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Abstract
In this work, we focus on improving ASR output segmentation in the context of low-resource language speech-to-text translation. ASR
output segmentation is crucial, as ASR systems segment the input audio using purely acoustic information and are not guaranteed to
output sentence-like segments. Since most MT systems expect sentences as input, feeding in longer unsegmented passages can lead to
sub-optimal performance. We explore the feasibility of using datasets of subtitles from TV shows and movies to train better ASR seg-
mentation models. We further incorporate part-of-speech (POS) tag and dependency label information (derived from the unsegmented
ASR outputs) into our segmentation model. We show that this noisy syntactic information can improve model accuracy. We evaluate our
models intrinsically on segmentation quality and extrinsically on downstream MT performance, as well as downstream tasks including
cross-lingual information retrieval (CLIR) tasks and human relevance assessments. Our model shows improved performance on down-
stream tasks for Lithuanian and Bulgarian.
Keywords: Speech Segmentation, Lithuanian, Bulgarian, Low-Resource Languages

1. Introduction
A typical pipeline for speech-to-text translation (STTT)
uses a cascade of automatic speech recognition (ASR),
ASR output segmentation, and machine translation (MT)
components (Cho et al., 2017). ASR output segmentation
is crucial, as ASR systems segment the input audio using
purely acoustic information and are not guaranteed to out-
put sentence-like segments (i.e., one utterance may be split
if the speaker pauses in the middle, or utterances may be
combined if the speaker does not pause). Since most MT
systems expect sentences as input, feeding in longer un-
segmented passages can lead to sub-optimal performance
(Koehn and Knowles, 2017).
When the source language is a low-resource language, suit-
able training data may be very limited for ASR and MT,
and even nonexistent for segmentation. Since typical low-
resource language ASR audio datasets crawled from the
web do not have hand-annotated segments we propose
deriving proxy segmentation datasets from TV show and
movie subtitles. Subtitles typically contain boundary in-
formation like sentence-final punctuation and speaker turn
information, even if they are not exact transcriptions.
We further incorporate part-of-speech (POS) tag and de-
pendency label information (derived from the unsegmented
ASR outputs) into our segmentation model. This noisy syn-
tactic information can improve model accuracy.
We evaluate our models intrinsically on segmentation qual-
ity and extrinsically on downstream MT performance.
Since the quality of the underlying MT of low-resource
languages is relatively weak, we also extrinsically evalu-
ate our improved STTT pipeline on document and passage-
level cross-lingual information retrieval (CLIR) tasks. We
report results for two translation settings: Bulgarian (BG)
to English and Lithuanian (LT) to English.
This paper makes the following contributions: (i) We pro-
pose the use of subtitles as a proxy dataset for ASR seg-
mentation. (ii) We develop a simple neural tagging model

using noisy syntactic features on this dataset. (iii) We
show downstream performance increases on several extrin-
sic tasks: MT and document and passage-level CLIR tasks.

2. Related Work

Segmentation in STTT has been studied quite extensively
in high resource settings. Earlier models use kernel-based
SVM models to predict sentence boundaries from ngram
and part-of-speech features derived from a fixed window
size (Sridhar et al., 2013).
Recent segmentation models use neural architecture, such
as LSTM (Sperber et al., 2018) and Transformer models
(Pham et al., 2019). These models benefit from large train-
ing data available for the high-resource languages. For ex-
ample, the STTT task for English audio to German include
TED corpus, which contains about 340 hours of well tran-
scribed data. To our knowledge, these data do not exist
for the languages we are interested in. In addition, these
models predict full punctuation marks as well as casing for
words (binary classification of casing). However, since our
translation models are trained on unpunctuated texts, we
restrict the classification task to predicting full stop bound-
aries only.
Although recent works have looked at end-to-end speech-
to-text translation, in a high-resource setting, these models
(Vila et al., 2018) achieved at most a 0.5 BLEU score im-
provement over a weak cascaded model. In general, the
available data for end-to-end neural models is insufficient
or non-existent in all but the most specific circumstances;
for any pair of languages there will inevitably be far less
translated speech data available than (a) monolingual tran-
scribed speech data; (b) monolingual language modelling
training data; or (c) parallel corpora of translated text data.
This means that separate ASR and MT systems will gener-
ally have the benefit of training on much larger datasets.
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I think you should know something. You know. I ...

y = 0 0 0 0 0 1 0 1 0 · · ·
token = i think you should know something you know i · · ·

x dep = nsubj root nsubj aux ccomp obj nsubj acl : relcl nsubj · · ·
pos = PRON V ERB PRON AUX V ERB PRON PRON V ERB PRON · · ·

Figure 1: An excerpt of subtitles (top) and the corresponding segmentation data derived from it (bottom). Punctuation is to
mark boundaries yi = 1. Part-of-speech and dependency relations are parsed from each document.

