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Abstract
The TermEval 2020 shared task provided a platform for researchers to work on automatic term extraction (ATE) with the same dataset:
the Annotated Corpora for Term Extraction Research (ACTER). The dataset covers three languages (English, French, and Dutch) and
four domains, of which the domain of heart failure was kept as a held-out test set on which final f1-scores were calculated. The aim was
to provide a large, transparent, qualitatively annotated, and diverse dataset to the ATE research community, with the goal of promoting
comparative research and thus identifying strengths and weaknesses of various state-of-the-art methodologies. The results show a lot
of variation between different systems and illustrate how some methodologies reach higher precision or recall, how different systems
extract different types of terms, how some are exceptionally good at finding rare terms, or are less impacted by term length. The current
contribution offers an overview of the shared task with a comparative evaluation, which complements the individual papers by all
participants.
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1. Introduction

Automatic Term Extraction (ATE) can be defined as the au-
tomated process of identifying terminology from a corpus
of specialised texts. Despite receiving plenty of research
attention, it remains a challenging task, not in the least
because terms are so difficult to define. Terms are typi-
cally described as ”lexical items that represent concepts of
a domain” (Kageura and Marshman, 2019), but such defini-
tions leave room for many questions about the fundamental
nature of terms. Since ATE is supposed to automatically
identify terms from specialised text, the absence of a con-
sensus about the basic characteristics of terms is problem-
atic. The disagreement covers both practical aspects, such
as term length and part-of-speech (POS) pattern, and the-
oretical considerations about the difference between words
(or collocations/phrases) and terms. This poses great dif-
ficulties for many aspects of ATE, from data collection, to
extraction methodology, to evaluation.
Data collection, i.e. creating domain-specific corpora in
which terms have been annotated, is time- and effort-
consuming. When manual term annotation is involved,
inter-annotator agreement is notoriously low and there is
no consensus about an annotation protocol (Estopà, 2001).
This leads to a scarcity in available resources. Moreover,
it means that the few available datasets are difficult to
combine and compare, and often cover only a single lan-
guage and domain. While the manual annotation bottle-
neck has often been circumvented by starting from existing
resources, such as ontologies or terminological databases,
specialised dictionaries, or book indexes, such strategies do
not have the same advantages as manual annotation and will
rarely cover all terms in an entire corpus.
This is linked to the evaluation of ATE, for which the ac-
cepted metrics are precision (how many of the extracted
terms are correct), recall (how many of the terms in the
text have correctly been extracted), and f1-score (harmonic

mean of the two). To calculate recall (and, therefore, also
f1-score), it is necessary to know all true terms in a text.
Since manual annotation is such an expensive operation,
and relatively few resources are currently available, eval-
uation is often limited to either a single resource, or the
calculation of precision.
The ATE methodology itself, most notably the types of
terms a system is designed to find, is impacted as well.
Some of the most fundamental differences are term length
(in number of tokens), term POS-pattern (sometimes only
nouns and noun phrases, sometimes adjectives, adverbs,
and verbs are included), and minimum term frequency. Dif-
ferences which are more difficult to quantify are, for in-
stance, how specialised or domain-specific a lexical unit
needs to be before it is considered a term. These three as-
pects are closely related, since different systems and eval-
uation methods will be suited for different datasets. This
combination of difficulties creates a hurdle for clear, com-
parative research.
All of this can slow down the advance of ATE, especially
now that (supervised) machine learning techniques are be-
coming more popular for the task. The TermEval shared
task on ATE, using the ACTER Annotated Corpora for
Term Extraction Research, was designed to lower these hur-
dles. The ACTER dataset contains specialised corpora in
three languages (English, French, and Dutch), and four do-
mains (corruption, dressage (equitation), heart failure, and
wind energy), which have been meticulously, manually an-
notated according to transparent guidelines. Both the texts
and the annotations have been made freely available. The
current version of the dataset presents the annotations as
unstructured lists of all unique annotated terms (one term
and its label per line), rather than providing the span of each
occurrence of annotated terms in their context (which may
be provided in future releases). The shared task brought to-
gether researchers to work on ATE with the same data and
evaluation setup. It allowed a detailed comparison of dif-
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ferent methodologies. Standard evaluation methods (pre-
cision, recall, f1-score) were used for the basic evaluation
and ranking; these are elaborated with more detailed evalu-
ations as presented both in the current overview paper and
in participants’ contributions.
The following sections start with a brief overview of cur-
rent datasets and methodologies for ATE. In section 3, the
ACTER dataset is described in some detail. The fourth sec-
tion contains an overview of the shared task itself and the
results. The final section is dedicated to a discussion and
the conclusions.

