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Abstract
We introduce the Flexible and Integrated Transformation and Annotation eNgeneering (Fintan) platform for converting heterogeneous
linguistic resources to RDF. With its modular architecture, workflow management and visualization features, Fintan facilitates the
development of complex transformation pipelines by integrating generic RDF converters and augmenting them with extended graph
processing capabilities:
Existing converters can be easily deployed to the system by means of an ontological data structure which renders their properties and
the dependencies between transformation steps. Development of subsequent graph transformation steps for resource transformation,
annotation engineering or entity linking is further facilitated by a novel visual rendering of SPARQL queries. A graphical workflow
manager allows to easily manage the converter modules and combine them to new transformation pipelines.
Employing the stream-based graph processing approach first implemented with CoNLL-RDF, we address common challenges and
scalability issues when transforming resources and showcase the performance of Fintan by means of a purely graph-based transformation
of the Universal Morphology data to RDF.
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1. Motivation
In recent years, the focus in the development of Nat-
ural Language Processing (NLP) applications has con-
stantly shifted from algorithmic, rule-based strategies to-
wards more data-driven approaches. This includes not
only statistical methods but also neural networks and deep
learning. However, all these methods heavily rely on the
amount of available language resources and their data struc-
tures. The EU-funded Prêt-à-LLOD project1 aims at tack-
ling the crucial challenges of discovering, linking and trans-
forming language resources and making them available
as interoperable Linked Data (LD) using well-established
RDF-based2 formats like OntoLex-Lemon (Cimiano et al.,
2016), CoNLL-RDF3 (Chiarcos and Fäth, 2017; Chiarcos
and Schenk, 2018) or the NLP Interchance Format (Hell-
mann et al., 2012, NIF).
While resource discovery, maintenance and licensing is
covered by other parts of the project, in this paper
we focus on the Flexible and Integrated Transformation
and Annotation eNgineering (Fintan) platform which pro-
vides a workflow-driven, modular approach to graph-
transformation while still enabling the usage of well-
established resource-specific converters.

2. Challenges in Linguistic Linked Data
2.1. Heterogeneity of Linguistic Resources
Since language resources on the web are highly heteroge-
neous and tailored towards specific use cases, they most

1https://www.pret-a-llod.eu
2The Resource Description Framework is the W3C standard

for rendering data in the Semantic Web (McBride, 2004).
3CoNLL-RDF is an isomorphic rendering of the CoNLL for-

mat family in RDF. CoNLL formats are task-specific TSV rep-
resentations used in CoNLL shared tasks which have become a
de-facto standard for NLP tools developed in their context, cf.
http:/www.signll.org/conll

often cannot easily be adapted to other NLP applications
beyond their intended scope. Corpora may often be shared
in specific CoNLL dialects, (Standoff-)XML, TEI4 or pro-
prietary, combined formats (e.g. the Sketch Engine vertical
format)5. The same amount of diversity applies to dictio-
naries.
Addressing the issues of heterogeneity in linguistic data, an
increasing amount of effort is being invested in the estab-
lishment of interoperable and extendable standards and data
formats for publishing and distributing linguistic resources
as linked data. The fruit of these efforts is the Linguistic
Linked Open Data (LLOD) cloud 6.
In recent years, an ever increasing amount of corpora and
dictionaries is becoming available as CoNLL-RDF, NIF
or OntoLex-Lemon. Knowledge bases and terminological
repositories have also seen an increasing level of adaption
to linked data formalisms. The Ontologies of Linguistic
Annotation (Chiarcos and Sukhareva, 2015, OLiA) include
OWL7 renderings of various linguistic annotation schemes
which are connected through a common reference model.
Furthermore, the DBpedia (Auer et al., 2007) derived from
Wikipedia is widely used for Named Entity Recognition
and Entity Linking applications, e.g. for ”wikification” in
Abstract Meaning Representations (Pan et al., 2015, AMR).
However, while ontologies and terminologies are most of-
ten manually written and maintained, dictionaries and cor-
pora are mostly transformed by isolated converters consid-
ering format- or even resource-specific peculiarities. The

4Guidelines for Text Encoding by the Text Encoding Initiative,
cf. https://tei-c.org/

