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Abstract
The problem of building a coherent and non-monotonous conversational agent with proper discourse and coverage is still an area of
open research. Current architectures only take care of semantic and contextual information for a given query and fail to completely
account for syntactic and external knowledge which are crucial for generating responses in a chit-chat system. To overcome this
problem, we propose an end to end multi-stream deep learning architecture which learns unified embeddings for query-response pairs
by leveraging contextual information from memory networks and syntactic information by incorporating Graph Convolution Networks
(GCN) over their dependency parse. A stream of this network also utilizes transfer learning by pre-training a bidirectional transformer
to extract semantic representation for each input sentence and incorporates external knowledge through the neighborhood of the entities
from a Knowledge Base (KB). We benchmark these embeddings on next dialogue prediction task and significantly improve upon the
existing techniques. Furthermore, we use AMUSED to represent query and responses along with its context to develop a retrieval based
conversational agent which has been validated by expert linguists to have comprehensive engagement with humans.
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1. Introduction
With significant advancements in Automatic speech recog-
nition systems (Hinton et al., 2012; Kumar et al., 2018)
and the field of natural language processing, conversational
agents have become an important part of the current
research. It finds its usage in multiple domains ranging
from self-driving cars (Chen et al., 2017b) to social robots
and virtual assistants (Chen et al., 2017a). Conversational
agents can be broadly classified into two categories: a
task-oriented chatbot and a chit-chat based system, respec-
tively. The former works towards completion of a certain
goal and are specifically designed for domain-specific
needs such as restaurant reservations (Wen et al., 2017),
movie recommendation (Dhingra et al., 2017), flight
ticket booking systems (Wei et al., 2018) among many
others. The latter is more of a personal companion and
engages in human-computer interaction for entertainment
or emotional companionship. An ideal chit chat system
should be able to perform non-monotonous interesting
conversation with context and coherence.

Current chit chat systems are either generative (Vinyals and
Le, 2015) or retrieval based in nature. The generative ones
tend to generate natural language sentences as responses
and enjoy scalability to multiple domains without much
change in the network. Even though easier to train, they
suffer from error-prone responses (Zhang et al., 2018b).
Retrieval based methods select the best response from a
given set of answers, which makes them error-free. But,
since the responses come from a specific dataset, they
might suffer from distribution bias during the course of
conversation.

A chit-chat system should capture semantic, syntactic,
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contextual, and external knowledge in a conversation to
model human-like performance. Recent work by Bordes
et al. (2016) proposed a memory network based approach
to encode contextual information for a query while per-
forming generation and retrieval later. Such networks
can capture long term context but fail to encode relevant
syntactic information through their model. Things like
anaphora resolution are appropriately taken care of if we
incorporate syntax. Another important component lacking
in current dialogue systems is proper incorporation of
external knowledge. We attempt to do this by including
an explicit knowledge module that can gather information
from connected entities in a Knowledge Base.

Our work improves upon previous architectures by creating
enhanced representations of the conversation using multi-
ple streams which includes Graph Convolution networks
(Bruna et al., 2014), transformers (Vaswani et al., 2017)
and memory networks (Bordes et al., 2016) in an end to
end setting, where each component captures conversation
relevant information from queries, subsequently leading to
better responses. Our contribution to this paper can be sum-
marized as follows:

• We propose AMUSED, a novel multi-stream deep
learning model that learns rich unified embeddings for
query response pairs using triplet loss.

• We propose an approach to incorporate external
knowledge from a KB in an open domain dialog set-
tings.

• We use Graph Convolutions Networks in a chit-chat
setting to incorporate the syntactical information in the
dialogue using its dependency parse.

• Even with the lack of a concrete metric to judge a
conversational agent, our embeddings have shown to
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Figure 1: Overview of AMUSED. AMUSED first encodes each sentence by concatenating embeddings (denoted by ⊕)
from Bi-LSTM and Syntactic GCN for each token, followed by word attention. The sentence embedding is then concate-
nated with the knowledge embedding from the Knowledge Module (Figure 2). The query embedding passes through the
Memory Module (Figure 3) before being trained using triplet loss. Please see Section 4. for more details.

perform interesting response retrieval on Persona-Chat
dataset.

