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Abstract
In the IARPA MATERIAL program, information retrieval (IR) is treated as a hard detection problem; the system has to output a single
global ranking over all queries, and apply a hard threshold on this global list to come up with all the hypothesized relevant documents.
This means that how queries are ranked relative to each other can have a dramatic impact on performance. In this paper, we study such
a performance measure, the Average Query Weighted Value (AQWV), which is a combination of miss and false alarm rates. AQWV
requires that the same detection threshold is applied to all queries. Hence, detection scores of different queries should be comparable, and,
to do that, a score normalization technique (commonly used in keyword spotting from speech) should be used. We describe unsupervised
methods for score normalization, which are borrowed from the speech field and adapted accordingly for IR, and demonstrate that they
greatly improve AQWV on the task of cross-language information retrieval (CLIR), on three low-resource languages used in MATERIAL.
We also present a novel supervised score normalization approach which gives additional gains.

1. Introduction
When an information retrieval system is used as a support
tool in a decision-making process, the user is mainly inter-
ested in whether the data under consideration contains (or,
is relevant to) any of the queries of interest. For example,
consider the case of streaming audio where actions must be
made based upon a query detection. As each document is
processed, a binary decision must be made about relevance
for each query1. Clearly, when dealing with a decision op-
eration, the most appropriate way to measure system per-
formance (from an operational viewpoint) is to incorporate
the two error sources that affect a user’s experience: misses
and false alarms. Minimizing a linear combination of these
two errors is a very reasonable optimization objective, and
it was chosen by the IARPA MATERIAL program as the
main performance measure. Specifically, the AQWV mea-
sure is defined as follows:

AQWV = 1− pMiss− β pFA. (1)

pMiss is the average per-query miss rate and is defined as
follows

pMiss =
1

|Qr|
∑
q∈Qr

# misses of q
# refs of q

, (2)

where Qr is the set of queries with references in the data
(i.e., each has at least one relevant document). The num-
ber of references and the number of misses of query q is
computed based on the whole document collection C un-
der consideration.
pFA, the average per-query false alarm rate, is defined as
follows

pFA =
1

|Q|
∑
q∈Q

# FAs of q
|C | - # refs of q

, (3)

∗While at Raytheon BBN Technologies.
1We are using document-level granularity in this paper, al-

though similar techniques can be used for different granularities
as well.

The constant β in Equation (1) changes the relative impor-
tance of the two types of error (β = 40 in MATERIAL).
Note that this measure assumes a single decision threshold,
which means that all detection scores, over all queries, have
to be commensurate. In this paper, we present techniques
for transforming the detection scores that are generated by
an IR system so that they are comparable across queries.
The paper is organized as follows: Section 2 gives a short
summary of previous work on score normalization. Section
3 presents a supervised method for score normalization,
adapted to IR. Section 4 describes the experimental setup
and presents results on three low-resource languages used
in the IARPA MATERIAL program: Somali, Swahili and
Tagalog. Finally, Section 5 contains concluding remarks.

2. Related Work
AQWV is very similar to the Average Term Weighted Value
(ATWV) (Fiscus et al., 2007), which was first used in the
NIST 2006 Spoken Term Detection evaluation and then in
the IARPA BABEL program (Bab, 2011) for keyword spot-
ting from speech. As was argued in (Karakos et al., 2013)
and elsewhere, generating commensurate detection scores
is important for optimizing this performance measure. The
main difference between ATWV and AQWV is in the gran-
ularity of the detections: keyword spotting tries to find all
occurrences of a keyword of interest, no matter how many
times it is spoken in a speech document. By contrast, the
IR task we consider here is about retrieving whole docu-
ments that contain the query of interest, but without the
need to pinpoint its exact location in the document. In other
words, the granularity of the keyword spotting task is at the
second (or fraction of second) level, while the granularity
of the information retrieval task is at the document level.
So, when computing the denominators in pMiss and pFA,
AQWV uses number of documents, not number of occur-
rences or number of seconds as in ATWV. For this reason,
the range of AQWV is [−β, 1] (as opposed to (−∞, 1] for
ATWV). (Wegmann et al., 2013) contains a detailed dis-
cussion of ATWV; most of the salient points also apply to
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AQWV.
A number of unsupervised score normalization approaches
have been developed for keyword spotting. pFA normal-
ization was introduced in (Zhang et al., 2012) and used
again in (Karakos et al., 2013). Keyword-specific thresh-
olds (KST) (Karakos et al., 2013) is the most principled
approach, as it is derived from fundamental theorems of
decision theory. Sum-to-one (STO) (Wu, 2012; Mamou
et al., 2013) is yet another popular approach, which was
initially applied to problems in IR and later to keyword
spotting. An in-depth comparison of these last two tech-
niques appears in (Wang and Metze, 2014), and, since we
use them in our experiments, we give more details about
them below (KST is renamed QST for obvious reasons). A
version of QST was also used more recently in (Shing et
al., 2019) for CLIR as well.