2. Related Research
2.1. Manually Annotated Gold Standards for

ATE
Two of the most commonly used annotated datasets are GE-
NIA (Kim et al., 2003), and the ACL RD-TEC 2.0 (Qasem-
izadeh and Schumann, 2016), both of which are in En-
glish. GENIA is a collection of 2000 abstracts from the
MEDLINE database in the domain of bio-medicine, specif-
ically “transcription factors in human blood cells”. Over
400k tokens were annotated by two domain experts to ob-
tain 93,293 term annotations. The ACL-RD-TEC 2.0 con-
tains 300 annotated abstracts from the ACL Anthology Ref-
erence Corpus. Again, two experts performed the anno-
tation of 33k tokens, which resulted in 6818 term anno-
tations. They claim three main advantages over GENIA:
first, the domain (computational linguistics) means that
ATE researchers will have a better understanding of the
material. Second, the ACL RD-TEC corpus covers three
decades, which allows some research of the evolution of
terms. Third and finally, the annotation is more transparent,
with freely available annotation guidelines and the possibil-
ity to download the annotations of both experts separately.
There are other examples as well, such as the CRAFT
corpus, another English corpus in the biomedical do-
main (99,907 annotations over 560k tokens) (Bada et al.,
2012), an English automotive corpus (28,656 annotations
over 224,159 tokens) (Bernier-Colborne, 2012; Bernier-
Colborne and Drouin, 2014), a diachronical English cor-
pus on mechanical engineering (+10k annotations over
140k words) (Schumann and Fischer, 2016), the TermITH
French corpus on language sciences (14,544 unique vali-
dated terms found over 397,695 words) (TermITH, 2014;
Billami et al., 2014), a small German corpus on DIY, cook-
ing, hunting and chess which focused on inter-annotator
agreement between laypeople (912 annotations on which at
least 5 out of 7 annotators agreed, over 3075 words) (Hätty
and Schulte im Walde, 2018b) and, within the framework
of the TTC project (Loginova et al., 2012), lists of 107-159
annotated terms in corpora in seven languages and two do-
mains (wind energy and mobile technology). While this is
a non-exhaustive list, it illustrates an important and logical
trend: either the created gold standard is quite large, with
over 10k annotations, or it covers multiple languages and/or
domains.
While this is not necessarily problematic, the annotation
guidelines for all of these corpora differ, and, therefore, the
annotations themselves as well. That does create difficul-
ties, since comparing ATE performance on multiple cor-

pora will not necessarily reflect differences in performance
between domains or languages, but may also show the con-
trast between the different annotation styles. The differ-
ences can be quite substantial, e.g. in GENIA and ACL
RD-TEC, nested annotations are not allowed, in CRAFT
they are only allowed under certain conditions, while in the
TermITH project they are allowed in most cases. More-
over, it is important to note that the annotations of both the
TermITH project and the TTC project are based on the man-
ual annotation of ATE results, rather than manual annota-
tions in the unprocessed text. A final remark is that some
corpora have been annotated with multiple term labels or
have even been annotated according to large taxonomies,
while others don’t make any distinctions beyond terms. As
will be discussed in more detail in section 3, the ACTER
dataset has been specifically designed to deal with some of
the issues addressed here.

2.2. ATE
Traditionally, three types of ATE methodologies are iden-
tified: linguistic (relying on linguistic information, such as
POS-patterns and chunking), statistical (using frequencies,
often compared to a reference corpus, to calculate term-
hood and unithood (Kageura and Umino, 1996)), and hy-
brid methods (which combine the two). It has been estab-
lished for some time that hybrid methods appear to outper-
form the other two (Macken et al., 2013). These methods
typically select candidate terms based on their POS-pattern
and rank these candidate terms using the statistical met-
rics, thus combining the advantages of both techniques. A
particular difficulty is defining the cut-off threshold for the
term candidates, which can be defined as the top-n terms,
the top-n percentage of terms, or all terms above a certain
threshold score. Manually predicting the ideal cut-off point
is extremely difficult and can result in a skew towards either
precision or recall, which can be detrimental to the final f1-
score (Rigouts Terryn et al., 2019a).
While this typology of linguistic, statistical, and hybrid sys-
tems is sometimes still used today, in recent years, the ad-
vance of machine learning techniques has made such a sim-
ple classification of ATE methodologies more complicated
(Gao and Yuan, 2019). Methodologies have become so
diverse that they are no longer easily captured in such a
limited number of clearly delineated categories. For in-
stance, apart from the distinction between statistical and
linguistic systems, one could also distinguish between rule-
based methods and machine learning methods. However,
rather than a simple binary distinction, there is quite a range
of options: methods that rely on a single statistical score
(Drouin, 2003; Kosa et al., 2020), systems that combine
a limited number of features with a voting algorithm (Fe-
dorenko et al., 2013; Vivaldi and Rodrı́guez, 2001), an evo-
lutionary algorithm that optimises the ROC-curve (Azé et
al., 2005), rule-induction (Foo and Merkel, 2010), support-
vector models (Ramisch et al., 2010), logistic regression
(Bolshakova et al., 2013; Judea et al., 2014), basic neu-
ral networks (Hätty and Schulte im Walde, 2018a), recur-
sive neural networks (Kucza et al., 2018), siamese neu-
ral networks (Shah et al., 2019), and convolutional neural
networks (Wang et al., 2016). Within the machine learn-