2. Related Work
The task of building a conversational agent has gained
much traction in the last decade, with various techniques
being tried to generate relevant human-like responses in a
chit-chat setting. Previous modular systems (Martin and
Jurafsky, 2009) had a complex pipeline based structure
containing various hand-crafted rules and features, making
them difficult to train. This led to the need for simpler
models which could be trained end to end and extended
to multiple domains. Vinyals and Le (2015) proposed a
simple sequence to sequence model that could generate
answers based on the current question, without needing
extensive feature engineering and domain specificity.
However, the responses generated by this method lacked
context. To alleviate this problem, Sordoni et al. (2015)
introduced a dynamic-context generative network that is
shown to have improved performance on the unstructured
Twitter Conversation Dataset. Serban et al. (2017a) refined
the sequence to sequence framework further by introducing
a multi-resolution recurrent neural network that models
natural language generation as two parallel processes
with normal language tokens and high-level coarse tokens
as their respective inputs. It helps overcome sparsity in
natural language when the query, as well as context, is
huge.

To model complex dependencies between sub-sequences in
an utterance, Serban et al. (2017b) proposed a hierarchi-
cal latent variable encoder-decoder model. It can gener-
ate longer outputs while maintaining context at the same
time. Reinforcement learning based approaches have also
been deployed to generate interesting responses (Zhang et
al., 2018a) and tend to possess unique conversational styles

(Asghar et al., 2017). Adversarial Learning frameworks
on certain specific datasets have also proved to be useful
(Olabiyi et al., 2018).

With the emergence of several large datasets, retrieval
methods have gained vast popularity. Even though the
set of responses is limited in this scenario, it doesn’t suf-
fer from the problem of generating meaningless responses.
A Sequential Matching Network proposed by Wu et al.
(2017) performs word matching of responses with the con-
text before passing their vectors to an RNN. The addition of
external information along with the current input sentence
and context improves the system as is evident by incorpo-
rating a large common sense knowledge base into an end
to end conversational agent (Young et al., 2018). To main-
tain diversity in the responses, Song et al. (2018) suggests a
method to combine a probabilistic model defined on item-
sets with a seq2seq model. Responses like ’I am fine’ can
make conversations monotonous; a specificity controlled
model (Zhang et al., 2018b) in conjunction with seq2seq
architecture overcomes this problem. These networks help
solve one or the other problem in isolation.

To maintain proper discourse in the conversation, context
vectors are passed together with input query vector into
a deep learning model (Sordoni et al., 2015). A context
modeling approach, which includes a concatenation of di-
alogue history, has also been tried (Martin and Jurafsky,
2009). However, the success of memory networks on the
Question-Answering task (Sukhbaatar et al., 2015) opened
the door for its further use in conversational agents. Bordes
et al. (2016) used the same in a task-oriented setting for the
restaurant domain and reported accuracies close to 96% in
a full dialogue scenario. Zhang et al. (2018c) further used
these networks in a chit chat setting on the Persona-Chat
dataset and came up with personalized responses.

In our network, we make use of Graph Convolution Net-
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works (Kipf and Welling, 2017; Defferrard et al., 2016),
which have been found to be quite effective for encoding
the syntactic information present in the dependency parse
of sentences (Marcheggiani and Titov, 2017). External
Knowledge Bases (KBs) have been exploited in the past
to improve the performances in various tasks (Vashishth et
al., 2018a; Vashishth et al., 2018b; Ling and Weld, 2012).
The relation-based strategy followed by Hixon et al. (2015)
creates a KB from the dialogue itself, which is later used to
improve Question-Answering (Saha et al., 2018). Han et
al. (2015; Ghazvininejad et al. (2018) have used KBs to
generate more informative responses by using properties of
entities in the graph. (Young et al., 2018) focused more
on introducing knowledge from semantic-nets rather than
general KBs.

