
Proceedings of he 8th Workshop on Challenges in the Management of Large Corpora, pages 31–39
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

31

The Corpus Query Middleware of Tomorrow – A Proposal for a Hybrid Corpus
Query Architecture

Markus Gärtner
Institute for Natural Language Processing

University of Stuttgart
markus.gaertner@ims.uni-stuttgart.de

Abstract
Development of dozens of specialized corpus query systems and languages over the past decades has let to a diverse but also fragmented
landscape. Today we are faced with a plethora of query tools that each provide unique features, but which are also not interoperable
and often rely on very specific database back-ends or formats for storage. This severely hampers usability both for end users that want
to query different corpora and also for corpus designers that wish to provide users with an interface for querying and exploration. We
propose a hybrid corpus query architecture as a first step to overcoming this issue. It takes the form of a middleware system between user
front-ends and optional database or text indexing solutions as back-ends. At its core is a custom query evaluation engine for index-less
processing of corpus queries. With a flexible JSON-LD query protocol the approach allows communication with back-end systems to
partially solve queries and offset some of the performance penalties imposed by the custom evaluation engine. This paper outlines the
details of our first draft of aforementioned architecture.

Keywords: corpus query system, query language, middleware

1. Introduction
For roughly 30 years specialized corpus query systems
(CQSs) have aided researchers in the exploration or eval-
uation of corpora. During all this time a plethora of differ-
ent implementations and architectures emerged, with dis-
tinctive features or specialization for particular use cases.
As corpus resources grow steadily in both size (the num-
ber of primary segments such as tokens) and complexity
(the number and type of interrelated annotation layers), the
need for dedicated query interfaces also became more pro-
nounced.
However, especially the latest generation of CQSs devel-
oped during the last decade has revealed an overall decline
of expressiveness in their query languages compared to the
peak era prior to it. While earlier systems or languages such
as FSQ (Kepser, 2003), MonaSearch (Maryns and Kepser,
2009) or LPath+ (Lai and Bird, 2005) offered pretty much
the full expressive power of first-order logic, later instances
have mostly been limited to the existential fragment (such
as ANNIS3 (Krause and Zeldes, 2014), ICARUS (Gärtner
et al., 2013) or SETS (Luotolahti et al., 2015)) with only
limited support for quantification, negation or closures to
cope with the performance issues caused by evaluating
complex queries on increasingly larger corpora1.
Besides obvious scalability reasons, the expressiveness of
a CQS can also be a direct result of architectural choices,
especially the monolithic approach common to many query
engines:
Many CQSs today builds on general purpose database so-
lutions (such as relational database management systems
(RDBMSs)) or text indexing frameworks and subsequently
delegate the actual query evaluation to this back-end sys-
tem by translating the original user query from the respec-
tive corpus query language (CQL). As such the entire soft-
ware stack and typically also the CQL itself are bound (and

1Cf. (Kepser, 2004) in the context of FSQ.

limited) to the data model of this back-end system, giving
rise to a series of recurring issues. If a query constraint
cannot be directly expressed or evaluated in the underly-
ing (database) query language, it typically won’t be avail-
able in the CQL (Section 3 lists certain exceptions from
this trend). Similarly, if a feature or phenomenon is not
explicitly encoded in the back-end storage, it often can-
not be used for querying. Last but not least the handling
of query results (eloquently dubbed the “Achilles heel of
corpus query tools” by Mueller (2010)) differs greatly be-
tween systems. From flat or keyword-in-context view in
COSMAS (Bodmer, 2005) or FSQ to elaborate tree visual-
izations in ANNIS or ICARUS, CQSs offer a wide variety
of result formats or visual result inspection interfaces, but
individual solutions are usually limited to a small subset of
this diversity.
To overcome these limitations we propose a novel approach
for a hybrid corpus query architecture that combines the
performance benefits of modern database and text index-
ing systems with the flexibility of a custom query evalu-
ation engine2. It takes the form of a middleware system
called ICARUS2 Query Processor (IQP) between query
front-ends and corpus storage back-ends. Due to its mod-
ular approach it could also serve as a platform for unifi-
cation between the heterogeneous tangle of corpus query
languages. As this is work in progress we mainly intend to
sketch the outline of the overall architecture and its techni-
cal details, and open up its merits for discussion with other
experts in the field.
The remaining part of this paper is structured as follows:
We introduce the overall goals and (preliminary) limitations
of our approach in Section 2 and contextualize it within the
state of the art in Section 3. Section 4 provides an in-depth

2We use this term as a substitution for query engines that
can perform the entire query evaluation themselves, typically in-
memory on a live corpus and index-less.

32

overview of the different components in the architecture,
including example queries to highlight query capabilities.
Section 5 contains location and licensing information for
the source code and Section 6 concludes.

