
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7194–7203
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7194

Editing OntoLex-Lemon in VocBench 3

Manuel Fiorelli1, Armando Stellato1, Tiziano Lorenzetti1, Andrea Turbati1,

Peter Schmitz2, Enrico Francesconi2, Najeh Hajlaoui2, Brahim Batouche2
1 University of Rome “Tor Vergata”, Department of Enterprise Engineering, via del Politecnico 1, 00133 Roma, Italy

{fiorelli,turbati}@info.uniroma2.it, stellato@uniroma2.it, tiziano.lorenzetti@gmail.com
2 Publications Office of the European Union, Luxembourg

{Peter.SCHMITZ, Enrico.FRANCESCONI}@publications.europa.eu,

{Najeh.HAJLAOUI, Brahim.BATOUCHE}@ext.publications.europa.eu

Abstract
OntoLex-Lemon is a collection of RDF vocabularies for specifying the verbalization of ontologies in natural language. Beyond its
original scope, OntoLex-Lemon, as well as its predecessor Monnet lemon, found application in the Linguistic Linked Open Data cloud
to represent and interlink language resources on the Semantic Web. Unfortunately, generic ontology and RDF editors were considered
inconvenient to use with OntoLex-Lemon because of its complex design patterns and other peculiarities, including indirection, reification
and subtle integrity constraints. This perception led to the development of dedicated editors, trading the flexibility of RDF in combining
different models (and the features already available in existing RDF editors) for a more direct and streamlined editing of OntoLex-Lemon
patterns. In this paper, we investigate on the benefits gained by extending an already existing RDF editor, VocBench 3, with capabilities
closely tailored to OntoLex-Lemon and on the challenges that such extension implies. The outcome of such investigation is twofold: a
vertical assessment of a new editor for OntoLex-Lemon and, in the broader scope of RDF editor design, a new perspective on which
flexibility and extensibility characteristics an editor should meet in order to cover new core modeling vocabularies, for which OntoLex-
Lemon represents a use case.

Keywords: Lemon, OntoLex, VocBench, Lexicon, RDF

1. Introduction

The OntoLex1 W3C Community Group released on 10
May 2016 a final report (Cimiano, McCrae, & Buitelaar,
2016) defining the OntoLex-Lemon model (McCrae et al.,
2017) for the representation of lexicons in connection to
ontologies. The so-called lemon model, standing for
Lexicon Model for Ontologies, was agreed by an
international group including representatives of most past
efforts in this area. The community group refined the
foundation laid down by Monnet lemon (McCrae, Spohr, &
Cimiano, 2011), and clarified its modularity, by
articulating the model as a set of OWL ontologies
specifying different aspects of the ontology-lexicon
interface.

Beyond its intended scope, OntoLex-Lemon (as well as its
predecessor Monnet lemon) was applied to the
representation and interlinking of wordnets and other
language resources on the Semantic Web. Indeed,
Chiarcos, Nordhoff, and Hellmann (2012) have
acknowledged the benefits of the adoption of the linked
data best practices in linguistics, and lemon (in general)
became critical to the construction of the so-called
Linguistic Linked Open Data2 (LLOD), a sub-cloud of the
Linked Open Data cloud3 related to language resources.

While ontology and RDF editors should support OntoLex-
Lemon editing, McCrae, Montiel-Ponsoda, and Cimiano
(2012) argued with respect to lemon that “generic data-
driven editors would be difficult to use for non-expert
users”. They noticed the lack of dedicated rendering (i.e.
visualization) of certain model elements and, moreover, the
inability to manipulate certain model elements as if they
were a single piece irrespectively of these being realized as

1 https://www.w3.org/community/ontolex/
2 http://www.linguistic-lod.org/
3 https://lod-cloud.net/

a complex graph of many interrelated resources. These
authors addressed their concerns about generic editors by
developing a dedicated lemon editor called lemon source.