87

ing systems, there are vast differences between supervised,
semi-supervised, and unsupervised systems, as well as the
distinction between sequence labelling approaches and sys-
tems that start from a limited list of unique term candidates.
Splitting systems by their features is perhaps even more dif-
ficult, since research has moved far beyond using simple
linguistic and statistical features. Some examples include
the use of topic modelling (Šajatović et al., 2019; Bol-
shakova et al., 2013), queries on search engines, Wikipedia,
or other external resources (Kessler et al., 2019; Vivaldi and
Rodrı́guez, 2001), and word embeddings (Amjadian et al.,
2016; Kucza et al., 2018; Qasemizadeh and Handschuh,
2014; Pollak et al., 2019). Some methods are even called
“featureless” (Gao and Yuan, 2019; Wang et al., 2016).

There are many more ways in which ATE systems can vary.
Some can already be deduced from the ways in which the
datasets are annotated, such as support for nested terms.
Another very fundamental difference is the frequency cut-
off: many ATE systems only extract terms which appear
above a certain frequency threshold in the corpora. This
threshold is extremely variable, with some systems that do
not have any threshold, others that only extract candidate
terms which appear 15 times or more (Pollak et al., 2019),
and still others where only the top-n most frequent terms are
extracted (Loukachevitch, 2012). Term length is similarly
variable, with systems that don’t place any restrictions, oth-
ers that extract only single-word terms, only multi-word
terms, or those that extract all terms between 1 and n to-
kens (with n ranging from 2 to 15), where n is sometimes
determined by the restrictions of a system, sometimes ex-
perimentally set to an optimal value, and at other times di-
rectly determined by the maximum term length in a gold
standard. There are many other possible differences, such
as POS patterns, which will not be discussed in any detail
here. More information regarding both datasets for ATE
and different ATE methodologies can be found in Rigouts
Terryn et al. (2019b).

With such a great variety of methodologies, comparative re-
search is essential to identify the strengths and weaknesses
of the respective strategies. However, as discussed, appro-
priate datasets are scarce and often limited. This means
that ATE systems are regularly scored solely on precision
(or some variation thereof), since recall and f1-score cannot
be calculated without knowing all true terms in a corpus.
Considering the expense of data annotation, the extra effort
required is rarely feasible. The strictness of the evaluation
varies as well, such as determining how specialised a term
candidate needs to be for it to be considered a true term,
and validating only full matches or also partial ones. More-
over, scores for sequence labelling approaches are difficult
to compare to scores for approaches that provide ranked
lists of unique terms. There is even disagreement on the
required expertise for annotators: do they need to be do-
main experts or terminologists? This disparity does not
only make comparisons between systems highly problem-
atic, it also means that many systems are evaluated on only
a single domain (and language).