3. Background: Graph Convolution
Networks

GCN for undirected graph: For an undirected graph
G = (V,E), where V is the set of n vertices and E is
the set of edges, the representation of the node v is given
by xv ∈ Rm,∀v ∈ V . The output hidden representation
hv ∈ Rd of the node after one layer of GCN is obtained
by considering only the immediate neighbors of the node
as given by Kipf and Welling (2017). To capture the
multi-hop representation, GCN layers can be stacked on
top of each other.

GCN for labeled directed graph: For a directed graph
G = (V,E), where V is the set of vertices we define the
edge set E as a set of tuples (u, v, l(u, v)) where there is an
edge having label l(u, v) between nodes u and v. Marcheg-
giani and Titov (2017) proposed the assumption that infor-
mation doesn’t necessarily propagate in certain directions
in the directed edge, therefore, we add tuples having in-
verse edges (v, u, l(u, v)−1) as well as self loops (u, u,Ω),
where Ω denotes self loops, to our edge set E to get an up-
dated edge set E′. The representation of a node xv , after
the kth layer is given as :

hk+1
v = f

 ∑
u∈N(v)

(W k
l(u,v)h

k
u + bkl(u,v))

 .

where W k
l(u,v) ∈ Rd×d and bkl(u,v) ∈ Rd are trainable edge-

label specific parameters for the layer k, N(v) denotes the
set of all vertices that are immediate neighbors of v and f
is any non-linear activation function (e.g., ReLU: f(x) =
max(0, x)).
Since we are obtaining the dependency graph from Stan-
ford CoreNLP (Manning et al., 2014), some edges can be
erroneous. Edgewise gating (Bastings et al., 2017) helps
to alleviate this problem by decreasing the effects of such
edges. For this, each edge (u, v, l(u, v)) is assigned a score
which is given by :

gkuv = σ(hku · ŵk
l(u,v) + b̂kl(u,v)),

where ŵk
l(u,v) ∈ Rm and b̂kl(u,v)) ∈ R are trained and σ

denotes the sigmoid function. Incorporating this, the final

GCN embedding for a node v after nth layer is given as :

hn+1
v = f

( ∑
u∈N(v)

gkuv × (Wn
l(u,v)h

n
u + bnl(u,v))

)
. (1)

4. AMUSED Details
This section provides details of three main components of
AMUSED, which can broadly be classified into Syntactic,
Knowledge, and Memory Module. We hypothesize that
each module captures relevant information to learn repre-
sentations for a query-response pair in a chit-chat setting.
Suppose that we have a dataset D consisting of a set
of conversations d1, d2, ..., dC where dc represents a sin-
gle full length conversation consisting of multiple dia-
logues. A conversation dc is given by a set of tuples
(q1, r1), (q2, r2), ..., (qn, rn) where a tuple (qi, ri) denotes
the query and response pair for a single turn. The con-
text for a given query qi ∀ i ≥ 2 is defined by a list of
sentences l : [q1, r1, ..., qi−1, ri−1]. We need to find the
best response ri from the set of all responses, R. The
training set D′

for AMUSED is defined by set of triplets
(qi, ri, ni) ∀ 1 ≤ i ≤ N where N is the total number of
dialogues and ni is a negative response randomly chosen
from setR.

4.1. Syntactic Module
Syntax information from dependency trees has been suc-
cessfully exploited to improve a lot of Natural Language
Processing (NLP) tasks (Vashishth et al., 2018a; Mintz et
al., 2009). In dialog agents, where anaphora resolution, as
well as sentence structure, influences the responses, it finds
special usage. A Bi-GRU (Cho et al., 2014) followed by a
syntactic GCN is used in this module.

Each sentence s from the input triplet is represented with
a list of k-dimensional GloVe embedding (Pennington
et al., 2014) corresponding to each of the m tokens in
the sentence. The sentence representation S ∈ Rm×k

is then passed to a Bi-GRU to obtain the representation
Sgru ∈ Rm×dgru , where dgru is the dimension of the
hidden state of Bi-GRU.