However, we contend that this approach is unsatisfactory
as well. Firstly, an editor dedicated to (a specific
application of) a model (in this case lemon) might lose the
flexibility of RDF, which allows for combining different
vocabularies and models, unless the editor supports
importing and using arbitrary ontologies. However,
following this path, we would be forced to recreate an
ontology editor inside a lemon editor. A second problem,
related to the former, is that a purpose-built editor may lack
most functionalities already found in ontology and RDF
editors, unless they are recreated from scratch (as McCrae
et al. did for collaboration, history, etc.). Moreover, the
very assumption behind these dedicated editors somehow
neglects the flexibility of modern “data-driven editors”,
which usually offer configuration options and extension
points to cover different scenarios beyond the basic ones.
Indeed, support for multi-model editing is often achieved
by layering model-specific features and customizations
onto basic functionalities, providing a tailored yet coherent
experience across different models, possibly mixed
together. Jupp, Bechhofer, and Stevens (2009) investigated
the extension of the popular ontology editor Protégé to
support SKOS editing. Similarly, our collaborative
knowledge development environment VocBench 34
(Stellato et al., 2017; Stellato et al., 2019) achieves support
for ontologies and thesauri as specializations of generic
RDF editing. Under the hood, VocBench is powered by the
knowledge management framework Semantic Turkey5
(Pazienza et al., 2012).

4 http://vocbench.uniroma2.it/
5 http://semanticturkey.uniroma2.it/

https://www.w3.org/community/ontolex/
http://www.linguistic-lod.org/
https://lod-cloud.net/
http://vocbench.uniroma2.it/
http://semanticturkey.uniroma2.it/

7195

The aforementioned drawbacks of dedicated lemon editors
motivated us to investigate the approach that has already
proved successful for other models: augmenting an
ontology or RDF editor with facilities required for
conveniently editing OntoLex-Lemon lexicons and onto-
lexicon interfaces, while benefiting from the tool’s already
available feature set and flexible editing capabilities. While
we extended our own VocBench 3, the same approach and
observations might apply equally well to other editors, such
as Protégé or TopBraid Composer. The requirements of the
present work were sketched in Fiorelli et al. (2018).

Our work was carried on within the development of the
Public Multilingual Knowledge Management
Infrastructure for the Digital Single Market6 (PMKI), an
action of the ISA2 programme7 that aims to overcome
language barriers within the EU by means of multilingual
tools and services. In this context, there was a need for
coordinated instruments for advanced lexicalization of
RDF resources (be them ontologies, thesauri and datasets
in general) and for alignment of their content, while
OntoLex-Lemon was chosen as the preferred model for the
representation of language resources. A system that
seamlessly supports these diverse assets as well as their

6 https://ec.europa.eu/isa2/actions/overcoming-language-

barriers_en

joint use is certainly appealing to this goal. PMKI will
exploit both VocBench as a shared, collaborative editing
platform for thesauri and lexicons, and Semantic Turkey as
a core RDF service suite for implementing its forthcoming
dissemination platform, which will provide a public web
portal for uploading and browsing these diverse assets.

2. Related Work

McCrae et al. (2011) surveyed numerous applications of
OntoLex-Lemon, including the representation of diverse
language resources. These works often discuss the
applicability and limitations of the model, and sometimes
propose extensions. The extensibility of OntoLex-Lemon
is a consequence of its roots in the Semantic Web, but ex-
tensions of the model may require intrusive modifications
of purpose-built editors.

Lemon source is an editor for (Monnet) lemon based on the
paradigm of semantic wikis (such as OntoWiki
(Frischmuth et al., 2015)). Unfortunately, there is no
publicly available version of this system that is still usable.

While lexical entries often become complex, McCrae and
Hunger (2014) found recurring patterns in their structure,

7 https://ec.europa.eu/isa2/

:englishDBpediaLexicon a lime:Lexicon ;

 lime:language "en" ;

 dc:language <http://id.loc.gov/vocabulary/iso639-1/en> ;

 lime:entry :comics-character-entry .