Corpus BG LT
P U P U

OpenSub. 164,798 41.9 32,603 49.5
ANALYSIS 215 37.3 312 57.2

DEV 238 – 258 –

Table 1: Number of passages (P) in each dataset and aver-
age number of utterances per passage (U).

Lang. Model F1 ↑ WD ↓

BG Sub 56.78 33.9*
Sub+S 56.40 34.4

LT Sub 44.14 49.2
Sub+S 45.94* 47.0*

Table 2: Intrinsic evaluation of F1 and windowdiff(WD)
on ANALYSIS data. +S indicates models with syntactic
features. * indicates statistical significance

3. Datasets
3.1. Segmentation Datasets
We obtain BG and LT subtitles from the OpenSubtitles
2018 corpus (Lison and Tiedemann, 2016), which contains
monolingual subtitles for 62 languages drawn from movies
and television. We sample 10,000 documents for BG and
all available documents for LT (1,976 in total). Sentences
within a document are concatenated together. Some docu-
ments are impractically long and do not match our shorter
evaluation data, so we divide each document into 20 equally
sized passages (splitting on segment boundaries), roughly
matching the average evaluation document size. In addi-
tion to speaker turns in subtitles, we treat any of the char-
acters ():-!?. as segment boundaries. We split the data into
a training (75%) and validation set. See Table 1 for corpus
statistics.

3.2. Speech Datasets
To perform extrinsic evaluation of a STTT pipeline, we
use the speech collections from the MATERIAL1 program,
which aims at finding relevant audio and text documents in
low resource languages given English queries. This can be
framed as an cross-language information retrieval (CLIR)
task, where STTT plays a crucial part in improving the
quality of downstream tasks of machine translation and in-
formation retrieval.

1www.iarpa.gov/index.php/
research-programs/material

The speech data consists of three domains (news broadcast
(NB), topical broadcast (TB) such as podcasts, and con-
versational speech (CS)) from multiple low-resource lan-
guages. NB and TB have one speaker and are more for-
mal, while CS has two and is more casual. For each lan-
guage, we have two collections of speech documents, the
ANALYSIS and DEV sets (each containing a mix of NB,
TB, and CS). Only the ANALYSIS datasets include ground
truth transcriptions (including segmentation), allowing us
to evaluate segmentation and translation quality. However,
we can use both datasets for the extrinsic CLIR evaluation
since MATERIAL provides English queries with ground
truth relevance judgements.

4. Segmentation Model
We treat ASR segmentation as a sequence tagging problem.
Let x1, . . . , xn ∈ Vn be a passage of n ASR output tokens
drawn from a finite vocabulary V . We also define an indi-
cator variable yi for each token, where yi = 1 indicates a
segment boundary between tokens xi and xi+1. Each to-
ken xi is additionally associated with a corresponding POS
tag and dependency label. An example input and output are
shown in Figure 1.
We explore a Long Short-Term Memory (LSTM)-based
model architecture for this task. In the input layer we rep-
resent each word as a 256-dimensional word embedding;
when using syntactic information, we also concatenate
its POS tag and dependency label embeddings (both 32-
dimensional). POS tags and dependency labels are obtained
using the UDPipe 2.4 parser (Straka and Straková, 2017).
Since we do not have punctuation on actual ASR output, we
parse each document with this information removed. Con-
versational speech between two speakers comes in separate
channels for each speaker so we concatenate the output of
each channel and treat it as a distinct document when per-
forming segmentation. The segmentation are then merged
back into one document using segmentation timestamp in-
formation before being used in downstream evaluations.
We then apply a bi-directional LSTM to the input sequence
of embeddings to obtain a sequence of n hidden states, each
of 256 dimensions (after concatenating the output of each
direction). Each output state is then passed through a lin-
ear projection layer with logistic sigmoid output to com-
pute the probability of a segment boundary p(yi = 1|x).
The log-likelihood of a single passage/boundary annotation
pair is log p(y|x) =

∑n
i=1 log p(yi|x). All embeddings

and parameters are learned by minimizing the negative log-
likelihood on the training data using stochastic gradient de-
scent.

www.iarpa.gov/index.php/research-programs/material
www.iarpa.gov/index.php/research-programs/material
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Lang. Model EDI-NMT UMD-NMT UMD-SMT
NB TB CS NB TB CS NB TB CS

BG
Acous. 24.49 24.65 7.13 33.25 29.82 10.32 35.30 31.11 11.08
Sub 24.83 25.28 8.07 32.89 30.35 11.10 35.15 31.55 11.32
Sub+S 24.90 25.25 8.04 32.96 30.23 11.24 35.16 31.55 11.57

LT
Acous. 16.03 17.00 6.53 16.31 18.67 5.92 16.52 17.60 6.34
Sub 14.83 15.59 6.33 15.41 17.47 4.66 15.93 17.14 5.86
Sub+S 14.97 15.77 6.43 15.40 17.54 5.11 15.76 17.19 6.00

Table 3: Document level BLEU scores on ANALYSIS set. +S indicates model with syntactic features.