2. Goals and Limitations
With IQP we aim at solving a rather broad range of issues.
The primary goals of our proposed architecture are the fol-
lowing, with certain initial limitations listed afterwards:

1. To provide unified query endpoint. That is, a query
language and associated protocol for expressing ar-
bitrary information needs against linguistic corpora.
This does however not pertain to any form of user in-
terface, as the entire system as described in Section 4
is meant to be embedded as a middleware within an
outer infrastructure that provides the graphical means
for user interactions.

2. Implementation of a custom query engine in the form
of a modular, extensible and scalable evaluation en-
gine for queries provided by aforementioned protocol.
As hinted at in Section 4.3 the evaluation complexity
for queries can easily become exponential in the size
of whatever the unit-of-interest (UoI) for the query is.
It is therefore difficult to make general performance
guarantees and we estimate the overall performance to
be several magnitudes behind specialized index-based
alternatives. While this might sound prohibitive for
large-scale usage, it should be considered a small price
to pay for the availability of extended query options.

3. Interfaces to optional back-ends to maximally ex-
ploit the performance benefits of existing database
and test indexing systems. Ideally this can be real-
ized in a black-box design where the middleware itself
only needs to be concerned with a series of (service)
endpoints to whom preprocessed queries can be for-
warded and which return result candidates and infor-
mation about solved query sub-parts.

While the architecture sketch in Section 4 displays the en-
tire query evaluation workflow, there are a few components
and aspects that we do not intend to fully address in the
first prototype phase of our middleware, leading to a few
(temporary) limitations on the following aspects:

Result preparation While ultimately of great importance
in the long run, we initially focus on the query eval-
uation itself and leave the extended result processing
for a later iteration. The query protocol in Section 4.2
contains placeholders for the subsequent declaration
of result formats and script-like processing instruc-
tions, but basic result settings such as size, sorting or
filtering are already part of the initial draft.

Back-end wrappers As back-end systems are optional
and the evaluation engine is expected to be able to
handle queries without external help, we do not plan
to include actual wrappers for back-ends in the early
development.

Graph evaluation While the specification for our query
language includes structural constraints for graph con-
structs (cf. Section 4.3.2), the engine will only be able

to evaluate sequence and tree constraints in the first
prototype, as those two types also correspond to the
predominant data structures used in corpus modeling3.

3. Related Work
For a very detailed overview of existing CQL families and
types of CQSs we refer to the recent work of Clematide
(2015). In the remainder of this section we only highlight
those (types of) CQSs that are most relevant to our proposed
approach or which implement a similar concept.

3.1. Custom Query Engines
The concept of implementing a custom query engine is not
entirely new. In fact, several successful CQS already fea-
ture their very own evaluation engines:
TIGERSearch (König and Lezius, 2000; Lezius, 2002),
FSQ and ICARUS all ship with a query engine that can
match structural queries in-memory against a treebank.
Similarly, PML-TQ (Pajas and Štěpánek, 2009; Štěpánek
and Pajas, 2010) allows to switch its RDBMS back-end
for an integrated index-less evaluator implemented in Perl,
turning it into a custom query engine for local data.
The popular Corpus Workbench with its Corpus Query Pro-
cessor (CQP) (Christ, 1994; Evert and Hardie, 2011) is rep-
resentative for the family of CQSs that provide a custom
query engine but at the same time also rely on their own in-
dexing to preprocess corpus data in order to improve query
performance. As the associated CQLs of the newer systems
mentioned above remain quite limited4 in their expressive-
ness compared to our proposed ICARUS2 Query Language
(IQL) in Section 4.3, we treat those CQSs as equivalent to
off-the-shelf database or text indexing solutions for the pur-
pose of our approach.

3.2. Hybrid Solutions
While traditionally many CQSs implemented the query
translation approach5, several systems go beyond that and
employ a hybrid strategy for query evaluation.
SETS (Luotolahti et al., 2015) and TreeAligner (Lundborg
et al., 2007; Marek et al., 2008) build on RDBMSs for stor-
age, but complement it with their own query evaluation.
Slightly different, Ghodke and Bird (2012) extend the text
indexing and query engine LUCENE6 with a custom index-
ing scheme for storing treebank information.
Those approaches lack a broad coverage wrt query expres-
siveness, but serve as show cases for successfully evalu-
ating very specific (treebank) queries in a highly scalable
manner. Consequently, they too are prime candidates for
back-ends in the architecture described in Section 4.

3While some approaches, such as SALT (the model behind
ANNIS), successfully model complete corpora entirely as graphs,
the individual components like sentences or syntax annotations
naturally form sequence or tree structures.

4The PML-TQ system does however offer the most flexible
result processing interface we are aware of, which definitely is
an inspiring baseline for the future design of a component in IQP
with similar roles.

5Using general purpose database or indexing solutions to store
the corpus data and delegate the entire query evaluation to this
back-end by translating it into its native query language.