5https://www.sketchengine.eu/my_keywords/
vertical/

6http://linguistic-lod.org/
7The Web Ontology Language (OWL) is a W3C recommenda-

tion for rendering ontologies in the Semantic Web (McGuinness
et al., 2004)

https://www.pret-a-llod.eu
http:/www.signll.org/conll
https://tei-c.org/
https://www.sketchengine.eu/my_keywords/vertical/
https://www.sketchengine.eu/my_keywords/vertical/
http://linguistic-lod.org/
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output of these converters may therefore include unique de-
sign decisions and is confined to the modeling constraints
at the time of their writing, thus undermining interoperabil-
ity.8 In the end, the number of existing converters (not
only including LD) with varying scope, completeness or
reusability may well exceed the number of data formats
they convert.
While graph based formalisms in general do have lots of ad-
vantages and surveys (Nastase et al., 2015) are conducted
on the possibilities of rendering lingusitic data as graphs,
most of the graph based approaches which are actually im-
plemented in the context of NLP are limited to knowledge
graphs, eg. for semantic parsing (Yih et al., 2015).
For most cases however, from the perspective of the NLP
and Machine Learning communities, all these RDF or
graph representations just display one more format to be
dealt with before relevant data can be used in respective
pipelines. Therefore, each data source tends to be handled
by a task-specific ”python wrapper”9 and then injected to
the actual NLP workflow.

2.2. Graph Mining and Transformation
One of the primary reasons for this sentiment towards
linked data formalisms (among other efforts of standard-
ization) may be lying within the structural nature of RDF.
Since LD-resources represent a decentrally organized, in-
terconnected set of graphs, they are usually published either
on public endpoints or most commonly as RDF/XML, N3,
or Turtle dumps10.
In most cases, the endpoints (if they even exist) impose very
harsh constraints on the available subset of SPARQL query
commands (Buil Aranda et al., 2013) in order to maintain
stability and avoid denial-of-service attacks. For the same
reasons, federated queries, one of the main selling points
of RDF during the time of its creation, are facing similar
restrictions or are completely deactivated.
These issues when actually trying to query existing re-
sources, most often only leave the option of downloading
the full dumps and working offline. However, RDF still
being a graph, these serializations are not necessarily well-
structured. Bits of information on a specific entity may be
scattered across gigabytes of data.
The only truly viable option in this case would be to set up
a local graph database and extract the necessary pieces of
information from there. The most obvious drawback of this
approach is that it is hard to integrate into a full pipeline.
It not only requires the use of database engines and respec-
tive APIs, but also may consume vast amounts of memory
and processing power, especially when it comes to open
source solutions. There had been some efforts for GPU-

8For instance, many OntoLex-Lemon dictionaries available to-
day still use the old monnet-lemon data model.

9A figurative notion, borrowed from what Mark Johnson stated
in the ACL-IJCLNP 2012 keynote on the future of computational
linguistics: “Standard data formats (...) I’m not sure these are
important: if someone can use a parser, they can probably also
write a Python wrapper” (Johnson, 2012, slide 8)

10For an overview of RDF serializations, cf. http://www.
w3.org/standards/techs/rdf

accelerated SPARQL by Blazegraph11 but the implementa-
tion has never made it to the open source version.

2.3. CoNLL-RDF
In recent years, with the implementation of CoNLL-RDF
(Chiarcos and Fäth, 2017), we have been tackling these
constraints on resource consumption and pipeline interop-
erability, at least for corpora. The specifications of CoNLL-
RDF as a lightweight, isomorphic rendering of tabular
CoNLL formats also introduced a fully stream-based pro-
cessing paradigm for linked data. Naturally, with CoNLL
corpora being split into sentences and tokens in sequential
order, it is fairly simple to read and transform them on-the-
fly. The CoNLL-RDF canonical format imitates this struc-
ture as an ordered Turtle (Beckett et al., 2014) serialization
(see below).

:s3_0 nif:nextSentence :s4_0 .
:s4_0 a nif:Sentence .
:s4_1 a nif:Word; conll:WORD ’I’; conll:HEAD :s4_2; ...
:s4_2 a nif:Word; conll:WORD ’see’; conll:HEAD :s4_0; ...
:s4_3 a nif:Word; conll:WORD ’you’; conll:HEAD :s4_2; ...
:s4_4 a nif:Word; conll:WORD ’.’; conll:HEAD :s4_0; ...