3. ACTER Annotated Corpora for Term
Extraction Research

ACTER is a collection of domain-specific corpora in which
terms have been manually annotated. It covers three lan-
guages (English, French, and Dutch) and four domains
(corruption, dressage (equitation), heart failure, and wind
energy). It has been created in light of some of the per-
ceived difficulties that have been mentioned. A previous
version (which did not yet bear the ACTER acronym) has
already been elaborately described (Rigouts Terryn et al.,
2019b), so we refer the interested reader to this work for
more detailed information. However, the current version
of the dataset has been substantially updated since then,
to be even more consistent. All previous annotations have
been double-checked, inconsistent annotations were auto-
matically found and manually edited when necessary, and,
with this shared task, a first version has been made pub-
licly available. Therefore, the remainder of this section
will focus on the up-to-date statistics of version 1.2 of the
ACTER dataset (version 1.0 was the first to appear online
for the shared task). The annotation guidelines have been
updated as well and are freely available1. Discontinuous
terms (e.g. in ellipses) have been annotated, but are not yet
included in ACTER 1.2, and neither are the cross-lingual
annotations in the domain of heart failure. The changes
made between ACTER versions are indicated in detail in
the included README.md file and the biggest difference
between version 1.0 and 1.2 (besides some 120 removed
or added annotations) is the inclusion of the label of each
annotation.
The dataset contains trilingual comparable corpora in all
domains: the corpora in the same domain are similar in
terms of subject, style, and length for each language, but
they are not translations (and, therefore, cannot be aligned).
Additionally, for the domain of corruption, there is a trilin-
gual parallel corpus of aligned translations. For each lan-
guage and domain, around 50k tokens have been manually
annotated (in the case of corruption, the annotations have
only been made in the parallel corpus, so the comparable
corpus on corruption is completely unannotated). In all do-
mains except heart failure, the complete corpora are larger
than only the annotated parts, and unannotated texts are
included (separately) as well. The texts are all plain text
files and the sources have been included in the download-
able version. The annotations have been performed in the
BRAT annotation tool (Stenetorp et al., 2011), but they are
currently provided as flat lists with one term per line. The
annotations have all been performed by a single annotator
with experience in the field of terminology and ATE and
fluent in all three languages. However, she is not a domain-
expert, except in the domain of dressage. Multiple semi-
automatic checks have been performed to ensure the best
possible annotation quality and inter-annotator agreement
studies were performed and published (Rigouts Terryn et
al., 2019b) to further validate the dataset. Furthermore, the
elaborate guidelines helped the annotator to make consis-
tent decisions and make the entire process more transpar-
ent. Nevertheless, term annotation remains an ambiguous

1http://hdl.handle.net/1854/LU-8503113



88

bioprosthetic valve replacement Specific Term
biopsies Common Term
biopsy Common Term
biosynthetic enzymes Specific Term
bisoprolol Specific Term
bisphosphonates Specific Term

Table 1: Sample of one of the gold standard term lists in
the ACTER 1.2 dataset to illustrate the format

and subjective task. We do not claim that ours is the only
possible interpretation and, therefore, when using ACTER
for ATE evaluation purposes, always recommend checking
the output for a more nuanced evaluation (e.g. Rigouts Ter-
ryn et al. (2019a)).
While ATE for TermEval has been perceived as a binary
task (term or not), the original annotations included four
different labels. There are three term labels, for which
terms are defined by their degree of domain-specificity (are
they relevant to the domain) and lexicon-specificity (are
they known only by experts, or by laypersons as well).
The three term labels defined this way are: Specific Terms
(which are both domain- and lexicon-specific), Common
Terms (domain-specific, not lexicon-specific), and Out-
of-Domain (OOD) Terms (not domain-specific, lexicon-
specific). In the domain of heart failure, for instance, ejec-
tion fraction might be a Specific Term: laypersons gen-
erally do not know what it means, and it is strongly re-
lated to the domain of heart failure, since it is an indication
of the volume of blood the heart pumps on each contrac-
tion. Heart is an example of a Common Term: it is clearly
domain-specific to heart failure and you do not need to be
an expert to have a basic idea of what a heart is. An example
of an OOD term might be p-value, which is lexicon-specific
since you need some knowledge of statistics to know the
term, but it is not domain-specific to heart failure. In ad-
dition to these three term labels, Named Entities (proper
names of persons, organisations, etc.) were annotated as
well, as they share a few characteristics with terms: they
will appear more often in texts with a relevant subject (e.g.
brand names of medicine in the field of heart failure) and,
like multi-word terms, have a high degree of unithood (in-
ternal cohesion). Labelling these does not mean we con-
sider them to be terms, but it offers more options for the
evaluation and training based on the dataset.
Since TermEval was set up as a binary task, all three term
labels were combined and considered as true terms. There
were two separate datasets regarding the Named Entities:
one including both terms and Named Entities, one with
only terms. All participating systems were evaluated on
both datasets. Moreover, while the evaluation for the rank-
ing of the participating systems was based only on these
two binary interpretations, the four labels were made avail-
able afterwards for a more detailed evaluation of the results.
The gold standard lists of terms were ordered alphabeti-
cally, so with no relation to their labels or degree of term-
hood. Table 1 shows a sample of such a gold standard list,
with one unique term per line followed by its label.
Tables 2 and 3 provide more details on ACTER 1.2. Ta-