6https://lucene.apache.org/

https://lucene.apache.org/

33

Full Query with scope,
binding, configuration,
result processing
instructions, ...

Frontend Middleware Backend(s)

User Query

Disassembled query with
logical fragments that are
understood by any backend
implementation

Original Query

1..N

Translate middleware query
to native query of storage/
index system actually used

(Partly) evaluated Query
and result candidates

N..1

Custom Evaluation Engine
 Intersect result candidates
 Evaluate unsolved parts of

the original query
 Perform requested result

processing
 Convert to desired output

format

Final Result

Figure 1: Sketch of the architecture service components and the query data flow.

3.3. Unification & Standardization
Existing efforts on unification or standardization of corpus
querying typically focus on the query language level, with
notable examples being CQLF7 (Bański et al., 2016) for a
general standardization initiative and KorAP (Bański et al.,
2014; Diewald et al., 2016) and CLARIN FCS 8 as actual
implementations.
KorAP lets the user choose upfront among several cor-
pora and supported query languages to express a query and
then does a N:1 translation into KoralQuery (Bingel and
Diewald, 2015), a JSON-LD based query protocol and in-
stantiation of CQLF. The KoralQuery expression is subse-
quently evaluated by the back-end responsible for the cho-
sen corpus, typically by yet another translation into the re-
spective query language (for the relational database (RDB),
LUCENE index or the graph database Neo4j9).
On the other hand, the front end of CLARIN FCS provides
a single corpus query language with essentially a subset of
the expressiveness offered by the individual endpoints that
can be queried with it. FCS queries are distributed to dif-
ferent endpoints that participate in the search framework,
evaluated locally on each node (akin to a global 1:N trans-
lation) and the individual results are then aggregated cen-
trally again and presented to the user.
Both of these approaches improve considerably upon the
clutter of (incompatible) corpus query languages and/or
evaluation systems. But they also introduce or maintain
strong couplings between the front-end (expressed by the
CQL or set of CQLs) and the back-end (defined by the

7Corpus Query Lingua Franca. Part of the ISO TC37 SC4
Working Group 6 (ISO/WD 24623-1).

8https://www.clarin.eu/content/
content-search

9http://neo4j.com/

actual evaluation engine, typically a RDBMS or similar),
and in doing so render it quite difficult to make substantial
changes to either.
In the following section we present an architecture that
partly resembles KorAP, but introduces an additional fully-
independent custom evaluation engine together with a
query protocol that completely decouples the traditional
front- and back-end roles.

4. Hybrid Architecture
This section describes the proposed architecture for a hy-
brid corpus query system and its most important compo-
nents in detail. The overall concept is to decouple fea-
tures of potential back-end systems and front-end concerns
or query language properties. We achieve this by a ded-
icated middleware layer that mediates between front- and
back-end instances and fills feature gaps when it comes to
query evaluation or result preparation. Fig. 1 shows this
middleware embedded in a typical scenario with a front-
end for query construction and result presentation and (op-
tional) back-end(s) with specialized storage and indexing
capabilities that allow efficient evaluation of certain query
constraints.

4.1. Data Model
IQP build on the ICARUS2 Corpus Modeling Framework
(ICMF) (Gärtner and Kuhn, 2018) as its interface to inter-
acting with corpus data. ICMF applies the concept separa-
tion of concerns to varies aspects of corpus modeling:
Each corpus resource is required to be accompanied by a
set of metadata describing its composition, dependencies
on other resources, how to access it and optionally provid-
ing details on tagsets or other annotation-related informa-
tion. The data model of ICMF organizes corpora as hier-

https://www.clarin.eu/content/content-search
https://www.clarin.eu/content/content-search
http://neo4j.com/

34

1 { "@context" : "http://www.ims.uni-stuttgart.de/icarus/v2/jsonld/iql/query"
2 "@type" : "iql:Query",
3 "iql:imports" : [{
4 "@type" : "iql:Import",
5 "iql:name" : "common.tagsets.stts"
6 }],
7 "iql:setup" : [{
8 "@type" : "iql:Property",
9 "iql:key" : "iql.string.case.off"

10 }],
11 "iql:streams" : [{
12 "@type" : "iql:Stream",
13 "iql:corpus" : {
14 "@type" : "iql:Corpus",
15 "iql:name" : "TIGER v2"
16 },
17 "iql:rawPayload" : "FIND ADJACENT [pos==stts.ADJ][form==\"test\"]",
18 "iql:result" : {
19 "@type" : "iql:Result",
20 "iql:resultTypes" : ["kwic"],
21 "iql:limit" : 1000
22 }
23 }] }

Figure 2: A simple mock-up query to illustrate the JSON-LD representation used in the protocol described in Section 4.2.
The query searches the TIGER corpus for word pairs that start with an adjective and end in a word with the surface form
“test”, ignoring case and only returning up to 1000 hits in a KWIC style. The query also features an import statement for
the STTS part-of-speech tagset, allowing more controlled expressions inside query constraints.