This not only enables NLP pipelines to directly read the
data as a text stream, but also allows sequential graph trans-
formation using SPARQL. In the most recent version, mul-
tiple threads each read and transform one specific sentence
at the same time. The fully sequential output stream may
either provide RDF or TSV data to subsequent pipelines.

3. The Fintan Platform
Keeping in mind the aforementioned typical problems
when working with language resources, we began to de-
velop the Flexible and Integrated Transformation and An-
notation eNgineering (Fintan) platform. The goals of Fin-
tan can be summed up as follows:

• Convert to and from important LD standards and for-
mats.

• Support as many existing formats as possible (both LD
and non-LD)

• Allow integration with complex NLP pipelines

• Enable stream-based graph transformation for non-
linear, non-TSV resources, wherever possible by
maintaining the advantages in performance and scal-
ability.

3.1. Fintan Architecture
To address these goals, the Fintan platform is designed to
be highly modular and configurable (cf. Fig. 1). At its
core, the graph processing module allows to create com-
plex graph transformation pipelines using SPARQL update
scripts and RDF resources. An integrated development
frontend alleviates the creation and management of com-
plex hierarchies of SPARQL updates. In order to gain a
large coverage of input formats, Fintan allows existing RDF
converters to be integrated as additional processing mod-
ules. The processing modules, graph transformation scripts

11The original press note was released in 2015: https://
blazegraph.com/press/gpu-launch-2015-12-15

http://www.w3.org/standards/techs/rdf
http://www.w3.org/standards/techs/rdf
https://blazegraph.com/press/gpu-launch-2015-12-15
https://blazegraph.com/press/gpu-launch-2015-12-15
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Figure 1: Fintan architecture

and their dependencies are described using the Fintan on-
tology. A workflow management frontend allows the de-
velopment of complex converter pipelines. Fully integrated
pipelines may be exported as Docker12 containers.

3.2. Fintan Ontology
The Fintan ontology (Fig. 2) is designed to host in-
formation about processing modules and transformation
scripts. Each module is described as an instance of a
Transformer. Loader instances may read any type of
input data and output RDF data as a stream. Splitter
instances consume (mostly RDF) data, reorganize the se-
rialization and output a segmented RDF stream. Load-
ers are encouraged to also have the characteristics of a
Splitter and should thus be instances of both classes (e.g.
CoNLL2RDF reads CoNLL data and produces a CoNLL-
RDF stream split by sentences). Update modules refer to
sets of SPARQL updates which perform specific transfor-
mation tasks. They are intended to consume data produced
by Splitters and apply updates to each segment of data in-
dependently. Finally, Writer modules consume a stream
of RDF data and create a serialized output file.
Several object properties define the requirements and as-
sets of Transformer instances. This includes processed for-
mats, required URIs or named graphs containing the data
the Transformer needs to work with. Dependencies be-
tween Transformer instances within a pipeline are defined
by the enables and requires properties.

3.3. Preparing Data for Graph Transformation
In Fintan we differentiate three types of data which may be
used within a transformation pipeline. Their characteristics
are listed below:

12https://www.docker.com/

Figure 2: Fintan ontology

• Processable input data may be provided in any for-
mat for which a compatible Loader and Splitter
combination is available. The data is streamed through
Transformer modules and constantly rewritten.

• External data may also be provided in any format for
which a compatible Loader is available. The main
difference is, that this data is not consumed and trans-
formed in the process. Instead it will be permanently
stored read-only and made available for querying dur-
ing the transformation process.

• Scripts are SPARQL queries and updates used to de-
fine specific transformation steps. They can be pro-
vided to the platform as either Splitter or Update
modules to be used across various transformation
workflows. Compatibility with specific pipelines can
be inferred by the properties in the Fintan ontology.

This data-driven approach bears multiple advantages.
When transforming larger datasets, streaming the input data
reduces the bottleneck of both processing complexity and

https://www.docker.com/
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memory consumption within the database engine. In ad-
dition, external repositories can still be ”side-loaded” to a
local triple store. They can be addressed as named graphs
within an update script that is currently performed on the
input data. Since they are read-only, no transaction penal-
ties apply to these resources, allowing simultaneous access
by multiple Transformer modules and threads.
For cases requiring lightweight datasets (esp. terminolog-
ical repositories or ontologies used for inferences or trans-
forming annotations), these can be stored in-memory. We
furthermore support TDB for large scale datasets13. Op-
tionally, federated queries can be used for directly extract-
ing data from SPARQL endpoints which may be the pre-
ferred way of accessing very large datasets (e.g. DBPedia).