Lang. Model EDI-NMT UMD-NMT UMD-SMT
NB TB CS NB TB CS NB TB CS

BG
Acous. 0.289 0.482 0.052 0.394 0.175 0.005 0.426 0.355 0.148
Sub 0.289 0.435 0.127 0.475 0.19 0.111 0.433 0.361 0.245
Sub+S 0.312 0.443 0.014 0.498 0.247 0.074 0.433 0.368 0.245

LT
Acous. 0.293 0.304 0.005 0.356 0.291 0.0 0.359 0.484 0.0
Sub 0.293 0.266 0.011 0.393 0.278 0.0 0.484 0.42 0.0
Sub+S 0.365 0.254 0.111 0.377 0.305 0.0 0.459 0.382 0.0

Table 4: AQWV scores on ANALYSIS set. +S indicates model with syntactic features.

5. Experiments and Results
Pipeline Components All pipeline components were de-
veloped by participants in the MATERIAL program (Oard
et al., 2019). We use the ASR system developed jointly by
the University of Cambridge and the University of Edin-
burgh (Ragni and Gales, 2018; Carmantini et al., 2019).
We evaluate with three different MT systems. We use the
neural MT model developed by the University of Edinburgh
(EDI-NMT) (Junczys-Dowmunt et al., 2018) and the neural
and phrase-based statistical MT systems from the Univer-
sity of Maryland, UMD-NMT and UMD-SMT respectively
(Niu et al., 2018).
For the IR system, we use the bag-of-words query model
implemented in Indri (Strohman et al., 2005).

5.1. Intrinsic Evaluation
We evaluate the models on F-measure of the boundary pre-
diction labels, as well as WindowDiff (Pevzner and Hearst,
2002), a metric that penalizes difference in the number of
boundaries between the reference and predicted segmenta-
tion given a fixed window. We obtain a reference segmenta-
tion as described in subsection 3.1. We indicate our models
without and with syntactic features as Sub and Sub+S re-
spectively. Table 2 shows our results on the ANALYSIS
data. For BG, which is trained on an order of magnitude
more data, the model without syntactic information per-
forms slightly better. Meanwhile, in the lower-data LT set-
ting, adding syntactic cues yields a 2.2 point improvement
on WindowDiff.

5.2. Extrinsic Evaluations
We perform several extrinsic evaluations using a pipeline
of ASR, ASR segmentation, MT, and information retrieval
(IR) components.

5.2.1. MT Evaluation
Our first extrinsic evaluation measures the BLEU (Papineni
et al., 2002) score of the MT output on the ANALYSIS sets,
where we have ground truth reference English translations.
As our baseline, we compare the same pipeline using the
segmentation produced by the acoustic model of the ASR
system, denoted Acous.
Since each segmentation model produces segments with
different boundaries, we are unable to use BLEU directly to
compare to the reference sen- tences. Thus, we concatenate
all segments of a document and treat them as one segment,
which we refer to as “document-level” BLEU score.
Table 3 shows our results.
For BG, both Sub and Sub+S models improve BLEU scores
over the baseline segmentation on the more informal do-
mains (TB, CS). Across all MT systems, Sub+S performs
best on conversations (CS), while Sub performs best on top-
ical monologues (TB).
For LT, the segmentation models do not provide any im-
provement on BLEU scores. However, there is generally
an increase in BLEU with the syntactic features, consistent
with the intrinsic results.

5.2.2. Document-level CLIR Evaluation
Our second extrinsic evaluation is done on the MATERIAL
CLIR task. We are given English queries and asked to re-
trieve conversations in either BG or LT. In our setup, we
only search over the English translations produced by our
pipeline. We evaluate the performance of CLIR using the
Actual Query Weighted Value (AQWV) (NIST, 2017).
Table 4 shows the results of the CLIR ANALYSIS evalua-
tion.
Similar trends are found on the DEV set. On BG, our mod-
els yield large increases in AQWV for both UMD MT mod-
els, especially on CS, where the gains are on the order of
0.1 absolute points. Syntactic information also proves use-
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Lang. Model EDI-NMT UMD-NMT UMD-SMT
NB TB SMT CS TB CS NB1 TB CS

BG
Acous. 0.583 0.258 0.065 0.716 0.305 0.075 0.725 0.312 0.139
Sub 0.774 0.266 0.071 0.658 0.296 0.037 0.675 0.383 0.076
Sub+S 0.774 0.186 0.074 0.658 0.273 0.054 0.675 0.407 0.105

LT
Acous. 0.161 0.195 0.262 0.325 0.307 0.19 0.372 0.404 0.262
Sub 0.348 0.314 0.333 0.271 0.385 0.262 0.304 0.386 0.262
Sub+S 0.269 0.317 0.333 0.300 0.390 0.262 0.320 0.385 0.262

Table 5: AQWV scores on DEV set. +S indicates model with syntactic features.