archical collections of inter-related layers, each with defi-
nite responsibilities. One family of layers is strictly used to
model the logical and structural composition of a corpus,
such as segmentation, hierarchical grouping and relational
structures, such as syntax, discourse or coreference in a text
corpus. Separated from structural concerns, the actual con-
tent (e.g. text, audio or linguistic annotations) is modeled
by another layer type acting as mapping from corpus ele-
ments to their respective annotations or text content.
This separation of concerns allows the evaluation engine in
IQP to also efficiently separate certain aspects of queries
and query evaluation: The metadata level provides the ba-
sis for binding variables in a query to actual objects in the
corpus. It also helps restricting the methods and proper-
ties available to expressions inside structural constraints (cf.
Section 4.3.2), depending on whether they represent mere
sequential structures (such as sentences) or more complex
data types, for instance syntax trees. Evaluation of the latter
also only needs access to structure-related layers, with the
handling of local constraints typically being delegated to
subroutines that extract annotation values from the corpus
and compare them against those constraints.

4.2. Query Protocol
The architecture overview in Fig. 1 shows multiple (poten-
tially very heterogeneous) service components that need to
be able to efficiently communicate with each other during
the query evaluation workflow. As such we decided to use
JSON10 as the basic transport format for our query proto-
col. It is a widely used and lightweight format, and its ex-

10JavaScript Object Notation https://www.json.org

tension JSON-LD11 also provides the means for strongly-
typed transfer of complex data objects.
Queries in IQP are designed to be self-contained, i.e. they
cover the entire information on which resource(s) to query,
how to configure the evaluations engine, the actual query
constraints, as well as instructions for preparing the result
returned to the front-end. The following sections provide a
brief introduction and examples for some of the main sec-
tions in any IQP query12. A mock-up query showcasing
some of the protocol’s features is shown in Fig. 2, parts of
which are subsequently used to demonstrate the processing
and partial evaluation of query payloads.

4.2.1. Preamble
Each query has a dedicated section that minimally defines
the dialect of the query language to be used or defaults to
the initial draft version. Beyond that, this preamble section
can also contain several optional declarations: Import dec-
larations extend the evaluation engine with additional fea-
tures or modify existing behavior. Simple configuration of
the evaluation workflow can be performed via switches and
properties, for instance when disabling case-aware string
matching or selecting the direction in which corpus ele-
ments should be traversed. Additionally, queries for IQP
can embed binary data encoded in textual form to be used
in query expressions, such as fragments of an audio stream.

11JSON for Linked Data https://json-ld.org/
12A more comprehensive specification draft of the query lan-

guage and the JSON-LD elements used in the protocol can be
found online in the working repository (cf. Section 5).

https://www.json.org
https://json-ld.org/

35

1 {
2 "@type" : "iql:Payload",
3 "iql:queryType" : "singleLane",
4 "iql:lanes" : [{
5 "@type" : "iql:Lane",
6 "iql:laneType" : "sequence",
7 "iql:elements" : [{
8 "@type" : "iql:Node",
9 "iql:constraint" : {

10 "@type" : "iql:Predicate",
11 "iql:expression" : {
12 "@type" : "iql:Expression",
13 "iql:content" : "pos==stts.ADJ"
14 }
15 }
16 }, {
17 "@type" : "iql:Node",
18 "iql:constraint" : {
19 "@type" : "iql:Predicate",
20 "iql:expression" : {
21 "@type" : "iql:Expression",
22 "iql:content" : "[form==\"test\"]"
23 }
24 }
25 }],
26 "iql:nodeArrangement" : "adjacent"
27 }] }

Figure 3: Processed version of the payload expression
shown in Fig. 2 in line 17. Most notably, the original query
expression has been split into two separate node objects
with embedded constraint expressions.

4.2.2. Streams
An IQL query contains at least one stream definition, typi-
cally to extract data from a single corpus. Multiple streams
could be used to query for instance parallel corpora or
multi-modal data that comprises different sets of primary
data with some form of mapping between them. In the ini-
tial IQP implementation we will however restrict the engine
to only evaluate single-stream queries and leave the exten-
sion to multiple streams for a later iteration.
Streams encompass the selection of layers from a corpus
to be used, the binding of corpus members to usable vari-
ables in query expressions, result preparation instructions
and the actual query constraints. Most of those components
can be provided to IQP either fully preprocessed or in raw
statements as described in the following section. Raw state-
ments are automatically compiled during the preprocessing
phase of the query evaluation, as described in Section 4.4.
Inside a stream, constraints can be organized in so called
lanes, where each lane provides access to a different (con-
current) structural or segmental layer.