3.4. Parallelized Stream Processing
The core component of Fintan is a graph processing mod-
ule which reads RDF input data as a stream, transforms it on
multiple parallel threads and writes the resulting graph on
an output stream. With its basic implementation originating
from CoNLL-RDF, it takes advantage of the sequential sen-
tence structure inherent to corpora. Since in CoNLL each
sentence can be seen as an self-contained whole for most
cases (excluding cross-sentence relations like coherence or
coreference, which can be treated differently in Fintan), it
is possible to reduce the processing complexity of SPARQL
updates by executing them on each sentence independently.

3.4.1. Segmentation of Heterogeneous Data
Surely, this method cannot be as easily applied to other
types of data (e.g. dictionaries). Therefore, dedicated
Splitter modules are necessary to enable the same bene-
fits. For dealing with unordered serializations of exten-
sive RDF datasets, which in some cases may only be partly
segmented due to a large amount of interconnection be-
tween distinct segments, Splitter modules can be designed
as SPARQL CONSTRUCT or DESCRIBE queries for ex-
tracting subgraphs from the dataset.
In the context of OntoLex-Lemon, a feasible approach at
segmentation would be to first extract the URIs of all in-
stances of ontolex:LexicalEntry and to then iterate
over them with the following CONSTRUCT statement:

PREFIX ontolex: <http://www.w3.org/ns/lemon/ontolex#>
PREFIX lexinfo: <http://www.lexinfo.net/.../lexinfo#>

CONSTRUCT {
<?entryURI> a ontolex:LexicalEntry ;

?lexForm ?Form ;
?sense ?LexicalSense ;
lexinfo:partOfSpeech ?pos .

} WHERE {
<?entryURI> a ontolex:LexicalEntry ;

?lexForm ?Form ;
?sense ?LexicalSense ;
lexinfo:partOfSpeech ?pos .

GRAPH <http://www.w3.org/ns/lemon/ontolex> {
?lexForm rdfs:subPropertyOf* ontolex:lexicalForm .
?sense rdfs:subPropertyOf* ontolex:sense .

}
}

13Since Fintan is grounded in CoNLL-RDF our baseline im-
plementation employs the Apache Jena API for graph processing.
This includes TDB and TDB2 for hard disk assisted storage. For
further information cf. https://jena.apache.org/

Within SPARQL, explicit URIs are denoted by angle brack-
ets and variables start with question marks. In the context
of Fintan, a string within angle brackts, which also starts
with a question mark, is treated as a wildcard and is re-
placed by explicit URIs during runtime (in our case, the
entry URI extracted in the first step). For including sub-
properties and subclasses for forms and senses, the ontolex
core model needs to be loaded as external data (cf. Sect.
3.3.)
As a result, a set of subgraphs, each containing only a
single LexicalEntry together with all its Forms and
LexicalSenses is extracted and can now be used for
parallelized graph transformation. Since it only contains a
fraction of the data within a typical dictionary, subsequent
transformation steps can be performed with a significantly
reduced overhead regarding memory and processing power.

Figure 3: Fintan data segementation

However, even after all resulting subgraphs have been pro-
cessed and merged again, a significant amount of triples
will be lost. In our simplified example, this would even
include the mandatory Literals addressed by the property
ontolex:writtenRep. For this reason, a Fintan split-
ter always keeps track of the triples which have not yet been
extracted. These will be added to the end of the resulting
serialization as an unprocessed delta segment. Fig. 3 de-
picts the full workflow for data segmentation within Fintan.