This contextual encoding (Graves et al., 2013) captures
the local context well but fails to capture the long-range
dependencies that can be obtained from the dependency
trees. We use GCN to encode this syntactic information.
Stanford CoreNLP (Manning et al., 2014) is used to
obtain the dependency parse for the sentence s. Giving
the input as Sgru, we use GCN Equation 1, to obtain
the syntactic embedding Sgcn. Following Nguyen and
Grishman (2018), we only use three edge labels, namely,
forward-edge, backward-edge, and self-loop. This is
done because incorporating all the edge labels from the
dependency graph heavily over-parameterizes the model.

The final token representation is obtained by concatenating
the contextual Bi-GRU representation hgru and the syntac-
tic GCN representation hgcn. A sentence representation is
then obtained by passing the tokens through a layer of word
attention (Bahdanau et al., 2014) as used by (Vashishth et
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Figure 2: Description of Knowledge Module. The input
sentence is passed to a pre-trained BERT model, output
from which is concatenated with averaged embedding
from the KB-neighbors of entities present in the input.
Refer Section 4.2. for a detailed explanation.

Figure 3: Memory Module description. The query rep-
resentation and BERT embeddings of the context sen-
tences is passed to the memory network to capture the
dialogue context. Please see Section 4.3. for more de-
tails.

al., 2018b; Jat et al., 2018), which is concatenated with
the embedding obtained from the Knowledge Module (de-
scribed in Section 4.2.) to obtain the final sentence repre-
sentation hconcat.

4.2. Knowledge Module

The final sentence representation hconcat of the query is
then passed into the Knowledge Module. It is further sub-
divided into two components: a pre-trained Transformer
model for the next dialogue prediction problem and a com-
ponent to incorporate information from external Knowl-
edge Bases (KBs).

4.2.1. Next Dialogue Prediction Using Transformers
The next dialogue prediction task is described as follows:
For each query-response pair in the dataset, we generate a
positive sample (q, r) and a negative sample (q, n) where n
is randomly chosen from the set of responses R in dataset
D. Following Devlin et al. (2018), a training example
is defined by concatenating q and r which are separated
by a delimiter || and is given by [q||r]. The problem is to
classify if the next dialogue is a correct response or not.

A pre-trained BERT model is used to further train a binary
classifier for the next dialogue prediction task, as described
above. After the model is trained, the pre-final layer is con-
sidered, and the vector from the special cls token is chosen
as the dialogue representation. The representation thus ob-
tained would tend to be more inclined towards its correct
positive responses. Multi-head attention in the transformer
network, along with positional embeddings during training,
helps it to learn intra as well as inter sentence dependen-
cies (Devlin et al., 2018; Vaswani et al., 2017). The input
query sentence is then passed from this network to obtain
the BERT embedding, hbert. We are motivated by the fact
that pretrained BERT would help incorporate more generic
knowledge (Petroni et al., 2019).

4.2.2. k-Hop KB Expansion
In our day-to-day conversations, to ask succinct questions,
or to keep the conversation flowing, we make use of some
background knowledge . For example, if someone remarks
that they like rock music, we can ask a question if they have
listened to Nirvana. It can be done only if we know that
Nirvana plays rock music. To incorporate such external
information, we can make use of existing Knowledge
Bases like Wikipedia, Freebase (Bollacker et al., 2008),
and Wikidata (Vrandečić and Krötzsch, 2014). Entities
in these KBs are linked to each other using relations. We
can expand the information we have about an entity in our
dialogue by looking at its linked entities in a Knowledge
Graph. Multiple hops of the (KG) can be used to expand
knowledge.

In AMUSED, we do this by passing the input query into
Stanford CoreNLP to obtain entity linking information to
Wikipedia. Suppose the Wikipedia page of an entity e con-
tains links to the set of entities E. We ignore relation in-
formation and only consider one-hop direct neighbors of e.
To obtain a KB-expanded embedding hkb of the input sen-
tence, we take the average of GloVE embeddings of each
entity in E. In place of Wikipedia, bigger knowledge bases
like Wikidata, as well as the relation information, can be
used to improve KB embeddings. We leave that for future
work.