ble 2 shows the number of documents and words per cor-
pus, both in the entire corpus and only the annotated part
of the corpus. Table 3 provides details on the number of
annotations per corpus, counting either all annotations or
all unique annotations. In total, 119,455 term and Named
Entity annotations have been made over 596,058 words, re-
sulting in 19,002 unique annotations. As can be seen, the
number of annotations within a domain is usually some-
what similar for all languages (since the corpora are com-
parable), with larger differences between the domains. Ver-
sion 1.2 of ACTER only provides a list of all unique low-
ercased terms (and Named Entities) per corpus. The aim is
to release future versions with all in-text annotation spans,
where every occurrence of each term is annotated, so that
it can be used for sequence-labelling approaches as well. It
is important to note that, since the annotation process was
completely manual, each occurrence of a term was evalu-
ated separately. When a lexical unit was only considered a
term in some contexts, it was only annotated in those spe-
cific contexts. For instance, the word sensitivity can be used
in general language, where it will not be annotated, but also
as a synonym of recall (true positive rate), in which case it
was annotated as a term.
Additional characteristics to bear in mind about these anno-
tations are that nested annotations are allowed (as long as
the nested part can be used as a term on its own), and that
there were no restrictions on term length, term frequency,
or term POS-pattern (apart from the condition that terms
had to contain a content word). If a lexical unit was used
as a term in the text, it was annotated, even if it was not
the best or most frequently used term for a certain con-
cept. The reasoning behind this strategy was that one of the
most important applications of ATE is to be able to keep up
with fast-evolving terminology in increasingly more spe-
cialised domains. If only well-established, frequent terms
are annotated, the rare and/or new terms will be ignored,
even though these could be particularly interesting for ATE.
While these qualities were all chosen to best reflect the
desired applications for ATE, they do result in a particu-
larly difficult dataset for ATE, so f1-scores for ATE sys-
tems tested on ACTER are expected to be rather modest in
comparison to some other datasets.

4. TermEval Shared Task on ATE
4.1. Setup
The aim of the TermEval shared task was to provide a plat-
form for researchers to work on the same task, with the
same data, so that different methodologies for ATE can eas-
ily be compared and current strengths and weaknesses of
ATE can be identified. During the training phase, partic-
ipants all received the ACTER dataset as described in the
previous section, with all domains apart from heart failure.
The latter is provided during the final phase as the test set
on which the scores are calculated. As described in the pre-
vious section, ACTER 1.2 consists of flat lists of unique
terms per corpus, with one term per line. Since this first
version of the shared task aims to focus on ATE in gen-
eral, rather than term variation, all terms are lowercased,
and only identical lowercased terms are merged in a sin-
gle entry, without lemmatisation. Even when terms acquire
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# Words
Type Domain Language # Texts in entire corpus in annotated part of corpus
Parallel Corruption en 24 176,314 45,234

fr 24 196,327 50,429
nl 24 184,541 47,305

Comparable Corruption en 44 468,711 -
fr 31 475,244 -
nl 49 470,242 -

Dressage en 89 102,654 51,470
fr 125 109,572 53,316
nl 125 103,851 50,882

Heart failure en 190 45,788 45,788
fr 215 46,751 46,751
nl 175 47,888 47,888

Wind Energy en 38 314,618 51,911
fr 12 314,681 56,363
nl 29 308,742 49,582

TOTAL 3,365,924 1194 596,058

Table 2: Number of documents and words in the entire corpus vs. the annotated part of each corpus in ACTER 1.2

# Annotations
Domain Language Terms (all) Terms (unique) NEs (all) NEs (unique)
Corruption en 6,385 927 2,373 247

fr 5,930 982 2,186 235
nl 5,163 1,047 2,334 248

Dressage en 10,889 1,155 970 420
fr 9,397 963 467 220
nl 11,207 1,395 295 151

Heart failure en 14,011 2,361 526 224
fr 10,801 2,276 319 147
nl 10,219 2,077 433 180

Wind Energy en 9,478 1,091 1,429 443
fr 8,524 773 439 195
nl 5,044 940 636 305

TOTAL 107,048 15,987 12,407 3,015

Table 3: Number of annotations (counting all annotations separately or all unique annotations) of terms and Named Entities
(NEs), per corpus in ACTER 1.2

a different meaning through different capitalisation options
or POS patterns, they only count as a single annotation in
this version. For example, the English corpus on dressage
contains the term bent (verb – past tense of to bend), but
also Bent (proper noun – person name). While both cap-
italisation and POS differ, and bent is not the lemmatised
form, there is only one entry: bent (lowercased) in the gold
standard (other full forms of the verb to bend have separate
entries, if they are present and annotated in the corpus). We
do not discount the importance of ATE systems that handle
term variation, but a choice was made to focus on the core
task for the first edition of the task.

