑ 54.51↓ 47.80↓

Table 3: Micro F-score of the tasks in single and multi-task
settings. ↑ marks positive effect and ↓ marks negative effect
of jointly learning the 2 tasks at hand.

Results in Table 3 show that jointly training CSD with
SPELL or SA has negative effect on all CSD classes
(marked with ↓). The negative effect of SA is more pro-
nounced. Minority classes (BER, BOR, ENG, FRC, and
NER) are more affected than others. Training CSD with
NER has also caused some loss in the performance of some
classes of CSD (marked with ↓), but the loss is smaller
than when trained with SPELL or SA. The positive effect
of NER task on CSD (marked with ↑) could be attributed
to its improvements for ENG and NER classes (two minor
classes) with a gain of 10.83 and 4.21 points on the F-score
respectively. One possible explanation for this improve-
ment could be that the model could extract some under-
lying structures between some named entity mentions and
English words used in the same context. It could be also
that it becomes easier for the model to further classify a to-
ken in one of NER classes when it knows it is a mention of
a named entity.
As shown in Table 3, some classes are harder to learn than
others, single trained models struggle also with them. Over-
all SA benefits from CSD and NER. On the one hand, the
gain from CSD could be attributed to its positive effect on
MIX, NEG and POS classes. Nevertheless, CSD has a neg-
ative effect on NEU with a loss of 2.85 points on the F-
score. On the other hand, NER has improved MIX, NEG
and NEU classes with a slight loss on POS. SPELL has im-
proved MIX, NEU and POS and caused significant drop on
NEG with a loss of 9.84 points on the F-score.
The main difference between the effect of the tasks is
mainly on the minority classes (NEG and NEU). This sug-
gests that the tasks could be complementary and their ef-
fect could be optimised if trained jointly. This is confirmed
when training the 4 tasks together as shown in Figure 4 —at
least for the first 10 epochs for SA.
SPELL and especially SA have a significant negative im-
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pact on all classes of NER. Nonetheless CSD has improved
all NER classes except ORG (which a single NER model
struggles to capture, with an F-score of only 9.57).

5.2. Order of tasks
Results in Figure 3 show that, except for NER, jointly learn-
ing the CSD, SPELL and SA tasks improves their perfor-
mance over learning each one separately (as single tasks)
only for the first few (7) epochs: after that, learning CSD as
a single task outperforms training it with other tasks (blue
line), and the effect of learning jointly the tasks is not clear
for SPELL and SA.

Figure 3: Accuracy (%) of jointly learning 3 tasks for 20
epochs with varying task order.

The results suggest that the order of the tasks has a differ-
ent effect on the different tasks, for the first few epochs.
For instance, while training SA+NER+CSD has a negative
effect on both CSD and NER, it has a positive effect on
SA (outperforms even SA trained separately). Likewise for
CSD-NER-SA but at different extent. NER+CSD+SA has
a negative effect on SA and NER overall, but it has a posi-
tive effect on CSD at the beginning. This suggests that the
order of the tasks affects strongly the first epoch.
The same observation could be applied when jointly learn-
ing the 4 tasks as shown in Figure 4. In more details,
jointly learning the 4 tasks in NER+CSD+SPELL+SA and
SPELL+CSD+NER+SA orders improves SPELL, where
the task achieves its best performance. While the same task
orders have no positive effect on NER, they do boost the
performance of CSD and SA in the beginning but eventu-
ally they cause the overall performance to level faster.

5.3. Context of words for SPELL
So far SPELL is trained at a sequence level (as a sequence-
to-sequence). In order to measure the effect of the word
context we train the same model architecture at a token
level, and we refer to it as SPELL-token in Figure 5. The
choice of NER+CSD+SPELL+SA order is based on the
aforementioned results in Figure 4 where the selected task
order performs the best for SPELL (in red). The results
indicate clearly that context does matter for SPELL when

Figure 4: Accuracy (%) of jointly learning 4 tasks for 20
epochs with varying task order.

Figure 5: Accuracy (%) of jointly learning 4 tasks with(out)
word context for SPELL.

trained separately and for CSD and NER tasks when trained
jointly with SPELL and SA. Surprisingly, SPELL (with
context) has a positive effect on SA only for the first 6
epochs then the effect is reversed. SPELL-token has an
even more positive effect on SA before epoch 8. This sug-
gests that either SA and SPELL datasets could include more
ambiguity compared to other datasets, or that the noise of
the two datasets hinders learning the tasks jointly.

