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Abstract
We compare two models for corpus-based selection of dialogue responses: one based on cross-language relevance with a cross-language
LSTM model. Each model is tested on multiple corpora, collected from two different types of dialogue source material. Results show
that while the LSTM model performs adequately on a very large corpus (millions of utterances), its performance is dominated by the
cross-language relevance model for a more moderate-sized corpus (ten thousands of utterances).
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1. Introduction

End-to-end neural network models of conversational dia-
logue have become increasingly popular for conversational
tasks (Ritter et al., 2011; Serban et al., 2015; Zhao et al.,
2017). These models eschew traditional dialogue model-
ing approaches that include internal hand-crafted domain
models and representations of dialogue context and sepa-
rate components for understanding natural language (con-
verting to the internal representation language), updating
dialogue state, state-based response generation, and natu-
ral language generation (Traum and Larsson, 2003; Raux
et al., 2005). Instead, these models learn to respond di-
rectly from a corpus, either by generating new responses
or selecting a response from the corpus training data, us-
ing dual encoding and hidden layers to learn appropriate
dialogue continuations. However, there are still a number
of questions remaining about how well such models really
work for real applications, and how much data is needed
to achieve acceptable performance. Other machine learn-
ing approaches have been shown to be useful, with much
smaller data sets.

In this paper, we compare two different kinds of end-to-
end system, a neural network model based on (Lowe et
al., 2015) and an older kind of end-to-end dialogue model,
based on cross-language retrieval (Leuski et al., 2006), im-
plemented in the publicly available NPCEditor (Leuski and
Traum, 2011), and previously used for systems that have
been displayed in museums (Traum et al., 2012; Traum
et al., 2015). We compare these models on two different
datasets: the Ubuntu Corpus (Lowe et al., 2015), and one
derived from one of the museum system datasets (Traum
et al., 2015). In the next section, we describe the data sets
we use for the experiments. In section 3 we describe the
NPCEditor and its selection model. We then review some
prior neural network approaches to dialogue in section 4,
followed by details of the model we tested in section 5. In
section 6, we describe the experiments and results. Finally,
we conclude in section 7 with a discussion of the results
and their implications.

2. Datasets
We utilized four datasets in our experiments to compare
NPCEditor with a deep neural network model. The Ubuntu
Dialogue corpus (Lowe et al., 2015) was constructed from
Linux support message boards, where people posted prob-
lems and solutions. We constructed three other datasets
out of the data made available from the system described
in (Traum et al., 2015), in which people ask questions of a
Holocaust survivor, and receive recorded responses.

2.1. Ubuntu Dialogue Corpus
As a first baseline, we use the Ubuntu Dialogue corpus
which contains 1 million multi-turn dialogues, with a total
of over 7 million utterances and 100 million words. The
training set has 50% positive and 50% negative pairs of
<context, response>. In the development, for a given con-
text it has 1 relevant response and 9 distractors. This corpus
has previously been used for testing neural network end-to-
end dialogue systems.

2.2. Pinchas data
The initial data that was used for training the system in
(Traum et al., 2015), consists of 23830 pairs of questions
and responses from the interviews. We divided this set
into three subsets: 70% for the training set (16675 sam-
ples), 20% for development set (4764 samples), and 10%
percent for the test set (2383 samples). Please notice that
the mentioned subsets only contained positive samples. We
constructed a set of negative samples by removing positive
samples from all possible < question, response > pairs.

2.2.1. Pinchas 10
We doubled the amount of training set by adding randomly
selected negative samples to it. In the end, we came up
with 33350 samples for the training set, 50% of which were
negative samples and the rest were positive ones. For each
positive sample in the development and test sets, we added
nine distractors. Distractors were randomly selected from
the pool of invalid responses for the given context. So each
entry of the pinchas 10 development and test sets would be
of the form:
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Figure 1: A subset of Pinchas training set that we constructed similar to the structure of Ubuntu Dialogue corpus training
set. Label ”0” means context and response are not relevant and Label ”1” means they are relevant.