There are three different tracks (one per language) and par-
ticipants could enter in one or multiple tracks. When par-
ticipants submitted their final results on the test data (as
a flat list of unique lowercased terms, like the training
data), f1-scores were calculated twice: once compared to
the gold standard with only terms, once compared to the

gold standard with both terms and Named Entities. These
double scores did not influence the final ranking based on
f1-scores. The dataset has been used for more detailed eval-
uations as well (see section 4.3) and participants were en-
couraged to report scores on the training domains in their
own papers as well.

4.2. Participants
Five teams participated in the shared task: TALN-
LS2N (Hazem et al., 2020), RACAI (Pais and Ion,
2020), e-Terminology (Oliver and Vàzquez, 2020),
NLPLab UQAM (no system description paper), and NYU
(no system description paper but based on previous work
in Meyers et al. (2018)). NYU and RACAI participated
only in the English track, TALN-LS2N participated in both
the English and French tracks, and e-Terminology and
NLPLab UQAM participated in all tracks. We refer to their
own system description papers for more details, but will
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provide a short summary of each of their methodologies.
Team NYU has applied an updated version of Termolator
(Meyers et al., 2018). Candidate terms are selected based
on “terminological chunking and abbreviations”. The ter-
minological chunking focuses, among others, on nominal-
isations, out-of-vocabulary words, and technical adjectives
(based on suffixes) to find terms. Constructions where full
forms are followed by their abbreviations are also taken into
account. Next, three distributional metrics (e.g. TFIDF)
are combined with equal weights and a “well-formedness
score” is calculated, using mainly linguistic and morpho-
logical information. Additionally, a relevance score is
based on the results of an online search engine. The fi-
nal selection of candidate terms is made based on the prod-
uct of these three metrics. Due to the timing of the shared
task, Termolator was not specifically tuned to the ACTER
dataset.
Team e-Terminology uses the TSR (Token Slot Recog-
nition) technique, implemented in TBXTools (Oliver and
Vazquez, 2015; Vàzquez and Oliver, 2018). For Dutch, the
statistical version of TBXTools is employed, for English
and French the linguistic version is used. Stopwords are
filtered out and all candidate terms that appear below a fre-
quency threshold of two. As a terminological reference for
each language (required for the TSR technique), the IATE
database for 12-Law was chosen.
Team RACAI uses a combination of statistical approaches,
such as an improved TextRank (Zhang et al., 2018),
TFIDF, clustering, and termhood features. Algorithms
were adapted where possible to make use of pre-trained
word embeddings and the result was generated using sev-
eral voting and combinatorial approaches. Special attention
is also paid to the detection of nested terms.
Team TALN-LS2N uses BERT as a binary classification
model for ATE. The model’s input is represented as the
concatenation of a sentence and a selected n-gram within
the sentence. If the n-gram is a term, the input is labelled as
positive training example. If not, a corresponding negative
example is generated.
Team NLPLab UQAM applied a bidirectional LSTM.
Pre-trained GloVe word embedding were used to train a
neural network-based model on the training corpora.

4.3. Results
Precision, recall, and f1-scores were calculated both in-
cluding and excluding Named Entities, for each team in
all tracks. The scores and resulting ranking are pre-
sented in Table 3. As can be seen, TALN-LS2N’s system
outperforms all others in the English and French tracks.
NLPLab UQAM’s system outperforms e-Terminology for
the Dutch track (though their respective rankings for En-
glish and Dutch are reversed). Scores with and without
Named Entities are usually very similar (average difference
of one percentage point), with e-Terminology and NYU
scoring slightly better when Named Entities are excluded,
and the others scoring better when they are included. On
average, precision is higher than recall, especially when
Named Entities are included. However, there is much vari-
ation. For instance, TALN-LS2N’s English system ob-
tains 36-40% more recall than precision (the difference is