:comics-character-entry a ontolex:MultiWordExpression ;

 a lexinfo:NounPhrase ;

 lime:language "en" ;

 dc:language <http://id.loc.gov/vocabulary/iso639-1/en> ;

 ontolex:canonicalForm [a ontolex:Form ;

 lexinfo:number lexinfo:singular ;

 ontolex:writtenRep "comics character"@en] ;

 ontolex:otherForm [a ontolex:Form ;

 lexinfo:number lexinfo:plural ;

 ontolex:writtenRep " comics characters"@en] ;

 decomp:constituent :comics-character-comp1, :comics-character-comp2 ;

 rdf:_1 :comics-character-comp1 ;

 rdf:_2 :comics-character-comp2 ;

 ontolex:sense [a ontolex:LexicalSense ;

 ontolex:reference dbo:ComicsCharacter ;

 synsem:isA :comics-character-arg] ;

 ontolex:synBehavior [a ontolex:SyntacticFrame ;

 a lexinfo:NounPredicateFrame ;

 lexinfo:copulativeArg :comics-character-arg] ;

 vartrans:translatableAs <http://../personaggio-dei-fumetti> .

:comics-character-comp1 a decomp:Component ;

 decomp:correspondsTo :comics-entry .

:comics-character-comp2 a decomp:Component ;

 decomp:correspondsTo :character-entry .

Figure 1:An OntoLex-Lemon lexical entry for the class dbo:ComicsCharacter

https://ec.europa.eu/isa2/actions/overcoming-language-barriers_en
https://ec.europa.eu/isa2/actions/overcoming-language-barriers_en
https://ec.europa.eu/isa2/

7196

eventually defining a catalog of lemon patterns for
ontology-lexicons. A formal language based on these
patterns enables to express lexical entries concisely without
dealing with their RDF serialization, which can be
generated using a dedicated converter8. Differently from
our implementation based on custom forms, this converter
is unable to interpret an existing RDF serialization through
the pattern language. Lemonade (Rico & Unger, 2015) is a
lemon editor based on some of these patterns, and therefore
constrained to a particular application of lemon and
unsuitable to scenarios requiring to combine different
vocabularies. Currently, Lemonade is only available as a
service.

LexO (Bellandi et al., 2017; Bellandi, Giovannetti, &
Weingart, 2018) is a collaborative editor of lexical and
termino-ontological resources, and particularly aimed at
philologists, historical linguists and lexicographers. Ease of
use is thus of paramount importance, which in general
required a high level of abstraction with respect to the
underlying lemon model. Actually, there are different
versions of LexO, born in the context of the projects LexO
was applied to. Each version supports different language
phenomena, requiring dedicated extensions of the view
and, often, of lemon: word roots for Arabic, transliteration
and tone for Chinese, and handling of multiple alphabets,
multi-language phrasemes and ancients forms without the
canonical ones (because never attested) for Old-Occitan.
LexO-lite9 is the new general-purpose version (still
to be released), which is going to support all modules of the
OntoLex-Lemon model (while previous versions were
based on Monnet lemon).

3. OntoLex-Lemon

OntoLex-Lemon is a model for the interfacing of
ontologies and lexicons: its aim is to characterize how an
ontology is verbalized in natural language to an extent
beyond the possibility of current lexicalization models
(such as RDFS and SKOS/SKOS-XL). The model is
realized as a suite of ontologies, called lemon modules,
which deal with syntax-semantics interfacing (synsem),
decomposition of lexical entries (decomp), variation and
translation (vartrans) and linguistic metadata (lime)
(Fiorelli et al., 2015), while a core module (ontolex) defines
the backbone upon which the other modules rest.

Figure 1 illustrates the use of the various modules to
describe the lexical entry “comics character” denoting the
class dbo:ComicsCharacter in the DBpedia ontology.
Lexical entries are first grouped into a lexicon, which holds
metadata such as the language and the number of lexical
entries (not shown in the example, for conciseness). A
lexical entry has a canonical form (usually corresponding
to its lemma) and zero or more other (inflected) forms, each
holding written representations accounting for different
orthographies (e.g. color vs colour). OntoLex-Lemon relies
on third-party linguistic ontologies for a vocabulary of
linguistic annotations and their values: in the example, we
use LexInfo (Cimiano et al., 2011) to differentiate between
singular and plural number. The example lexical entry is a
multi-word expression, which has two constituents,
corresponding to the words “comics” and “character”.
These constituents are components, holding additional