3.4.2. Graph Transformation
During the actual graph transformation process a set of
SPARQL updates is performed on one thread per segment.
Since data segments are independent from each other, no
write locks can occur and multiple segments can be trans-
formed at the same time, further speeding up the process.
Similar to the CONSTRUCT queries used for the seg-
mentation process, external models can be permanently
preloaded and addressed from all threads during runtime.
Since they are stored read-only, no write penalty applies.
The following example query depicts a simple transforma-
tion step which employs OLiA to infer LexInfo14 (Cimiano
et al., 2011) part of speech tags in any converted dictionary
which still contains literals from its original tagset:

14LexInfo is the recommended vocabulary for describing
linguistic annotations in the context of OntoLex-Lemon, cf.
https://www.lexinfo.net/

https://jena.apache.org/
https://www.lexinfo.net/
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Figure 4: Visualization of a SPARQL update for annotation transformation

PREFIX ontolex: <http://www.w3.org/ns/lemon/ontolex#>
PREFIX lexinfo: <http://www.lexinfo.net/.../lexinfo#>
PREFIX olia: <http://purl.org/olia/system.owl#>

DELETE {
?x <?posProperty> ?tagString .

} INSERT {
?x lexinfo:partOfSpeech ?lexPos .

} WHERE {
?x a ontolex:LexicalEntry .
?x <?posProperty> ?tagString .
FILTER(isLiteral(?tagString)) .
# find OLiA concept
GRAPH <?linkingModel> {

?oliaPos olia:hasTag ?tagString .
?oliaPos a/rdfs:subClassOf* ?oliaConcept .

}
# find closest match in lexinfo.
GRAPH <?lexinfoLinkingModel> {

?lexPos a/rdfs:subClassOf ?oliaConcept .
}

}

Three parameters have to be provided at runtime: the name
of the property including the original tag string and two
OLiA linking models (one for LexInfo and one for the
source tagset) need to be loaded as external data.
For processing sequential data such as corpora, the looka-
head and lookback capabilities introduced with CoNLL-
RDF are available in Fintan as well. With this function-
ality, a specified number of preceding or subsequent data
segments are made available read-only. This allows to es-
tablish cross-sentence relations such as coreference.

3.5. Development of Transformation Steps
In order to further alleviate creating transformation steps
and reusing them across pipelines, the Fintan platform also
integrates a visualization tool for SPARQL queries based
on a prototype developed by Ebbrecht (2019). Based on
Graphviz (Ellson et al., 2003) and its inherent DOT format,
the visualization is created in a multi-step conversion. First,
a SPARQL statement is parsed and verified with Apache

Jena. Components of the statement such as subgraphs and
triples are isolated and transformed to a visual representa-
tion to be included into a DOT file which is subsequently
rendered as an SVG.
The visualization adheres to common design principles for
visualizing RDF data by rectangular and circular nodes
connected by labeled directed arrow shaped edges (as can
be seen with ontology-visualization, EasyRdf Converter or
gruff)15. Property names and property paths are directly
attached to the edges. In our case, variable nodes are ren-
dered as circles while explicit nodes are displayed as rect-
angles (literals are enclosed in quotes). This only slightly
deviates from the most common choice where only literals
are placed in rectangles. This decision was made in order
to visually account for the importance of variables within
SPARQL. Projected variables (placed in a SELCET state-
ment) are marked with double edged borders. In addition,
all subgraphs addressed within a SPARQL statement are
rendered as isolated rectangular boxes. Nodes which occur
within multiple subgraphs are connected by broad, semi-
transparent lines. Displaying identical nodes separately in
each subgraph makes it easier to conceive the subgraph as
a whole while the shallow, rounded connectors depict a vi-
sually distinct layer of interconnection.
Filters are not parsed or visualized any further, but rather
placed in dashed rectangle nodes as explicit statements.
Subgraphs within Filters are unsupported at the moment
and will also be displayed as text. However, the Filter node
is attached to all variables addressed within. This makes it
easy to see which parts of the graph are affected by it.
We currently support SPARQL queries with SELECT
and CONSTRUCT, as well as updates with INSERT and

15A short, subjective overview is given on the W3C websites:
https://www.w3.org/2018/09/rdf-data-viz/

https://www.w3.org/2018/09/rdf-data-viz/
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DELETE. Figure 4 shows the visualization for the SPARQL
update for transforming part of speech tags to LexInfo as
described in section 3.4.2..

3.6. Workflow Management
For the workflow management we build on the user inter-
face developed for Teanga (Ziad et al., 2018) which is also
part of the Prêt-à-LLOD project. By rendering the trans-
former modules described in the Fintan ontology as nodes
with their respective constraints on input and output data,
the workflow manager will enable users to visually create
complex transformation pipelines and assess their compat-
ibility. Figure 5 shows an exemplary pipeline which was
used for the case study described in section 4.