only 6-9% for their French system). Comparatively, e-
Terminology obtains 20% higher precision than recall on
average and NLPLab UQAM obtains more balanced preci-
sion and recall scores. The number of extracted term can-
didates varies greatly as well, from 744 (e-Terminology in
Dutch), to 5267 (TALN-LS2N in English). Therefore, even
though TALN-LS2N achieves the highest f1-scores thanks
to great recall in English, their system also produces most
noise, with 3435 false positives (including Named Entities).
The average number of extracted candidate terms (2038)
is not too different from the average number of terms in
the gold standard (2422 incl. Named Entities, 1720 with-
out). Looking at performance of systems in multiple tracks,
there does not appear to be one language that is inherently
easier or more difficult. TALN-LS2N’s best performance
is reached for French, e-Terminology’s for English, and
NLPLab UQAM’s for Dutch.
As with many other task within natural language pro-
cessing, the methodology based on the BERT transformer
model appears to outperform other approaches. However,
the large gap between precision and recall for the English
model, which is much smaller for the French model, may
be an indication of an often-cited downside of deep learn-
ing models: their unpredictability. For ATE, predictability
is cited as at least as important as f1-scores: “for ATE to
be usable, its results should be consistent, predictable and
transparent” (Kageura and Marshman, 2019). Additionally,
it appears that neural networks and word embeddings do
not always work for this task, as demonstrated by the fact
that, for English and French, NLPLab UQAM’s bidirec-
tional LSTM approach with GLOVE embeddings is ranked
last, below non-neural approaches such as NYU’s.
Apart from the ranking based on f1-scores, three different
aspects of the results are analysed in more detail: compo-
sition of the output, recall of terms with different frequen-
cies, and recall of terms with different lengths. Figure 1
shows the first of these, illustrating the composition of the
gold standard regarding the four annotation labels, versus
the true positives from each team. The results are averaged
over all languages, as the differences between the languages
were small. False positives were not included, since these
can be deduced from the precision scores. The graphs are
relative, so they do not represent the absolute number of
annotations per type, only the proportions. The order of the
teams is the order of their ranks for the English track. A first
observation is that all teams seem to extract at least some
Named Entities, except for e-Terminology. This may be
partly due to their low recall, but since they did not extract
a single Named Entity in any of the languages, it does ap-
pear that their system is most focused on terms. While the
differences are never extreme, the various systems do show
some variation in this respect. For instance, the two low-
est ranked systems can be seen to extract relatively more
Common Terms. This may be an indication that they are
sensitive to frequency, as many of the Specific Terms are
rarer (e.g., e-Terminology employs a frequency threshold
of two). Conversely, NYU’s system appears to excel at
extracting these Specific Terms and also extracts relatively
few Named Entities. The output of two top-scoring teams
has a very similar composition to the gold standard, which
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Scores incl. NEs Scores excl. NEs
Track Rank Team precision recall f1-score precision recall f1-score
English 1 TALN-LS2N 34.8 70.9 46.7 32.6 72.7 45.0

2 RACAI 42.4 40.3 41.3 38.6 40.1 39.3
3 NYU 43.5 23.6 30.6 42.2 25.1 31.5
4 e-Terminology 34.4 14.2 20.1 34.4 15.5 21.4
5 NLPLab UQAM 21.4 15.6 18.1 20.1 16.0 17.8

French 1 TALN-LS2N 45.2 51.5 48.1 41.9 50.9 45.9
2 e-Terminology 36.3 13.5 19.7 36.3 14.4 20.6
3 NLPLab UQAM 16.1 11.2 13.2 15.1 11.2 12.9

Dutch 1 NLPLab UQAM 18.9 18.6 18.7 18.1 19.3 18.6
2 e-Terminology 29.0 9.6 14.4 29.0 10.4 15.3

Table 4: Scores (as percentages) and rank for all teams per track

Figure 1: Proportion of Specific, Common, and OOD Terms, and Named Entities in the gold standard versus the true
positives extracted by each team (averaged over all languages if teams participated in multiple tracks).

may be part of the explanation for their high scores, and, in
the case of TALN-LS2N’s system, may be related to their
reliance on the training data.

A preference for Common Terms or Specific Terms can al-
ready give an indication of the system performance for rare
terms, but we can also look directly at the recall of terms for
various frequencies, as shown in Figure 2. Here, the recall
of all systems for various term frequencies is shown for the
English track. Results for the other languages were simi-
lar, so will not be discussed separately. The dataset actually
contains many hapax terms (which appear only once). In
English, when Named Entities are included, there are 1121
(43%) hapax terms, 398 (15%) terms that appear twice,
220 (9%) terms that appear three times, 232 (9%) terms
with a frequency between 4 and 5, 259 (10%) terms with
a frequency between 5 and 10, 199 (8%) terms with a fre-
quency between 10 and 25, and only 156 (6%) terms that
appear more than 25 times. In line with previous findings
on the difficulties of ATE, recall is lowest for hapax terms