4.2.3. Raw and Compiled Statements
When designing a query language and/or protocol, typi-
cally a compromise has to be made between succinctness,
so that human users can easily write queries, and machine
readability or completeness for the processing part. In IQL
we support both sides equally:
The parts of a query that carry actual expressions for con-

straints, sorting or result instructions can be specified both
in the form of raw statements or compiled objects. Fig. 2
shows an attribute iql:rawPayload in line 17 that con-
tains the raw expression used to evaluate results. This is
also the minimal form that a human user would have to
type in a textual query interface. Subsequent preprocess-
ing during the query evaluation turns this raw form into a
more fine-grained separation of objects, visible in Fig. 3.
Note how the entire expression has now been divided into
nodes, constraints and expressions, that can be individually
understood by the evaluation engine or back-end wrappers.

4.2.4. Solved Constraints
Wrappers for the different back-ends used for storage of
a corpus are not expected to cover the full range of IQL
expressiveness. As such the protocol needs a mechanism
to mark already evaluated parts of a query on a very fine-
grained level. Any constraint can be marked as solved
and any element as consumed. Fig. 4 exemplifies this on
the first node from Fig. 3 (lines 8 to 16). The constraint
expression related to the first half of the word pair being
an adjective has been marked as solved in line 6 with
a value of true in line 7, meaning that all result candi-
dates returned by the back-end wrapper are guaranteed to
contain an adjective at the individually indicated word po-
sition. Subsequently, as all of its constraints are solved, the
node itself is marked as consumed in line 3, allowing the
engine to skip its repeated evaluation.
Assuming the back-end was not able to evaluate the second
node (lines 17 to 24 in Fig. 3), this situation would now
leave the IQP core to only test each candidate for having
a word directly following the adjective with a surface form
that matches “test” while ignoring case.

1 {
2 "@type" : "iql:Node",
3 "iql:consumed" : true,
4 "iql:constraint" : {
5 "@type" : "iql:Predicate",
6 "iql:solved" : true,
7 "iql:solvedAs" : true,
8 "iql:expression" : {
9 "@type" : "iql:Expression",

10 "iql:content" : "pos==stts.ADJ"
11 }}}

Figure 4: Example of a solved constraint as part of the an-
swer send from a back-end wrapper to the IQP core.

4.3. Query Language
IQL build on concepts we previously described in Gärtner
and Kuhn (2018) and uses a keyword-driven syntax to for-
mulate complex query constraints in a way that is slightly
verbose compared to other more compact CQL representa-
tives. It does however provide greatly increased flexibility
and basically an integrated scripting language to express
constraints.
The two main features of IQL are structural constraints and
constraint expressions. The latter can either occur within
a structural constraint where they implicitly get access to

36

additional information and methods depending on the type
of structure. Alternatively they can be used as global con-
straints in which case they are limited to bound corpus ele-
ments or globally available constants, methods and objects.

4.3.1. Constraint Expressions
Simply put, constraint expressions are arbitrarily complex
expressions in IQL that evaluate to a Boolean result13.
Since a complete introduction to the IQL grammar for ex-
pressions is not possible here, we only provide a few exam-
ples to highlight certain features. The expressions in Fig. 5
perform the following evaluations: (1) enclosing node is a
noun, (2) lemma of enclosing node is one of the three listed
movement-related verbs, (3) the bound node is a noun, (4)
the parent node of a bound token has at least 5 children
in total, (5) the part-of-speech tag of the second-to-last
word in the bound sentence does not contain the symbol
N (depending on the tagset, this will exclude nouns, proper
nouns, conjunctions, past participle verbs and other tags at
that position in the sentence).

1 pos == "NN"
2 lemma IN {"go","run","crawl"}
3 $token{"pos"} == "NN"
4 $token.parent.size() >= 5
5 $sentence.items[-2]{"pos"} !# "N"

Figure 5: Examples of constraint expressions in IQL.

4.3.2. Structural Constraints
Structural constraints define properties that target structures
have to meet in order to be considered as result candidates.
IQL supports three types of structural constraints, namely
sequences, trees and graphs. Their occurrence within a
query lane dictates the basic complexity and evaluation
strategy for that part of the query, and they also cannot be
mixed. In their basic form, structural constraints are al-
ways existentially quantified, but by using explicit quanti-
fier statements they can also get existentially negated, uni-
versally quantified within their context or marked to occur
a specific number of times in a match. Similarly to Sec-
tion 4.3.1 the following list of examples is not exhaustive
and merely intended as a brief overview on some of the
structural constraint features available in IQL.
Fig. 6 shows three examples for each of the aforementioned
types of structural constraints: (1) is a simple existentially
quantified node definition, (2) explicitly quantifies a node
to occur at least four times, (3) requires two to five nodes
between $x and $y, (4) is a simple tree with existentially
quantified nested child nodes, (5) existentially negates chil-
dren in a tree node based on some constraint x, (6) univer-
sally quantifies a child constraint, meaning that all imme-
diate child nodes must satisfy constraint x, (7) declares ba-
sic graph constraints via nodes and edges, (8) is a negated
graph edge, and (9) finally shows the declaration of a ex-
plicitly quantified graph edge with its own local constraints.