4. Case Study: Universal Morphology
In order to test the capabilities of our stream-based graph
transformation we conducted a small case study which
builds on an earlier effort to transform the Universal
Morphology (Sylak-Glassman et al., 2015, UniMorph) to
OntoLex-Lemon, publicly available as part of the LLODi-
fier16 toolset.
UniMorph describes inflected words of a given language
together with their lexical meaning (as lemma) and a set
of morphological features from the UniMorph annotation
schema. The data in TSV format, together with licence in-
formation is available on the project’s github page17. The
following example shows an excerpt of the inflectional
forms of the Albanian lemma akrep:

akrep akrepin N;ACC;SG;DEF
akrep akrepi N;NOM;SG;DEF
akrep akrepit N;ABL;SG;DEF
akrep akrepit N;DAT;SG;DEF
akrep akrepit N;GEN;SG;DEF

Because of the simple TSV layout of the UniMorph data,
in our transformation pipeline we employed the CoNLL-
RDF library to first convert the TSV data to the corpus-
based CoNLL-RDF format and then performed all subse-
quent steps using the graph transformation module.
As depicted in Figure 5, two subsequent steps were per-
formed: The replacement of corpus specific data struc-
tures inherent to CoNLL-RDF by an OntoLex-Lemon vo-
cabulary could be acheived without accessing additional re-
sources. Afterwards, employing OLiA’s UniMorph annota-
tion model by loading it as an external resource, the mor-
phological features could be rendered as concepts linked to
the OLiA reference model.
The resulting data renders each inflectional form of a word
as ontolex:LexicalEntry together with a canonical
form. The lexical forms encapsulate all possible lemma and
feature combinations which can be represented by this lex-
ical entry. The example below shows the converted ontolex
representation for the Albanian inflectional form akrepit:

16The LLODifier tools are available at https://github.
com/acoli-repo/LLODifier/

17https://unimorph.github.io/

@prefix ontolex: <https://www.w3.org/ns/lemon/ontolex#> .
@prefix olia: <http://purl.org/olia/unimorph.owl#> .
@prefix : <https://github.com/unimorph/sqi/> .

:akrepit
a ontolex:LexicalEntry ;
ontolex:canonicalForm

[ ontolex:writtenRep "akrepit" ] ;
ontolex:lexicalForm

:s1_1296 , :s1_1298 , :s1_1297 .

:s1_1296 a ontolex:Form ;
ontolex:writtenRep "akrep" ;
olia:hasFeature olia:DEF ,

olia:SG ,
olia:N ,
olia:ABL .

In order to test the perfomance of the stream based graph
transformation, the pipeline was executed using three dis-
tinct variants:

1. en-bloc: the whole dataset treated as one ”sentence”,
thus applying the updates on the full dataset (similar
to updating it on a Fuseki Server).

2. serialized: each lexical entry treated as one ”sen-
tence”. Updates performed on a single thread.

3. parallelized: each lexical entry treated as one ”sen-
tence”. Updates performed on four threads (one thread
per processor core).

The en-bloc variant is the most basic way to convert Uni-
Morph to CoNLL-RDF since UniMorph, not being a cor-
pus, does not contain sentence boarders and thus no data
segmentation is available. This leads to a significant scala-
bility problem: larger wordlists would have to be loaded to
memory in full and transformation would have to be exe-
cuted on the whole dataset. In order to make this approach
scalable, a triple store (e.g. TDB) would be needed as back-
end. Since the Albanian dataset is not very large, it still fit
into Apache Jena’s in-memory datasets.
The serialized method, in contrast, splits the whole dataset
into single entries for each of which the updates are per-
formed independently. In terms of the Fintan ontology it
acts as a combined Loader and Splitter. This eliminates the
scalability issues but still introduces a significant process-
ing overhead, especially since in the original CoNLL-RDF
implementation, external datasets would have to be loaded
for each entry independently.
The parallelized method is the one implemented for Fin-
tan. It also splits the data into single entries, but precaches
the external dataset, so it only needs to be loaded once (re-
ducing its processing overhead to approximately the same
level as the en-bloc variant). Additionally, the processing
of single entries is distributed across available threads.

en-bloc serialized parallelized
Elapsed time 6m24s 12m34s 3m00s
OLiA loads 1 33483 1