Lang. MT Relevance
A M

BG
EDI-NMT 0.564 0.566

UMD-NMT 0.572 0.615
UMD-SMT 0.593 0.658
Reference 0.862

LT
EDI-NMT 0.576 0.554

UMD-NMT 0.663 0.593
UMD-SMT 0.681 0.614
Reference 0.9

Table 6: Passage-level evaluation comparing relevance
using the Sub+S model (M), the acoustic baseline
(A).Evaluation of reference translation is also provided for
each language.

ful, as Sub+S performs best in six of nine settings. Despite
the lack of increase in BLEU for LT, the segmentation mod-
els show large increases in AQWV over the baseline, espe-
cially on UMD-SMT/NB where the Sub model improves
AQWV by 0.125 points absolutely. Only EDI-NMT was
able to yield nonzero retrieval scores for the CS domain,
with Sub+S improving by 0.106 points.

5.2.3. Passage-level CLIR Evaluation
We also conduct a human evaluation to compare our seg-
mentation model with acoustically-based segmentation and
investigate which makes it easier for annotators to deter-
mine MT quality and query relevance. To this end, we col-
lect relevant query/passage pairs and ask Amazon Mechan-
ical Turk Workers2 to judge quality and relevance.
The MT quality judgments were done on a 7-point scale
(integer scores from -3 to 3 inclusive), and the query rel-
evance judgments on a 3-point scale (0, 0.5, and 1). A
perfect pipeline should achieve 3 in MT quality and 1 in
query relevance. We give each HIT (each containing five
passages) to three distinct Workers. Figure 2 shows the de-
tailed instruction we have for the HIT. Also see Figure 3 for
an example passage as displayed in a HIT.
We require Workers to have a minimum lifetime approval
rate of 98% and number of HITs approved greater than
5000. Workers that provide the same quality score for all
snippets in a HIT are manual checked by the author.
To generate our evaluation data, we use YAKE! (Campos

2https://www.mturk.com/

et al., 2018) to extract keywords from documents in the
ANALYSIS dataset. We then collect 3-segment passages
of each document and pair them with a keyword that ap-
pears in the middle utterance in the ground truth transcrip-
tion; these will become the passages and queries we give
to Workers. We match the timestamps of these passages in
the ground truth transcription with the output of the Sub+S
model and the Acous. model, and feed those segments
through MT. We randomly sample 200 passages each from
BG and LT and present them in three conditions (ground
truth or pipeline with either our segmentation, or acoustic
segmentation). Please refer to Figure 2 and Figure 3 in the
appendix for the instruction and example provided for the
Mechanical Turk task.
Table 6 shows the results. We omit the differences in qual-
ity because they were not significant. The human reference
transcriptions received 0.917 (BG) and 1.153 (LT) out of
a maximum of 3.0, suggesting that speech excerpts, even
when well translated, are hard to understand out of con-
text. On the relevance assessment, we see consistent im-
provements in BG using the Sub+S model, regardless of
the MT system, although only UMD-SMT is statistically
significant.3

We do not see improvements on relevance on LT, although
no differences are significant. While this might seem
counter-intuitive, given that the Sub+S model leads to con-
sistent improvement in LT CLIR, it is corroborated by the
lower BLEU scores on LT, suggesting the CLIR pipeline is
less affected by poor fluency than are actual human users
who need to read the output to determine relevance.

5.3. Discussion
Overall, when subtitle data is plentiful, as is the case
with BG, we see consistent improvements on downstream
MT and CLIR tasks. Moreover, we find consistent im-
provements in the CS domain where acoustic segmentation
is likely to produce choppy, non-sentence-like segments.
Even on LT, where there is not enough data to realize gains
in translation, it still has positive effects on the document-
level CLIR task.

6. Conclusion
We present an approach for ASR segmentation for low-
resource languages for the task of STTT. On extrinsic eval-
uations of MT, IR, and human evaluations, we are able to

3Using the approximate randomization test at the α = .05
level (Riezler and Maxwell, 2005).

https://www.mturk.com/
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show improvements in the downstream MT and CLIR. In
future work, we hope to explore methods to make the tag-
ger model more robust to noise, since word-error rates of
ASR in the low-resource condition tend to be high
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A. Additional Document-level CLIR
Evaluation

Figure 2: The instructions we provided for the Mechanical
Turk task.
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Figure 3: An example of our Amazon Mechanical Turk rel-
evance and quality judgment task.
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