13The specification also defines rules to optionally convert ar-
bitrary primitive values or objects to Boolean values as well.

1 []
2 <4+>[]
3 [$x]<2-5>[][$y]
4 [[$x][$y[$z]]]
5 [![x]]
6 [*[x]]
7 [x],[]---[y],[z]
8 []<--![x]
9 <4->[]--[x]->[]

Figure 6: Examples of structural constraints in IQL. Note
that the angle brackets around numerical quantifiers are op-
tional and only included for readability here.

4.3.3. Example Queries
In this section we demonstrate some of the expressive ca-
pabilities of IQL based on a series of information needs
of varying complexity defined by Lai and Bird (2004) that
have been used repeatedly in other work to compare CQLs
and which are listed in Fig. 7.

Q1. Find sentences that include the word “saw”.
Q2. Find sentences that do not include the word “saw”.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately
followed by a noun phrase that is immediately followed by
a prepositional phrase.
Q5. Find the first common ancestor of sequences of a noun
phrase followed by a verb phrase.
Q6. Find a noun phrase which dominates a word “dark”
that is dominated by an intermediate phrase that bears an
L-tone.
Q7. Find an noun phrase dominated by a verb phrase.
Return the subtree dominated by that noun phrase only.

Figure 7: Linguistic information needs for querying tree-
banks defined by Lai and Bird (2004).

The following example queries all assume that the sentence
layer has been selected as the primary layer of the query
scope and for reasons of simplicity we only show the inner
query payloads for most of the examples.
Queries Q1 and Q2 can be expressed in sequence mode:
Q1. FIND [form=="saw"]
Q2. FIND ![form=="saw"]
From Q3 onward the tree mode can be used and structural
constraints are expressed by nested node definitions:
Q3. FIND [label=="NP"

[last && label=="N"]]
The last keyword is an instruction that forces the en-
gine to only consider the last item within the current con-
text. Without this optimization the constraint could still be
expressed by endsWith(parent) instead of the last
keyword, but this would allow the engine to consider and
then discard all but the last child during evaluation. Global
constraints (used in Q5) provide another efficient way of
defining this query by explicitly referencing the last child
within the outer node and testing it for being a noun.

37

Q4. FIND [label=="VP" ADJACENT
[label=="V"][label=="NP"][label=="PP"]]
With the ADJACENT arrangement for a set of nodes the en-
gine will ensure that matches are adjacent14 to each other
in the order they have been declared in the query.
Q5. FIND ADJACENT

[$np label=="NP"][$vp label=="VP"]
HAVING ancestor($np,$vp) AS $a

Tree matching in IQP is typically performed top-down,
which is impractical in cases like this, where bottom-up
evaluation is required to find the first node to match the
ancestor constraint. Using the HAVING15 keyword, global
constraints can be defined which will be evaluated after the
basic tree matcher has produced preliminary candidates. A
collection of methods modeling tree relations is available
to simplify queries such as this one16. The query can also
be expressed using transitive dominance constraints and ex-
plicit (crosswise) negation, but it would (i) be very intricate
and (ii) much less efficient to evaluate, as the engine again
has to explore many false possibilities.
Q6. WITH $w FROM tokens

AND $np FROM syntax
AND $ip FROM intonation FIND

LANE syntax [$np label=="NP"
[$w form=="dark"]]

AND LANE intonation [$ip label=="L"
&& type=="IP" [$w]]

This example query contains the entire binding section to
illustrate its usage. It also makes use of LANE declarations
to access information from two different structural layers
(here dubbed syntax and intonation for brevity) and
joins them implicitly on the word level. Such a join could
also be specified explicitly with global constraints similar
to previous examples.
Q7. cannot be expressed fully in the initial IQL draft. As
mentioned in Section 2 the specification of result process-
ing instructions is planned for a later iteration. However,
since IQL allows very fine-grained control over the refer-
encing of individual parts in a match, restricting the result
to only contain selected subparts will be a trivial matter.

4.4. Evaluation Engine
At the very core of IQP sits a custom evaluation engine
that manages the preprocessing of queries, delegation to
back-end wrappers if available, and most importantly the
evaluation of any unsolved query constraints that remain
and subsequent result preparation. Relevant parts of the
query preprocessing and how (partially) solved constraints
and consumed nodes are expressed in the protocol have al-
ready been mentioned in Section 4.2. In this section we will

14Adjacency between arbitrary items in the ICARUS2 model is
defined based on the mapping to their common foundation layer
(if available), which typically contains the basic word tokens.

15Inspired by the SQL keyword with the same name, that also
is used to extend the capabilities of a query beyond the filter op-
erations of a WHERE clause (the equivalent of lanes and/or local
constraints in IQL), using aggregate values.