Table 1: Results of the transformation approaches

https://github.com/acoli-repo/LLODifier/
https://github.com/acoli-repo/LLODifier/
https://unimorph.github.io/
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Figure 5: Fintan / Teanga workflow management

Table 1 shows the results of all three approaches18. While
the en-bloc variant remains a fast option, it is limited by a
memory overhead. The serialized approach is scalable, yet,
given its old implementation, significantly slower. The Fin-
tan parallelized approach with precached resources shows
the potential of stream-based graph transformation. Keep-
ing in mind, that the en-bloc approach executed the updates
on a single Apache Jena dataset, the parallelized approach
outperforms Jena’s internal database engine. In our test
case we achieve more than twice the performance by dis-
tributing the processing load across four threads.

5. Related Work
While numerous converters and data management suites
exist, some also with graphical user interfaces, Fintan as
a platform is fairly unique in scope. For RDF conversion
of generic data into RDF, two prominent examples are the
CSV2RDF19 and R2RML (Das et al., 2012) suites which
focus on tabular formats resp. relational databases as input
formats. However, they produce highly generic output and
do not employ workflow managers for integrated post pro-
cessing. One of the key advantages of the Fintan approach
is reusability of transformation steps and easy assessment
of their interdependencies, allowing to post-process generic
output into standard ontological formats. However, these
tools could well be integrated as Fintan Loader components
in future projects.

18The pipelines were executed on a 3.79 GHz i5 quadcore with
16 GB of memory

19https://www.w3.org/TR/csv2rdf/

Regarding transformation of existing RDF resources,
OpenRefine20 offers a web-based user interface for edit-
ing and interlinking datasets and making them compliant
to existing ontologies. It is however tailored towards man-
ual assessment and semi-automated restructuring of single
datasets. Fintan instead focuses on configuring integrated
transformation steps which can be used in automated trans-
formation pipelines. Furthermore, since OpenRefine re-
lies on triple stores in the background, it can also be quite
resource-heavy for large-scale datasets.
Database engines and triple stores (e.g. Neo4j21, Blaze-
graph22, AllegroGraph23) by themselves also pose the op-
tion of comfortably transforming resources, specifically by
using SPARQL or similar query languages. Regarding us-
ability, AllegroGraph offers a graphical interface for assess-
ing and creating SPARQL queries. However, it is propri-
etary software and imposes severe restrictions on its free
version. Blazegraph development on the other hand, as
already mentioned in section 2.2., had focused on higher
processing performance using GPU acceleration, but has
never released the feature in the open source version. Apart
from that, databases are server applications which need to
be hosted on sufficiently powerful machines. Fintan in-
stead focuses on distributing load across threads and work-
ing around memory limits by segmenting resources dur-
ing transformation. It thus enables the creation of more
portable pipelines which can run on weaker machines.

20https://openrefine.org
21https://neo4j.com/
22https://blazegraph.com/
23https://allegrograph.com/
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An alternative approach to further improve SPARQL pro-
cessing speed is the restructuring of the queries and up-
dates themselves. Adamou et al. (2019) recently released a
recommendation for designing queries achieving promising
results which possibly could also be incorporated by Fintan
(e.g. as a preprocessing step or by optionally highlighting
recommendations in the SPARQL visualization.)
Among existing proprietary workflow management en-
gines, an open source alternative, LODflow (Rautenberg et
al., 2015), provides tools for creating complex workflows
including (manual) assessment and publication of Linked
Data resources. It is, however, not specifically tailored to-
wards creating automated transformation pipelines and has
not seen further development since 2015. The Teanga im-
plementation with its focus on integrating generic services
into workflows thus posed a more feasible basis.