4.3. Memory Module
For effective conversations, it is imperative that we form
a sense of the dialogues that have already happened. A
question about ’Who is the president of USA’ followed
by ’What about France’ should be self-containing. This
dialogue context is encoded using a memory network
(Sukhbaatar et al., 2015). The memory network helps to
capture the context of the conversation by storing dialogue
history i.e., both questions and responses. The query
representation, hconcat is passed to the memory network,
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along with BERT embeddings hbert of the context, from
the Knowledge Module (Section 4.2.).

In AMUSED, memory network uses supporting memories
to generate the final query representation (hconcat

′
).

Supporting memories contains input (mi) and out-
put (ci) memory cells (Sukhbaatar et al., 2015). The
incoming query qi as well as the history of dia-
logue context l : [(q1, r1), .., (qi−1, ri−1)] is fed as
input. The memory cells are populated using the
BERT representations of context sentences l as fol-
lows: mi = ci = {BERT (x), x ∈ τ}, where
τ = [q1, r1, q2, r2, ..., qi, ri] ∀ (qi, ri) ∈ l.

Following Bordes et al. (2016), the incoming query em-
bedding along with input memories is used to compute rel-
evance of context stories as a normalized vector of attention
weights as ai = ‖(< mi, h

concat >)‖, where< a, b > rep-
resents the inner product of a and b. The response from the
output memory, o, is then generated as : o =

∑
i aici. The

final output of the memory cell, u is obtained by adding o to
hconcat. To capture context in an iterative manner, memory
cells are stacked in layers (Sukhbaatar et al., 2015) which
are called as hops. The output of the memory cell after the
kth hop is given by uk = ok−1+uk−1 where u0 = hconcat.
The memory network performs k such hops and the final
representation hconcat

′
is given by sum of ok and uk.

4.4. Triplet Loss

Triplet loss has been successfully used for face recognition
(Schroff et al., 2015). Our insight is that traditional loss
metrics might not be best suited for a retrieval-based task
with a multitude of valid responses to choose from. We
define a Conversational Euclidean Space, where the rep-
resentation of a sentence is driven by its context in the di-
alogue along with its syntactic and semantic information.
We have used this loss to bring the query and response rep-
resentations closer in the conversational space. Questions
with similar answers should be closer to each other and the
correct response. An individual data point is a triplet which
consists of a query (qi), its correct response (ri) and a neg-
ative response (ni) selected randomly. We need to learn
their embeddings φ(qi) = hconcat

′

qi , φ(ri) = hconcatri and
φ(ni) = hconcatni

such that the positive pairs are closer in
the embedding space compared to the negative ones. This
leads to the following equation:

‖φ(qi)− φ(ri)‖22 + α < ‖φ(qi)− φ(ni)‖22 ,

where α is the margin hyper-parameter used to separate
negative and positive pairs. If I be the set of triplets, N
the number of triplets and w the parameter set, then, triplet
loss (L) is defined as :

L(I, w) =

N∑
i=0

[‖φ(qi)− φ(ri)‖22−‖φ(qi)− φ(ni)‖22+α]+

Size

Training conversations 9,907
Validation conversations 1000

Test conversations 1000

Query- Response pairs 131438
Vocabulary size 19,262

Table 1: Dataset statistics for Persona-Chat. Refer Section
5.1.

5. Experimental Setup
5.1. Datasets
Persona-Chat: We use this dataset to build and evaluate
the chit-chat system. Persona-Chat (Zhang et al., 2018c) is
an open domain dataset on personal conversations created
by randomly pairing two humans on Amazon Mechanical
Turk. The paired crowd workers converse naturally for
6 − 12 turns. This made sure that the data mimic normal
conversations between humans, which is very crucial for
building such a system. This data is not limited to social
media comments or movie dialogues. We use it for training
AMUSED as it provides consistent conversations with
proper context.

DSTC: Dialogue State Tracking Challenge dataset (Hen-
derson et al., 2014) contains conversations for restaurant
booking tasks. Due to its task-oriented nature, it doesn’t
need an external knowledge module, so we train it only
using memory and syntactic module and test on an auto-
mated metric.