< question, response, d1, d2, . . . , d9 >

2.2.2. Pinchas 1444 v1
We constructed Pinchas 1444 to investigate how the mod-
els would perform on a task inspired by a real problem. Our
goal was to create a system that could return an appropriate
response from a set of all 1444 available responses.
For the training set, we followed the same procedure that
we did in constructing Pinchas 10. Nonetheless, for the de-
velopment and test sets, instead of 10 distractors, we used
the whole set of possible responses. Another important dif-
ference between Pinchas 1444 and Pinchas 10 is that in this
new set there might be more than one relevant response for
a given question.

2.2.3. Pinchas 1444 v2
After constructing Pinchas 1444 v1, we decided to con-
struct another dataset in order to test whether increasing
negative samples in the training set would influence the re-
sults. Given that very few of the 1444 responses are appro-
priate for any given question, showing an even number of
positive and negative examples might inappropriately pre-
fer recall over precision. We increased the proportion of
negative samples from 50% to 90% in the training set. We
accomplished this by adding more negative samples to the
Pinchas 1444 v1.
Each entry of the Pinchas 1444 v1 and Pinchas 1444 v2
development and test sets is of the form:

< question, r1, r2, ..., r1444 >

3. NPCEditor
The first model we are testing is NPCEditor (Leuski and
Traum, 2011), which was used for the system in (Traum
et al., 2015). At the core of NPCEditor is a statistical re-
gression approach based on cross-lingual language model
proposed by Lavrenko for cross-lingual information re-
trieval (Lavrenko, 2004). Leuski and Traum successfully
adopted his approach to question answering and applied it
in many different applications (Leuski and Traum, 2008;
Leuski and Traum, 2011). We were interested in this ap-
proach as a baseline for our experiments because it seems
to be robust and has a small number parameters to tune.
The NPCEditor is publicly availible as part of the Virtual
Human Toolkit (Hartholt et al., 2013).
Each text utterance in the collection, – including both ques-
tions and answers, – is represented by a language model or a
probability distribution P (w) over words in the vocabulary.
It is assumed that vocabularies of questions and answers are

different, so it is not possible to compare a language model
PQ(w) of a questionQ directly to a language model PA(w)
of an answer A. Instead, a set of training question-answer
pairs is used to estimate a cross-language relevance model
P (wA|Q) – a conditional probability of observing a word
wA in an answer in response to a question Q. This estimate
is

P (wA|Q) =

∑
(q,a) pa(wA)

∏
v∈Q pq(v)∑

(q,a)

∏
v∈Q pq(v)

(1)

Here (q, a) indicates a training question-answer pair,
pa(wA) is the probability estimation of observing wA in
answer a, pq(v) is the probability estimation of observ-
ing a question word v from Q in the training question q.
Maximum Likelihood Estimation (MLE) is used for both
pa(wA) and pq(v):

pS(w) = λ
#(w, S)

|S|
+ (1− λ)

∑
∀s #(w, s)∑
∀s |s|

(2)

Here #(w, S) is the number of times a word w appears in
utterance S, |S| is the total number of words in the utter-
ance, and λ is a tunable parameter that can be determined
from training. There are two λ parameters to tune, one for
questions and one for answers. To compare language mod-
els Kullback-Leibler divergence is used:

D(Q||A) =
∑
a

P (a|Q) log
P (a|Q)

pA(a)
(3)

Here the difference between a question Q and an answer A
is defined as a sum over all words a in the answer vocab-
ulary. Given a new question Q, NPCEditor computes this
value for each known A and returns the one with the lowest
value D(Q||A).

4. Previous Neural Net Models
Previously, most dialogue research had historically focused
on structured slot-filling tasks. Few approaches were pro-
posed, yet leveraging more recent developments in neural
learning architecture, exploiting deep learning for end to
end dialogue systems has become interestingly more popu-
lar.
(Ritter et al., 2011) presented a response generation model
for Twitter data based on phrased-based Statistical Machine
Translation. They viewed the response generation problem
as a machine translation problem. This is shown to give
superior performance to previous information retrieval (e.g.
nearest neighbor) approaches.