6. Summary and Outlook
We introduced Fintan, a platform that addresses the chal-
lenges of resource heterogeneity and interoperability from
a processing or transformation perspective (rather than a
standardization perspective). We provide a generic frame-
work that allows to transform any linguistic annotation for-
mat (or data model for language resources) into any other
kind of annotation (data model), by standardized means of
graph transformation.
With this approach, we do not depend on any specific pivot
format or data model for transformations, but merely re-
quire that a mapping to an RDF graph is possible for the
formats to be transformed. Responsibility for performing
those transformations is with the user of the system (the de-
veloper of a transformation workflow), but Fintan aims to
provide accessible and (re-)usable technologies and facili-
tates the creation of such workflows by providing reusable
loader, transformer and writer components, visualizations
of SPARQL update operations and transformation work-
flow management. The stream-based graph transformation
approach promises to also tackle scalability issues which
are common with processing extensive LD resources and
also prove a prominent hindrance for NLP applications.
While Fintan does not require a standard data model for
representing the language resources it is applied to (be-
yond being mappable to a graph), adopting such models
(where they exist) does improve the re-usability of Fintan
workflows. For the specific case of representing lexical re-
sources in RDF, such a model is available with OntoLex-
Lemon, and we successfully performed the transformation
and integration of a large number of lexical resources on
that basis (Chiarcos et al., 2020).
As for linguistic annotations, a comparable standard does
not exist, but different community standards co-exist and/or
compete with each other, see Ide et al. (2017) for annota-
tions in general and Cimiano et al. (2020, p.61-122 and
197-212) for RDF-based data models in particular. Im-
portant vocabularies include Web Annotation (Sanderson
et al., 2017), the NLP Interchange Format (Hellmann et al.,
2012, NIF), the NLP Annotation Format (Fokkens et al.,
2014, NAF), the LAPPS Interchange Format (Verhagen et
al., 2015, LIF), and the Linguistic Annotation Format (Ide
and Suderman, 2014, LAF). In the context of the Cost Ac-

tion CA 18209 ‘Nexus Linguarum. European network for
Web-centred linguistic data science’ (2019-2023),24 and the
W3C Community Group ‘Linked Data for Language Tech-
nology’ (LD4LT),25 we are actively engaged in the devel-
opment of a consensus vocabulary that harmonizes these
conflicting specifications. Started only in late 2019, we ex-
pect this process to continue for a number of years before
definite results will be achieved. Until then, Fintan will
continue to support a broad range of RDF-based data mod-
els for representing linguistic annotations (and other forms
of language resources).
Once a Fintan workflow for a particular type of resources
has been designed, we plan to publish it as a stand-alone
conversion component, wrapped into a Docker container
and ready to be integrated in other systems, e.g., Teanga
or the ELG. This container will comprise the Fintan back-
end, a particular configuration (a workflow description),
and, optionally, language resources needed for a particular
transformation task (e.g., lexical resources for a workflow
that includes enrichment with lexical features), but can be
used as a blackbox within more complex NLP workflows.
With this approach, the Fintan frontend becomes a devel-
opment IDE for workflow configuration.
This functionality, however, is not yet supported, but a
strategic goal in the Pret-a-LLOD project. At the time
of writing, the components of Fintan (backend, workflow
management, SPARQL visualization) are functional and
can be found in our GitHub repository.26 As the integra-
tion of these components with each other and with ex-
ternal loader and writer components, we currently rely
on application-specific JSON configuration files. More
generic specifications for component metadata are cur-
rently developed in coordination with Teanga development,
and will be partially based on the Fintan ontology. How-
ever, we plan to align our specifications also with those of
the European Language Grid (ELG),27 and thus anticipate a
longer consolidation process and several cycles of revision
until we arrive at stable specifications.
We also focus on collaboration both within and beyond the
scope of the Prêt-à-LLOD project. Since Fintan is an open
platform and tailored towards integrating existing convert-
ers, we always welcome additions. Based on earlier im-
plementations (Gracia et al., 2017), an ongoing collabora-
tion with the University of Zaragoza and Semalytix aims at
creating a transformation pipeline for the Apertium bilin-
gual dictionaries to be used for industry applications. We
furthermore collaborate with the University of Bielefeld to
establish a common ground between their novel Terme-à-
LLOD platform and Fintan. Since Terme-à-LLOD28 is cur-
rently limited to TBX29 input in order to render, interlink
and host it as OntoLex-Lemon, Fintan could incorporate
its TBX to RDF conversion component. In return, Fintan
promises to enable more heterogeneous input formats for
Terme-à-LLOD.

24https://www.cost.eu/actions/CA18209/
25https://www.w3.org/community/ld4lt
26https://github.com/Pret-a-LLOD/Fintan
27https://www.european-language-grid.eu/
28https://github.com/ag-sc/terme-a-llod
29ISO 30042:2019, cf. https://www.tbxinfo.net/
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