MNLI and MRPC: We further use Multi-Genre Natural
Language Inference and Microsoft Research Paraphrase
Corpus (Wang et al., 2019) to fine-tune parts of the network
i.e.; Knowledge Module. It is done because these datasets
resemble the core nature of our problem, wherein we want
to predict the correctness of one sentence in response to a
particular query.

5.2. Training
Pre-training BERT: Before training AMUSED, the
knowledge module is processed by pre-training a bidi-
rectional transformer network and extracting one-hop
neighborhood entities from Wikipedia KB. We use the
approach for training, as explained in Section 4.2.1..
There are 104,224 positive training and 27,214 validation
query-response pairs from Persona Chat. We perform three
different operations: a) Equal sampling: Sample equal
number of negative examples from dataset, b) Oversam-
pling: Sample double the negatives to make training set
biased towards negatives and c) Under sampling: Sample
70% of negatives to make training set biased towards
positives. Batch size and maximum sequence length are
32 and 128, respectively. We fine-tune this next sentence
prediction model with MRPC and MNLI datasets, which
improves the performance. Evaluation is done on above
mentioned three methods, and we choose the best model
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Model Concat Diff Min

Bi-GRU & GCN only 72.8% 73.2% 59.4%

BERT only 74.3% 71.9% 66.3%

BERT with Bi-GRU
& GCN 77.7% 73.3% 71.4%

BERT with
Bi-GRU and memory networks 78.6% 74.4% 73.5%

BERT and KB with
Bi-GRU and memory networks 83.6% 78.4% 69.2%

Table 2: Accuracy as an automatic evaluation metric on
Next Dialogue Prediction task over Persona Chat. We per-
form different operations on embeddings of sentence pairs
to study ablation. Concat, Diff and Min refers to Concate-
nation, Difference and Element wise min respectively. See
Section 5.4.2. for more details.

from them.

Training to learn Embeddings: AMUSED requires
triplets to be trained using triplet loss. A total of 131, 438
triplets of the form (q, r, n) are randomly split in a 90:10
ratio to form the training and validation set. The network is
trained with a batch size of 64 and a dropout of 0.5. Word
embedding size is chosen to be 50. Bi-GRU and GCN hid-
den state dimensions are chosen to be 192 and 32, respec-
tively. One layer of GCN is employed. Validation loss is
used as a metric to stop training, which converges after 50
epochs using Adam optimizer at 0.001 learning rate.

5.3. Retrieval
As a retrieval-based model, the system selects a response
from the predefined answer set. The retrieval unit extracts
embedding (hconcat) for each answer sentence from the
trained model and stores it in a representation matrix, which
will be utilized later during inference.
First, a candidate subset A is created by sub-sampling a set
of responses having overlapping words with a given user
query. Then, the final output is retrieved on the basis of co-
sine similarity between query embedding hconcat

′
and the

extracted set of potential responses (A). The response with
the highest score is then labeled as the final answer, and the
response embedding is further added into the memory to
take care of context.

5.4. Results And Evaluation
5.4.1. Selecting the Pre-Trained Model
The model resulting from the oversampling method beats
its counterparts by more than 3% in accuracy. It clearly
indicates that a better model is one which learns to distin-
guish negative examples well. The sentence embeddings
obtained through this model is further used for lookup in
the Knowledge Module (Section 4.2.) in AMUSED.

5.4.2. Ablation Studies on Automated Metrics
We use two different automated metrics to check the effec-
tiveness of the model and the query-response representa-
tions that we learned.

Method Precision@1

Seq2Seq 0.092

Profile Memory 0.092

IR Baseline 0.214

AMUSED (Persona Chat) 0.326

AMUSED (DSTC) 0.78

Table 3: Precision @1 comparison between different meth-
ods on Persona Chat. Precision@1 % tell us the number
of times the correct response from the dataset comes up.
Details in Section 5.4.2.