737

Figure 2: Sample of Pinchas 10 test set that Dual-Encoder model could recognize the relevant response.

(Serban et al., 2015) investigated the task of building open
domain conversational dialogue systems based on large dia-
logue corpora using hierarchical recurrent encoder-decoder
neural network. They showed how the model’s perfor-
mance can be improved by bootstrapping the learning from
a larger question-answer pair corpus and from pre-trained
word embeddings.
(Lowe et al., 2015) released the Ubuntu Dialogue corpus,
A Large Dataset for Research in Unstructured Multi-Turn
Dialogue Systems. They also introduced a deep learning
model named Dual-Encoder model, suitable for analyz-
ing this dataset on the task of selecting the best next re-
sponse. There has been efforts in using Ubuntu Dialogue
corpus (Mehri and Carenini, 2017) and some of them even
introduced new models (e.g. (Dong and Huang, 2018)) for
the task of selecting the best next response.
BERT (Devlin et al., 2018) is another recent developed tool
for getting sentence embeddings. It is the latest refinement
of a series of neural models that make heavy use of pre-
training and with the aid of transformers (Vaswani et al.,
2017) has led to impressive gains in many natural language
processing tasks.
(Zhang et al., 2018) suggested a retrieval-based response
matching model for multi-turn conversation. They tried
to consider interactions among previous utterances in their
context modeling by introducing a deep aggregation model
to form a fine-grained context representation. (Zhou et al.,
2018) is one of the latest models proposed for the task of
next best response selection. They examined matching a
response with its multi-turn context using dependency in-
formation based entirely on attention.
(Shao et al., 2017) adopted a variation of sequence to se-
quence model to generate high quality responses on the
single turn setting. (Olabiyi et al., 2018) proposed an ad-
versarial learning approach to the generation of multi-turn
dialogue responses. Their method, which is based on con-
ditional generative adversarial networks, generalizes better
than previous works using only log-likelihood criterion and
generates longer and more informative responses.
Considering all the recent efforts for generating or selecting
responses, for our task in this study which is selecting the
best next response, Dual-Encoder model, as one of the core
deep neural net models, would be a good candidate to be

representative of the cluster of neural net models introduced
for this task.

5. Deep Neural Net Model
The NPCEditor model is a retrieval based model and it
has shown to be functional on practical problems. In or-
der to compare its performance with a deep neural network
model, we trained a recurrent neural network with LSTM
(Hochreiter and Schmidhuber, 1997) hidden units so for
a given conversation and message, it predicts a matching
score.

5.1. Dual-Encoder
First introduced by (Lowe et al., 2015), given context
C = (c1, c2, ..., ci, ..., cm) with length m, and response
R = (r1, r2, ..., rj , ..., rn) with length n where ci and rj
are the ith and jth words in context and response, respec-
tively, the model calculates a matching score 0 ≤ s ≤ 1.
s = 1 shows a perfect match and s = 0 means the response
is irrelevant to the given context.
The Dual-Encoder model uses two recurrent neural net-
works with tied weights to calculate a score representing
how much response R is a good match for context C. Fig-
ure 3 shows the architecture of the explained model. We
used LSTM units as the RNN units for the hidden layer.
LSTM units can keep long-term dependencies due to their
inner structure. The key to this LSTM capability is the in-
ternal state Ct. The LSTM does have the ability to remove
or add information to the internal state through its so-called
gates. Ct is a function of previous inner state Ct−1, previ-
ous hidden output ht−1, and the given input xt.
Given context C ′ and response R′, first we compute
their word embeddings using pre-trained vectors from
GloVe (Pennington et al., 2014) and get C and R respec-
tively. Then we feed the first encoder withC and the second
encoder with R. Final hidden states in encoders, c and r,
represent the summary of context C and responseR. Using
c and r we calculate a probability (score) indicating how
much response R matches to context C:

s = p(flag = 1|c, r,M) = σ(cTMr + b)