Query-Specific Thresholds (QST)
This method estimates a query-specific threshold t(q), as-
suming the un-normalized scores are posterior probabili-
ties or posterior-like numbers between 0 and 1. As men-
tioned in Section 1, the AQWV and ATWV metrics are
similar, allowing us to use the same optimality reasoning
to compute query-specific thresholds t(q). Decision theory
tells us that the optimal threshold is where the expected cost
of a false alarm and miss are equal. With some algebra,
it can be shown that the “optimal” decision thresholds are
given by:

t∗(q) =
β Ntrue(q)

|C |+ (β − 1)Ntrue(q)
(4)

where Ntrue(q) is the number of documents that are truly
relevant to query q. This number is unknown, but it can
be approximated by the sum of posteriors over the whole
collection, i.e.,

Nsum(q) =
∑
d∈C

score(q, d), (5)

where score(q, d) is the retrieval score returned by the core
IR system for query q and document d. Then, the nor-
malized scores can either be given by a linear shift, or by
the non-linear transformation mentioned in (Karakos et al.,
2013)

scoreqst = exp

{
− log(score)
log(t∗(q))

}
, (6)

which makes the common decision threshold for all queries
equal to 1/e ≈ 0.3679. This is the decision threshold we
use for computing AQWV in the QST results of Section 4.

Sum-to-One Score (STO)
This method, mentioned in (Wu, 2012; Mamou et al.,
2013), performs a per-query normalization so that the nor-
malized detections of a query over the whole document col-
lection sum to one. In other words,

scoresto =
score
Nsum(q)

, (7)

where Nsum(q) is given by (5). Unlike QST, this method
does not produce a decision threshold. As mentioned
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Figure 1: Comparison of the DET curves without/with
score normalization. The gray lines are contours of equal
AQWV.

in (Mamou et al., 2013), the decision threshold can be
determined based on performance on a tuning set. In
our experiments, we estimate the decision threshold on
the training set and apply it on the two other datasets
(Tune/Test).

Previous Supervised Techniques
Supervised (machine learning) techniques for score nor-
malization focused on extracting a number of features and
using them in a discriminative learning framework to di-
rectly compute the probability that a keyword is present
in a specific location in the audio. For example, the au-
thors in (Wang et al., 2009) used lattice-derived confidence
scores as features in a MLP and SVM to come up with cal-
ibrated scores that significantly improved ATWV. In (Pham
et al., 2014), they used features such as posterior proba-
bility, number of vowels, how many other competing arcs
were present in the ASR lattice, etc., in a MLP to compute
posterior-like scores, which were subsequently normalized
with KST or STO. In (Lv et al., 2016), the features used
were just the original posterior and KST-normalized score,
but these were computed a few times, using different sub-
word units. Finally, in (Soto et al., 2014), a large number of
features (both related to posteriors in confusion networks
and their transformations, as well features derived from
acoustics, phonetic dictionary, etc.) was used in a SVM
framework, which led to significant improvements over the
unsupervised methods.
Many references related to keyword spotting and score nor-
malization can also be found in (Tejedor et al., 2015).
Figure 1 shows a comparison of the DET curves for the
un-normalized and normalized outputs of a CLIR system.
There is a significant gain from normalization, especially
around the range of values where the maximum AQWV



40

(i.e., MQWV) is attained.