16The labels $np, $vp and $a enable nodes to be referenced in
additional expressions or global constraints and here are expected
to have been bound to represent nodes in the constituency tree.

primarily and briefly present technical aspects of the evalu-
ation engine that are related to performance and scalability.
IQP builds on ICMF and as such uses the in-memory in-
stances of its model during the evaluation process. For ev-
ery query, a specialized automaton-like matcher is created
that inspects each unit-of-interest (UoI) in the corpus inde-
pendently and checks it for being a valid result candidate.
In the case of a query focused on syntax, this would nor-
mally result in every sentence in the corpus being visited
sequentially. Combined with the ability of ICMF to only
load selected subparts of a corpus into memory, this enables
a highly parallelizable query evaluation: Evaluation on a
large corpus can be split over multiple computation nodes,
each dealing with a selected region of the entire corpus re-
source. Within individual computation nodes (or if the en-
gine only runs on a single machine), workload can also be
efficiently split across available processor cores, as the eval-
uation of individual UoIs is independent of each other and
so only minimal synchronization overhead is required.
Since this evaluation is performed index-less, the engine
is essentially performing an uninformed brute-force search
through the entire corpus, which (depending on the type
of search and the complexity of query constraints) can po-
tentially cause extremely long waiting times until the query
result can be returned17. This issue can be offset to a certain
degree with corpora being stored in database or text index-
ing systems with an associated back-end wrapper18 that can
at least handle a subset of IQL and thereby greatly reduce
the number of UoIs the engine core has to inspect.

5. Availability
IQP is being developed as a set of Java libraries (requiring
a Java 8 runtime environment) as part of the ICMF work-
ing repository. The code is freely available under an open
source license on GitHub and a comprehensive specifica-
tion of IQL is also part of the same repository. They all can
be found in the general ICARUS2 repository group.19

6. Conclusion
In this paper we have presented a hybrid corpus query ar-
chitecture to address the issue of continued fragmentation
in the landscape of corpus query systems and languages.
Taking the form of a middleware system between user
front-ends and optional database or text indexing solutions
as back-ends, it allows to decouple those two traditionally
monolithically connected components of CQSs. With its
novel corpus query protocol it guides a query evaluation
workflow that allows partial solutions from back-ends to be
taken into account in order to improve performance.

17Depending on sorting or other processing steps for the result,
a just-in-time delivery of individual result chunks won’t be fea-
sible, as the engine might need the entire set of result candidates
to be available first before deciding on which of them to actually
return and in what order.

18If such a utility is not available for a large corpus, evaluation
time could in fact be a prohibitive factor against the usage of IQP.

19The metadata behind this persistent identifier leads to both the
repository and project pages: http://hdl.handle.net/
11022/1007-0000-0007-C636-D

http://hdl.handle.net/11022/1007-0000-0007-C636-D
http://hdl.handle.net/11022/1007-0000-0007-C636-D

38

The current reference implementation is programmed in
Java and strongly relies on ICMF for corpus interaction.
The overall architecture, the query protocol and workflow
however are not as strictly coupled to either of those two
and as such the entire concept could also be transferred to
other technology stacks.

Bibliographical References
Bański, P., Bingel, J., Diewald, N., Frick, E., Hanl, M.,

Kupietz, M., Pȩzik, P., Schnober, C., and Witt, A.
(2014). KorAP: The new corpus analysis platform at ids
mannheim. Human language technology challenges for
computer science and linguistics. 6th language & tech-
nology conference december 7-9, 2013, Poznań, Poland,
pages 586 – 587, Poznań. Uniwersytet im. Adama Mick-
iewicza w Poznaniu.

Bański, P., Frick, E., and Witt, A. (2016). Corpus query
lingua franca (CQLF). In Nicoletta Calzolari (Confer-
ence Chair), et al., editors, Proceedings of the Tenth
International Conference on Language Resources and
Evaluation (LREC 2016), Paris, France, may. European
Language Resources Association (ELRA).

Bingel, J. and Diewald, N., (2015). KoralQuery – A Gen-
eral Corpus Query Protocol, volume 111, pages 1–5.
Linköping University Electronic Press.

Bodmer, F. (2005). Cosmas ii - recherchieren in den kor-
pora des IDS. Sprachreport : Informationen und Mein-
ungen zur deutschen Sprache, 21(3):2 – 5.

Christ, O. (1994). A modular and flexible architecture for
an integrated corpus query system. In Proceedings of
COMPLEX’94: 3rd Conference on Computational Lexi-
cography and Text Research, pages 23–32, Budapest.

Clematide, S. (2015). Reflections and a proposal for a
query and reporting language for richly annotated mul-
tiparallel corpora. In Proceedings of the Workshop on
Innovative Corpus Query and Visualization Tools at
NODALIDA 2015, May 11-13, 2015, Vilnius, Lithuania,
number 111, pages 6–16. Linköping University Elec-
tronic Press, Linköpings universitet.