Where bias b and matrix M are parameters learned during
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the training set. Model is trained by minimizing the cross
entropy of all labeled pairs:

L = −
∑

n logp(flagn|cn, rn,M)

5.2. Implementation details
We train the model with the same parameters that (Lowe et
al., 2015) did in their paper. We use a constant learning rate
of 0.001. Batch size in the training and test is 512, however,
for tuning on the dev set it is 256. Embedding dimension is
100 and hidden dimension is 300. For training on both ver-
sions of pinchas 1444 data, the best model is chosen based
on the Rank whereas during training on pinchas 10 data the
best model is chosen based on R@1.

6. Experiments and Evaluation
In this section, we introduce a series of experiments to com-
pare the NPCEditor and the Dual-Encoder model described
in the previous section. Following, (Lowe et al., 2015),
we use R@k as the evaluation metric, which is the percent-
age of times that the expected response is retrieved in the
top-k responses. R@1 is equivalent to accuracy. We first
compare the Dual-Encoder model on both the Ubuntu cor-
pus, to compare with the model in (Lowe et al., 2015), as a
sanity check on the model, and on the Pinchas 10 dataset,
which has a test-set parallel in structure to Ubuntu. Next
we compare both the NPCEditor and the Dual-Encoder
model on the Pinchas 10 dataset. Then we study the per-
formance of Dual-Encoder model on Pinchas 1444 v1 and
Pinchas 1444 v2. Finally, we compare the NPCEditor and
the Dual-Encoder model (trained on two different data sets)
on the more realistic Pinchas 1444 dataset.

6.1. Dual-Encoder on Pinchas 10 vs
Dual-Encoder on Ubuntu

In the first experiment, we first examine the performance
of Dual-Encoder model on the Ubuntu and Pinchas 10
datasets. Our goal is to investigate whether the proposed
deep learning model returns similar or better results on
a question-answering task (Pinchas data) compared to the
Linux discussions in the Ubuntu corpus. From the results
shown in Figure 4, we observe that the Dual-Encoder model
works even better on the Pinchas 10 data than it does on the
Ubuntu data. This is true for each of the window sizes for k
in R@k that we tried. Results on the Ubuntu data set are, as
expected, similar to those reported by (Lowe et al., 2015).

6.2. NPCEditor on Pinchas 10 vs Dual-Encoder
on Pinchas 10

In the second experiment, our goal is to compare the perfor-
mance of NPCEditor and Dual-Encoder model on the same
task. The results from our experiment are available in Fig-
ure 5. Interestingly, on Pinchas 10 data, NPCEditor’s per-
formance is significantly better than Dual-Encoder model
for R@1 which is returning only one response. INPCEd-
itor and Dual-Encoder model get similar results for R@2
(0.84 and 0.83 respectively), however, Dual-Encoder model
performs slightly better than NPC editor for R@5. Please
notice that although NPCEditors performance for R@2 and

R@5 is not better than Dual-Encoder model, at the end for
completing the task of returning one response out of a set
of possible responses, R@1 is what we are looking for and
in this case, NPCEdiotr performs much better than Dual-
Encoder model.

6.3. Increasing negative samples
In our third experiment, we compare Pinchas 1444 v1
and Pinchas 1444 v2 datasets, to examine the impact of
increasing negative examples on Dual-Encoder’s perfor-
mance. Figure 6 shows that Dual-Encoder model performs
better on the Pinchas 1444 v2 than Pinchas 1444 v1. This
is true for each of the window sizes for k in R@k that we
tried. The results are justifiable by considering the fact that
although 90% of the training set in Pinchas 1444 v2 are
negative samples, since there are more samples in the train-
ing set in comparison to Pinchas 1444 v1, the model learns
more and achieves better results.