3. Supervised Score Normalization
Our approach to supervised score normalization is to (i)
use an optimization framework that directly optimizes the
measure of interest (AQWV), and (ii) use features that are
both functions of the query and the document, without mak-
ing any assumptions about whether we deal with speech
or text (our approach has to be able to work well with
both, so, it cannot rely on the presence of speech lattices or
confusion networks, in contrast to the aforementioned ap-
proaches). We generate several features—functions of the
corpus, query, and the original retrieval score—and then
weight them appropriately. We learn the feature weights so
that, when thresholded, the combined score maximizes the
performance metric.
We assume that each query-document pair (q, d) in the
training data is labeled for relevance (0/1). We compute
a number of features, such as the log of the following quan-
tities:

• Original retrieval score(q, d)

• The QST-transformed score scoreqst(q, d)

• The normalized sum Nsum(q)/|C |

• The three features:

min
w∈q
{score(w, d)}, max

w∈q
{score(w, d)}, avg

w∈q
{score(w, d)},

where avgw is just the average over all words w in query
q (esp. for multi-word queries).

• The three features:

min
w∈q
{count(w)}, max

w∈q
{count(w)}, avg

w∈q
{count(w)},

where count(w) is the count of w in the IR training data
(e.g., parallel data used to train the bilingual dictionary
for CLIR).

The above features f1, . . . , fF , together with the binary la-
bels, are fed into an optimizer that uses Powell’s method
(Press et al., 2007), with the goal to learn feature weights
α = (α1, . . . , αF ), as well as an optimal decision threshold
t∗ that maximize AQWV. At each optimization iteration,
the weights are used to compute new retrieval scores

scoremodel(q, d) =

F∑
i=1

αi · fi

and new decisions

decision(q, d) = 1[scoremodel(q, d) ≥ t∗].

During training, AQWV performance is also measured on
a “tuning” set for early stopping. L2 regularization (which
forces the trained weights to have small absolute values, to
reduce the risk of overfitting) can also be used by changing
the optimization criterion to

AQWV(α, t)− λ · L2(α).

Text Audio
Train Tune Test Train Tune Test

Somali 338 482 478 142 213 222
Swahili 316 449 493 155 217 207
Tagalog 291 460 - 171 244 -

Table 1: Size of various datasets (in terms of number of
documents).

Note that some of the above features are dependent on var-
ious basic properties of the corpus (e.g., number of docu-
ments) and of the query set (e.g., OOV rate). In this paper,
we do not study the effect of mismatched train/test condi-
tions that may arise, for instance, when train and test cor-
pora are significantly different. A test set that is an order
of magnitude larger than the training set can cause signifi-
cant mismatch in the train/test feature distributions, for the
corpus-dependent features we described earlier (such as the
QST-transformed score and the normalized sum). We plan
to investigate such scenarios in future work.
Finally, note that, in lieu of Powell’s method, we have also
used a MLP framework. However, given that the data on
which we train the learner is small, we did not manage to
obtain results that generalized better.

4. Experimental Results
4.1. Query Sets and Retrieval Corpora
To show the benefit of normalization and thresholding to
IR, we report experimental results on a Cross-language IR
(CLIR) task from three different languages to English: So-
mali, Swahili and Tagalog. Using data from the IARPA
MATERIAL program, we report on retrieval of Text and
Speech documents. For each genre, we consider three data
and query set conditions: (i) Train: A training data set
DTrain and a training query set QTrain are used for training
the normalization model of Section 3 as well as decision
thresholds. (ii) Tune: A tuning set DTune is used, together
with QTrain, for evaluating the stopping criterion. (iii) Test:
Unseen data setDTest and unseen query setQTest are used to
assess blind performance. Statistics of these corpora appear
in Table 1. As for the query set sizes, all languages have the
same number of queries: QTrain consists of 300 queries and
QTest consists of 1000 queries.

4.2. The CLIR System
We give a brief description of the CLIR system that is used
to generate the original retrieval scores. A more detailed
description appears in (Zbib et al., 2019). It uses a proba-
bilistic bilingual dictionary, trained on a set of parallel sen-
tences and lexicons that were aligned with GIZA++ (Och
and Ney, 2003). For each language pair (Somali-English,
Swahili-English and Tagalog-English) the bilingual dictio-
nary provides a translation probability P (e|f) between a
source word f and a target word e. Queries consist of one
or more words in the target language (English), and a doc-
ument is deemed relevant to a query if it contains at least
one occurrence of each of the terms of the query.2

2For this program, each query consists of one or two English
terms, each a word or short phrase. In some cases, there are fea-
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In mathematical terms, for query q and document d, and
assuming that T (d) is the set of all translations of all words
and phrases in d, the CLIR system computes score(q, d) as
follows:

P (d is relevant to q)
= P (each term w of q occurs at least once in T (d))

=
∏
w∈q

P (w occurs at least once in T (d))

=
∏
w∈q

(
1− P (w does not occur in T (d))

)
=

∏
w∈q

(
1−

∏
f∈d

(1− P (w|f))
)

(8)

Note that (Zbib et al., 2019) performs lexical translation of
source-language documents to English instead of transla-
tion of the (short) English queries to the source language;
the longer context in the source documents gives a more
accurate translation.
For speech documents, instead of using the translations
of the 1-best output of the automatic speech recognition
(ASR) system (which could be erroneous) we consider mul-
tiple ASR alternatives in the form of a confusion network.
The latter allows us to have a probabilistic representation
of the content of the foreign document, i.e., probability of
occurrence p(f |d) for source word f . This can be used
seamlessly in (8), giving rise to a modified formula

P (d is relevant to q) =
∏
w∈q

(
1−
∏
f∈d

(1−P (f |d)·P (w|f))
)

(9)
Note that the occurrence probabilities of all English terms
in the bilingual dictionary can be pre-computed, and ac-
cessed at retrieval time using an efficient indexing scheme.

4.3. Parallel Training Data
Parallel training data were used to estimate the prob-
abilistic dictionaries. The data consist mostly of par-
allel sentences released under the IARPA MATERIAL
and IARPA LORELEI (LOR, 2015) programs. A
parallel lexicon downloaded automatically from Panlex
(https://panlex.org/) was also included. Training data are
completely disjoint from the data mentioned in Section 4.1.

4.4. ASR System Description
The amount of transcribed speech available for acoustic
model training varied for each language: 48 hours for So-
mali, 68 hours for Swahili and 128 hours for Tagalog. For
language modeling, automatically collected web data (us-
ing the techniques of (Zhang et al., 2015)) were also used.
In addition to the MATERIAL data, Swahili and Tagalog
also include training data from the IARPA Babel program
(Bab, 2011).

tures associated with the term that constrain the sense or morphol-
ogy. A document is relevant if at least one place in the foreign
source could be translated to the term(s). In our experiments, the
CLIR system simplifies the problem by requiring that each of the
terms of the query is a possible translation of at least one foreign
word in the document, ignoring any of the semantic or syntactic
constraints.

Our ASR systems are trained using the Sage speech pro-
cessing platform (Hsiao et al., 2016), which integrates mul-
tiple machine learning toolkits, and uses Kaldi (Povey et al.,
2011) for acoustic model training. Our acoustic models are
pre-trained on 1500 hours of data from 11 languages (Keith
et al., 2018) and then fine-tuned to the target language. We
use a CNN-LSTM acoustic model, which is similar to the
TDNN-LSTM (Cheng et al., 2017), but with eight addi-
tional convolutional layers prepended to the network.

Language Baseline +LM Expansion + SST
Somali 60.6 49.4 46.1
Swahili 44.3 33.7 30.1
Tagalog 46.6 33.9 29.6

Table 2: Word error rate (WER) performance on a tun-
ing set (known as Analysis1 in the MATERIAL program).
Baseline refers to our multilingual CNN-LSTM acoustic
model. LM Expansion expands the LM and lexicon using
the automatically collected web data. SST further improves
the acoustic model with semi-supervised training.

While word error rate (WER) is not the metric of interest,
we show WER results in Table 2 to give a sense of the
task difficulty. Our baseline results use our best acoustic
model with the given training data, but the WER is still
over 40% for each language. A major difficulty for ASR in
the IARPA MATERIAL program is the mismatch between
the training and test data. All training data is conversational
telephone speech (CTS), while the test data is mostly broad-
cast data. Expanding the language model (LM) with the
collected web data partially overcomes this mismatch and
gives more than a 10 point absolute improvement in WER.
We further reduce the mismatch through semi-supervised
training using the evaluation data (approximately 70 hours).
Note that this adaptation is unsupervised and is allowed by
the MATERIAL program. During decoding we use stan-
dard trigram language models. We perform IR on CNets as
it significantly improves performance beyond the one-best.