5.4. Size of SPELL training data
As mentioned earlier, in this experiment we only vary
the size of the training set for SPELL. We try 10k, 50k,
100k and all (185k)) and keep the rest unchanged to in-
vestigate whether this has any impact on jointly learn-
ing the tasks. We use the same task order, namely
NER+CSD+SPELL+SA as motivated earlier, and we refer
to it as multi-task in Figure 6.
In single task learning, the learning curves of SPELL in
Figure 6 indicate that the performance of the task improves
quickly with more data (by comparing the performances of
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Figure 6: Accuracy (%) of jointly learning 4 tasks with
varying SPELL training size. Single task: learning each
task separately (baselines). Multi-task: jointly learning the
tasks in NER+CSD+SPELL+SA order. All: train on all
training sets as described in Section 5.

100k to 10k and 50k training samples). However, the per-
formance levels with 100k samples, even though it takes
a few more epochs to reach the performance than when
using all training data. Towards the end the two lines are
almost superposed. One possible explanation is that most
representative data is already covered in 100k samples (the
model has already seen enough data to achieve its maxi-
mum performance).
In multi-task learning, the same trend of single task learn-
ing is observed for SPELL with a small gain in the perfor-
mance in the beginning when multi-tasking. Interestingly,
as the amount of data increases, the gain of multi-tasking
diminishes. For CSD, increasing the training size of SPELL
from 10k to 50k has a negative effect, but increasing the
size to 100k has boosted the performance of CSD especially
in the beginning. The same thing is observed for NER and
SA. One possible explanation could be that the datasets of
50k or less are too small and subject to random noise.
The best gain of multi-task for CSD is achieved when
trained with only 100k of SPELL. NER and SA, exceeding
even single task, benefits the most when trained with only
10k of SPELL. SPELL nevertheless follows the “more data
better performance” hypothesis.

5.5. Data augmentation
We replicate the same experiment as in Section 5.3, but in-
stead of comparing the performance of SPELL-token and
SPELL separately, we augment the SPELL training data by
combining both (token and sequence as input). This allows
us to optimise the gain, if any, from the SPELL data.
Results in Figure 7 show that multi-task with the aug-
mented data has arguably very little effect on SPELL com-
pared to the single task in the same setting (the two lines are
nearly superposed). However, data augmentation boosts the
performance of SPELL compared to non-augmented data
and even achieves its best performance. This rejects again
hypothesis (2) in Section 5.1 because the performance of

Figure 7: Accuracy (%) of jointly learning 4 tasks with data
augmentation for SPELL. Augmented: using token + se-
quence as input to SPELL.

SPELL keeps increasing with more data.
On the one hand, augmenting SPELL data has a no-
table positive effect on SPELL when jointly trained with
the other tasks compared to the same setting with non-
augmented data (comparing green and red lines). On the
other hand, in terms of effect on the other tasks, while aug-
menting SPELL data has a negative impact on SA, it offers
a small benefit for CSD and NER at the very beginning (be-
fore epoch 6), but it is outperformed by the non-augmented
data after that.

6. Conclusions and Future Work
We have examined the effect of jointly learning 4 tasks,
which are neither morpho-syntactic nor semantic tagging,
for noisy user-generated Algerian texts. The main find-
ings of our empirical investigation, which includes a va-
riety of experiments, could be summarised in the following
points. (1) Tasks have different impacts on each other when
learned jointly. (2) In multi-task learning notable gains are
achieved for some tasks when trained jointly with specific
tasks. Other tasks benefit from jointly learning them with
some other tasks but the gain is only during the first few
epochs, especially for tasks with little training data (CSD,
NER and SA comparably to SPELL). Training for more
epochs degraded their performance compared to learning
them separately which is likely caused by the noisiness and
sparsity of the data.
This means that it is hard to say whether multi-tasking is
useful or not without mentioning several factors such as the
tasks themselves, their order, the size of their datasets. (3)
Word context for SPELL does matter for the task itself (sin-
gle task) and for the tasks it is jointly trained with. (4) More
SPELL training data does not necessary yield better results
neither for the task itself (single task) nor for the tasks it
is jointly learned with. In fact, performance is levelling at
a certain point, in our case 10k samples for SA and NER,
100k for CSD, confirming this hypothesis. (5) Combin-
ing token and sequence level SPELL (augmented) is more
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beneficial for the task itself (single task) with no gain for
multi-task at the convergence point.
In the future, we will examine hypothesis (3) using sequen-
tial transfer learning, for instance by running SPELL on all
datasets and compare their performances to the non spell
corrected and normalised ones. Furthermore, we plan to
explore the idea of curriculum learning (Elman, 1993; Ha-
cohen and Weinshall, 2019) on both tasks and individual
classes for each task by introducing the tasks or the classes
in increasing order of difficulty.
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