6.4. NPCEditor on Pinchas 1444 vs
Dual-Encoder on Pinchas 1444

In our last experiment, we are interested to see how
NPCEditor and the Dual-Encoder model perform on a real-
world problem instead of artificially created tasks such as
Ubuntu data and Pinchas 10. As described in section 2.,
Pinchas 1444 datasets are created to solve a real-world
question answering problem. In the development and test
sets of the mentioned datasets, for each context, we have a
collection of 1444 possible responses to select from.
Furthermore, in some samples of Pinchas 1444, we may
have more than one possible relevant response which is
another difference between Pinchas 1444 and previous
datasets. In such cases, it only matters for us that one or
more of the relevant responses appear in the top-k responses
to call the retrieval successful.
Since NPCEditor uses only positive examples in its train-
ing procedure and ignores the negative ones, it would not
matter which version of Pinchas 1444 we use for its train-
ing. Thus we chose Pinchas 1444 v2 for training NPCEdi-
tor. The results of the experiment are shown in Figure 7.
Interestingly results show that NPCEditor gets the accu-
racy (or R@1) of 0.76 on the Pinchas 1444 v2 data which
is much better than Dual-Encoder model’s performance on
Pinchas 1444 v1 and Pinchas 1444 v2 (0.0625 and 0.1238
respectively). NPCEditor dominates Dual-Encoder for all
of the values of k in this experiment.

7. Discussion and Future Directions
In order to complete the comparison, we wanted to also test
NPCEditor on the Ubuntu corpus data. However the size
and structure of the dataset made this challenging, so we de-
fer this for future work. Experiment 1 showed that the Pin-
chas data appears easier than the Ubuntu data - with a much
smaller training set size, the Dual-Encoder model was able
to improve on R@k in the Pinchas 10 dataset compared to
the Ubuntu dataset. Given the amount of available training
data (10s of thousands of examples), the NPCEditor signif-
icantly out-performs the Dual-Encoder model in R@1 on
this data set. The results are even more striking for a more
real-world example, taken from (Traum et al., 2015), where
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Figure 3: Dual-Encoder model. We considered contexts up to a maximum of t=160.

Figure 4: Results from experiment 1 using various R@k measures, which illustrates Dual-Encoder model works better on
the Pinchas 10 data than Ubuntu data.

the system’s task is to pick the best response out of a set
of over 1000 available responses. Here, the Dual-Encoder
model does not perform well enough to engage in a mean-
ingful dialogue, while the NPCEditor performs similarly to
results reported in (Traum et al., 2015), which led to much-
reported user engagement. The improved performance of
the Pinchas 1444 v2 training set, with a much higher pro-
portion of negative examples, does perhaps point to a di-
rection for improvement. Future work should perhaps look
at the even higher distribution of negative to positive exam-
ples.

These results do show that despite the recent popularity of
deep learning models, there is still a place for more tradi-
tional machine learning algorithms, that can operate well
on more moderate-sized data sets for problems of inter-

est. It may also be the case that different types of dialogue
have different optimal models. For example, (Gandhe and
Traum, 2010) show very different upper bounds for re-
trieval approaches to dialogue.
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Figure 5: Results from experiment 2 using various R@k measures, which illustrates NPCEditor works better than the
Dual-Encoder model for R@1 on the Pinchas 10 dataset, however, it has similar or slightly weaker results for R@2 and
R@5.

Figure 6: Results from experiment 3, which shows the Dual-Encoder model performs better on Pinchas 1444 v2 data.

Figure 7: Results from experiment 4, which shows that Dual-Encoder model is dominated by NPCEditor on Pinchas 1444
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Figure 8: Top 5 responses returned by Dual-Encoder model for a sample of Pinchas 1444. For the given context, Dual-
Encoder model failed to return a relevant response among top 10 returned responses.

Figure 9: Top responses returned by NPCEditor model for a sample of Pinchas 1444. For the given context, NPCEditor
model was successful to return relevant responses among top 3 returned responses.
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