4.5. AQWV/MQWV Results
Table 3(a) contains AQWV results with the various nor-
malization techniques described in the paper (the column
“original” is without normalization), for the Train and Test
retrieval corpora mentioned in Section 4.1.
Some observations are in order:

1. Compared to the original system scores, almost all
normalization methods give gains on the text genre of
all datasets. On the Test condition, the average gain
(from the supervised normalization) for the text genre
is 258%, while the average gain for the audio genre is
96% relative. This shows that, for measures such as
AQWV (that rely on hard decisions) score normaliza-
tion is of crucial importance.

2. In all cases, the supervised, model-based approach,
has the best performance on the Test condition among
all methods considered. Compared to the best unsu-
pervised method, the supervised approach is 23% bet-
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Train condition Tune condition Test condition
orig QST STO model orig QST STO model orig QST STO model

Somali text 7.1 16.9 15.7 22.6 8.4 19.9 16.2 22.3 -2.9 14.0 13.4 14.6
audio 3.9 -1.5 2.2 9.9 -2.9 -2.4 -0.9 4.5 -0.4 5.2 2.3 10.3

Swahili text 29.4 39.6 34.7 44.8 20.9 38.1 30.8 38.8 16.5 33.0 33.8 34.1
audio 29.6 21.1 17.0 33.0 20.7 19.4 16.1 31.1 20.0 17.9 13.8 28.2

Tagalog text 45.7 53.5 48.9 59.4 49.8 52.3 47.0 60.2 - - - -
audio 51.1 41.3 39.1 57.9 38.8 34.5 31.9 46.6 - - - -

(a) AQWV results

Train condition Tune condition Test condition
orig QST STO model orig QST STO model orig QST STO model

Somali text 7.1 20.2 15.7 22.6 9.3 21.4 16.9 25.0 0.2 16.2 14.7 15.5
audio 3.9 8.9 2.2 9.9 0.0 3.9 2.9 4.7 0.8 13.1 13.1 11.9

Swahili text 29.4 40.4 34.7 44.8 21.8 38.9 35.0 39.5 18.1 33.5 34.1 35.7
audio 29.6 28.3 17.0 33.0 21.4 28.6 19.7 31.8 21.4 25.6 14.4 30.0

Tagalog text 45.7 54.8 48.9 59.4 51.7 55.2 50.6 60.3 - - - -
audio 51.1 55.1 39.1 57.9 43.9 43.7 43.2 48.8 - - - -

(b) MQWV results

Table 3: (a) AQWV results on two genres of three languages (rows) and three conditions. The best result per dataset is
shown in bold. (b) Corresponding MQWV results using the oracle decision threshold per condition.

ter (relative) on average over all languages and genres
on the Test condition.

3. QST is substantially better than STO in all cases. This
is expected, given that QST is designed specifically
for AQWV.

Note that, for the Tune and Test conditions, the results of
Table 3(a) were obtained with a decision threshold that
was optimal on the Train condition. This, of course, can
be suboptimal. For example, the AQWV of the original
(un-normalized) system for the Somali-text Test condition
is negative because the tuned acceptance threshold is too
low, which makes the false alarm rate too high (a decision
threshold that does not accept anything gives an AQWV of
zero). So, to better understand the effect that score nor-
malization has on the performance of a system and remove
the error introduced by the imperfect decision threshold,
we also computed an oracle AQWV value, the maximum
AQWV (MQWV), obtained by sweeping over all possible
decision thresholds in each one of the conditions presented,
which we show in Table 3(b). We see that all MQWV val-
ues are now non-negative, and, as expected, greater than the
AQWV counterparts of Table 3(a). The supervised method
is still the best on average over all languages and conditions
(it is worse than QST by 0.95% absolute on Somali Test but
better than QST by 3% absolute on Swahili Test).

5. Concluding Remarks
In this paper, we looked at the problem of coming up with
producing hard decisions in a CLIR system. One interest-
ing application that we did not have the space to investi-
gate in this paper is where the retrieval is done on-line,
in a streaming fashion. Although there is no concept of
a “fixed” collection in this case, one can consider a slid-
ing window through the stream for purposes of computing
various features, such as the sum of posteriors of Sections

2 and 3. We plan to investigate this problem in a future
publication, as well as techniques that integrate score nor-
malization directly into a CLIR engine (e.g., train a neural
network CLIR system with the objective to optimize the ul-
timate measure of interest, instead of an approximate mea-
sure such as cross-entropy). Furthermore, with the right
architecture, the neural network can come up with the most
appropriate features for this task.
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