Next Dialogue Prediction Task: Various components of
AMUSED are analyzed for their performance on the next
dialogue prediction task. This task tells us that, given
two sentences (a query and a response) and the context,
whether the second sentence is a valid response to the first
sentence or not. Embeddings for queries and responses
are extracted from our trained network and then multiple
operations, which include a) Concatenation, b) Element
wise min and c) Subtraction are performed on those before
passing them to a binary classifier. A training example
consists of embeddings of two sentences from a (q, a) or
(q, n) pair which are created in a similar fashion as in
Section 4.2.1..

Accuracy on this binary classification problem has been
used to select the best network. Furthermore, we perform
ablation studies using different modules to understand the
effect of each component in the network. A 4 layer neural
network with ReLU activation in its hidden layers and
softmax in the final layer is used as the classifier. External
knowledge in conjunction with memory and GCN module
has the best accuracy when embeddings of query and
response are concatenated together. A detailed study of the
performance of various components over these operations
is shown in Table 2.

Precision@1: This is another metric used to judge the
effectiveness of our network. It is different from the
next sentence prediction task accuracy. It measures that
for n trials, the number of times a relevant response is
reported with the highest confidence value. Table 3 reports
a comparative study of this metric on 500 trials conducted
for AMUSED along with results for other methods.
DSTC dataset is also evaluated on this metric without the
knowledge module as explained in Section 5.1.

Looking for exact answers might not be a great metric as
many diverse answers might be valid for a particular ques-
tion. So, we must look for answers which are contextu-
ally relevant for that query. Overall, we use next sentence
prediction task accuracy to choose the final model before
retrieval.
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Model Coherence Context Aware Non Monotonicity Average Rating %gain

Bi-GRU & GCN only 6.82 7.35 6.77 6.98 Baseline

BERT only 7.61 7.24 6.33 7.06 1.14

BERT with Bi-GRU & GCN 7.54 6.91 7.38 7.27 4.15

BERT and External KB
with Bi-GRU & GCN 7.16 7.34 7.72 7.40 6.01

KV Memory Networks(Zhang et al., 2018c) 7.56 8.09 7.84 7.83 12.18

BERT & External KB with Bi-GRU,
GCN and memory networks 8.21 8.34 7.82 8.12 16.33

Table 4: Human based evaluation is conducted for 5 different components in the network as well as KV memory networks.
AMUSED achieves the highest percent gain over specified baseline model. The scale is 1-10.

5.4.3. Ablation Study by Humans
There is no concrete metric to evaluate the performance of
an entire conversation in a chit-chat system. Hence, the
human evaluation was conducted using expert linguists
to check the quality of conversation. They were asked
to chat for 7 turns and rate the quality of responses on a
scale of 1 − 10 where 1 being the worst and 10 being the
best. Each expert was asked to conduct the experiment
50 times with a time gap after 10 sessions. This gap was
provided to make sure that the linguistic experts don’t get
biased in their results. A group of 20 linguists provided
a total of 945 sample points for each model. Similar to
Zhang et al. (2018c), there were multiple parameters
to rate the chat based on coherence, context awareness,
and non-monotonicity to measure various factors that are
essential for natural dialogue. By virtue of our network
being retrieval based, we don’t need to judge the responses
based on their structural correctness as this will be implicit.

To monitor the effect of each neural component, we get it
rated by experts either in isolation or in conjunction with
other components. Such a study helps us understand the
impact of different modules on a human-based conversa-
tion. Dialogue system proposed by Zhang et al. (2018c)
is also reproduced and reevaluated for comparison. From
Table 4, we can see that human evaluation follows a similar
trend as the automated metric, with the best rating given to
the combined architecture.

6. Conclusion
In the paper, we propose AMUSED, a multi-stream archi-
tecture that effectively encodes semantic information from
the query while properly utilizing external knowledge for
improving performance on natural dialogue. It also em-
ploys GCN to capture long-range syntactic information and
improves context-awareness in dialogue by incorporating a
memory network. Through our experiments and results us-
ing different metrics, we demonstrate that learning these
rich representations through smart training (using triplets)
would improve the performance of chit-chat systems. The
ablation studies show the importance of different compo-
nents for better dialogue. Our ideas can easily be extended
to various conversational tasks that would benefit from such
enhanced representations.
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