for all systems, and increases as frequency increases. Of
course, e-Terminology has 0% recall for hapax terms due
to the frequency cut-off, but the other systems also have
difficulties. Notably, TALN-LS2N’s system obtains a sur-
prisingly stable recall for various frequencies and a very
high recall of 64% for hapax terms. This is likely a con-
sequence of the fact that they use none of the traditional
statistical (frequency-related) metrics for ATE. Recall is al-
most always highest for the most frequent terms, though
when looking at these frequent terms in more detail, recall
appears to drop again for the most extreme cases (terms ap-
pearing over 100 times; not represented separately in Figure
2), presumably because these are more difficult to distin-
guish from common general language words.

The final analysis concerns term length. Similarly to the
analysis for frequency, Figure 3 presents recall for differ-
ent term lengths per team, using the English data, including
Named Entities, as a reference. The majority of gold stan-
dard terms are single-word terms (swts) (1170, or 45%),
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Figure 2: Recall for terms with various frequencies per team in English, including Named Entities

Figure 3: Recall per term length (single-word terms (swts) to terms with over 5 tokens (5+wts) for each team in English,
including Named Entities

with frequencies decreasing as term length increases (800
or 31% 2-word terms (2wts), 376 or 15% 3wts, 144 or 6%
4wts, 40 or 2% 5wts, and 55 or 2% terms that are longer
than 5 tokens. As can be seen in Figure 3, two out of five
teams (RACAI and NLPLab UQAM) have lower recall for
2wts than for swts, and, overall, recall decreases for terms
with more than 3 tokens. TALN-LS2N extracts no terms
beyond a length of 3 tokens at all, though this is different
for their French system, where recall decreases more gradu-
ally with term length. NYU’s system has a surprisingly sta-
ble performance for different term lengths, especially com-
pared to TALN-LS2N and RACAI.

5. Discussion and Conclusions
Five different teams submitted their results for the Ter-
mEval shared task on ATE, based on the ACTER dataset.
With the domains of corruption, dressage, and wind en-
ergy from the dataset as training data or simply as reference
material, the teams either used (and adapted) their existing

systems or developed a new methodology for ATE. The do-
main of heart failure was used as the test set, with three
different tracks for English, French and Dutch. The teams
were all ranked based on the f1-score they obtained on the
test data, with additional evaluations of the types of terms
they extracted and recall for different term frequencies and
term lengths.

The results show quite a large variation between all
methodologies. The highest scores were obtained by a deep
learning methodology using BERT as a binary classifica-
tion model. The second best system does not rely on deep
learning and combines pre-trained word embeddings with
more classical features for ATE, such as statistical term-
hood measures. Such results show how there is still a lot
of potential for deep learning techniques in the field of
ATE, highlighting also the importance of large datasets like
ACTER. However, it also illustrates that more traditional
methodologies can still lead to state-of-the-art results as
well, especially when updated with features like word em-
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beddings.
The more detailed analyses also revealed how the compo-
sition of the output of the different systems varies, e.g., in-
cluding or excluding more Named Entities, and focusing
on either the most domain-specific and specialised terms
(Specific Terms) or also on more general terms (Common
Terms). This is a clear indication of how different appli-
cations for ATE may require different methodologies. For
instance, translators may be more interested in a system that
extracts mostly Specific Terms, since Common Terms may
already be part of their general vocabulary.
Checking recall for terms with different frequencies and
terms with different lengths confirmed two often-cited
weaknesses of ATE: low-frequency terms and long terms
are more difficult to extract. However, in each case, there
were some systems for which the performance was more
stable and less impacted by these factors. The winning
deep learning approach achieves a high recall even for ha-
pax terms (64%) and one of the rule-based systems main-
tains a more or less stable recall for terms up to a length of
five tokens.
With these results, we conclude that there remains a lot
of room for improvement in the field of ATE, both by
trying the latest deep learning methodologies which have
been successfully used in other natural language process-
ing tasks, and by updating and combining more tradi-
tional methodologies with state-of-the-art features and al-
gorithms. Taking into account the unpredictability of many
machine learning approaches and the considerable vari-
ety between the potential outputs, as demonstrated in this
shared task, it is essential for ATE to be evaluated beyond
precision, recall, and f1-scores. To further encourage and
facilitate both supervised machine learning approaches and
high-quality evaluations on diverse data, the complete AC-
TER dataset has been made freely available online (Rigouts
Terryn, Ayla and Drouin, Patrick and Hoste, Véronique and
Lefever, Els, 2020).
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