Diewald, N., Hanl, M., Margaretha, E., Bingel, J., Kupietz,
M., Banski, P., and Witt, A., (2016). KorAP Architecture
– Diving in the Deep Sea of Corpus Data, pages 3586–
3591. European language resources distribution agency.

Evert, S. and Hardie, A. (2011). Twenty-first century Cor-
pus Workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 conference, Birmingham.

Gärtner, M. and Kuhn, J. (2018). A lightweight mod-
eling middleware for corpus processing. In Nicoletta
Calzolari (Conference chair), et al., editors, Proceed-
ings of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018), Paris,
France, may. European Language Resources Association
(ELRA).

Gärtner, M., Thiele, G., Seeker, W., Björkelund, A., and
Kuhn, J. (2013). ICARUS – an extensible graphical
search tool for dependency treebanks. In Proceedings of
the 51st Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages 55–60,

Sofia, Bulgaria, August. Association for Computational
Linguistics.

Ghodke, S. and Bird, S. (2012). Fangorn: A system
for querying very large treebanks. In COLING 2012:
Demonstration Papers, pages 175–182, Mumbai, India,
December.

Gärtner, M. and Kuhn, J. (2018). Making corpus query-
ing ready for the future: Challenges and concepts.
In Proceedings of the 27th International Conference
on Computational Linguistics, KONVENS 2018, Wien,
Österreich.

Kepser, S. (2003). Finite structure query: A tool for query-
ing syntactically annotated corpora. In Proceedings of
the Tenth Conference on European Chapter of the Asso-
ciation for Computational Linguistics - Volume 1, EACL
’03, pages 179–186, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Kepser, S. (2004). Querying linguistic treebanks with
monadic second-order logic in linear time. Journal of
Logic, Language and Information, 13(4):457–470, Mar.

König, E. and Lezius, W. (2000). A description language
for syntactically annotated corpora. In Proceedings of
the 18th Conference on Computational Linguistics - Vol-
ume 2, COLING ’00, pages 1056–1060, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Krause, T. and Zeldes, A. (2014). ANNIS3: A new archi-
tecture for generic corpus query and visualization. Digi-
tal Scholarship in the Humanities.

Lai, C. and Bird, S. (2004). Querying and updating tree-
banks: A critical survey and requirements analysis. In
In Proceedings of the Australasian Language Technol-
ogy Workshop, pages 139–146.

Lai, C. and Bird, S., (2005). LPath+: A First-Order Com-
plete Language for Linguistic Tree Query. ACL Anthol-
ogy, 12.

Lezius, W. (2002). Ein Suchwerkzeug für syntaktisch an-
notierte Textkorpora. Ph.D. thesis, IMS, University of
Stuttgart. Arbeitspapiere des Instituts für Maschinelle
Sprachverarbeitung (AIMS), volume 8, number 4.

Lundborg, J., Marek, T., and Volk, M. (2007). Using the
Stockholm TreeAligner. In 6th Workshop on Treebanks
and Linguistic Theories.

Luotolahti, J., Kanerva, J., Pyysalo, S., and Ginter, F.
(2015). SETS: Scalable and efficient tree search in de-
pendency graphs. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Demonstrations, pages
51–55, Denver, Colorado, June. Association for Compu-
tational Linguistics.

Marek, T., Lundborg, J., and Volk, M. (2008). Extend-
ing the TIGER query language with universal quantifica-
tion. In KONVENS 2008: 9. Konferenz zur Verarbeitung
natürlicher Sprache, pages 5–17, October.

Maryns, H. and Kepser, S. (2009). Monasearch – a tool
for querying linguistic treebanks. In Proceedings of TLT
2009, Groningen.

Mueller, M. (2010). Towards a digital carrel: A report
about corpus query tools.

Pajas, P. and Štěpánek, J. (2009). System for Querying

39

Syntactically Annotated Corpora. In ACL-IJCNLP: Soft-
ware Demonstrations, pages 33–36, Suntec, Singapore.

Štěpánek, J. and Pajas, P. (2010). Querying diverse tree-
banks in a uniform way. In Nicoletta Calzolari (Con-
ference Chair), et al., editors, Proceedings of the Sev-
enth conference on International Language Resources
and Evaluation (LREC’10), Valletta, Malta, may. Euro-
pean Language Resources Association (ELRA).

	Introduction
	Goals and Limitations
	Related Work
	Custom Query Engines
	Hybrid Solutions
	Unification & Standardization

	Hybrid Architecture
	Data Model
	Query Protocol
	Preamble
	Streams
	Raw and Compiled Statements
	Solved Constraints

	Query Language
	Constraint Expressions
	Structural Constraints
	Example Queries

	Evaluation Engine

	Availability
	Conclusion