8 https://github.com/jmccrae/lemon.patterns

information related to a particular use of the lexical entry.
The properties rdf:_1 and rdf:_2 (in general, rdf:_N) are
used to express the order of the constituents. OntoLex-
Lemon defines the meaning of a lexical entry by connecting
it to an ontology concept. This association can be reified as
a sense object, in order to further qualify that association
(e.g. register, usage, etc.). Our example word denotes a
class in the DBpedia ontology, which has one semantic
argument (synsem:isA). Its syntactic behavior is a noun
predicate frame, meaning that the lexical entry can occur
in stereotypical contexts like “X is a comics character” or
“the comics character is X”, where X is the copulative
argument. The synsem vocabulary binds the syntactic and
semantic arguments, by unifying them (i.e. use one RDF
resource to identify both). Cimiano, Unger, and McCrae
(2014) discussed the use of ontology lexicons for natural
language generation and interpretation with respect to
ontologies. Assuming another lexical entry for
dbr:Superman, our example lexical entry allows to
interpret "Superman is a comics character" as the triple
dbr:Superman a dbr:ComicsCharacter. Beyond the
representation of ontology lexicons, the model has been
used to represent wordnets and other lexical resources. In
this case, constructs such as WordNet’s synsets are
modeled as lexical concepts, while a sense is connected to
these concepts via the property is lexicalized sense of. The
vartrans module supports relations between lexical entries,
lexical senses and lexical concepts. By using this module,
one can say that a lexical entry is translatable as another
(in some contexts), and that a sense has another sense as
translation.

It is noteworthy that the OntoLex-Lemon model has
diverse elements of complexity:

• reification: e.g. forms, lexical entries, etc.;

• indirection: the written representation of a form of

a lexical entry, or the syntax-semantic interface

realized via argument unification;

• integrity conditions (not expressible in OWL):

e.g. the lexical entries should be expressed in the

language associated with the lexicon.

4. Facilities for OntoLex-Lemon

In the following sections, we will describe the facilities that
were added to VocBench 3 to address the major challenges
associated with editing OntoLex-Lemon.

4.1 Lexicon and Lexical Entry Management

In a typical ontology editor, lexicons can be found in the
instance list associated with the class tree, by selecting the
class lime:Lexicon. The description of a lexicon enumerates
its lexical entries as the values of the property lime:entry.
This approach lacks abstraction over the model and mixes
the domain model and the modeling vocabularies (e.g.
OntoLex-Lemon) inside the class tree. Lexical entries
could also be inspected as instances of the class
ontolex:LexicalEntry, without their repartition across
lexicons. Additionally, if the editor is not sufficiently
flexible, lexicons and, especially, lexical entries might not
be rendered, and be shown as URIs (possibly shortened as
qualified names). Therefore, an important extension

9 https://github.com/andreabellandi/LexO-lite

https://github.com/jmccrae/lemon.patterns
https://github.com/andreabellandi/LexO-lite

7197

consists in additional browsing panels (alongside the class
tree, the property tree, etc.) to list the lexicons and the
lexical entries (see Figure 2). The two panels are
connected, since the latter only shows the content of the
lexicon selected in the former (in figure: Princeton
WordNet). These panels are associated with creation and
deletion operations. When creating a lexicon, the user is
requested to enter the lexicon’s language, which is recorded
through properties of the lime module. This metadata
influences the creation of lexical entries for it, since it will
be only possible to specify their canonical form in that
language (or a variant thereof). Moreover, this constraint
applies as well to the addition (via the resource view) of
other forms or further representations of an existing form.

VocBench supports two approaches to list the lexical
entries (see Figure 2), by either i) showing the entries with
a common prefix of 1 or 2 letters, or ii) showing the results
of a search over the lexical entries. The latter approach was
introduced to overcome some scalability issues. For similar
reasons, we complemented the traditional concept tree with
a new search-based view, which shows a flat list of
concepts found via search.

4.2 Concept Set and Lexical Concept
Management

OntoLex-Lemon defines the notion of concept set as a
collection of lexical concepts, declaring these classes as
subclasses of skos:ConceptScheme and skos:Concept,
respectively. VocBench 3 already had dedicated panels for
the visualization of concept schemes and concepts, which
were aware of possible sub-classes. Consequently, they
could be reused unaltered in OntoLex-Lemon projects.
However, in this context, the creation dialog for a new
concept scheme (see Figure 3, observe in particular the top-
right corner with the class modifier), resp. a new concept,
is configured to create an ontolex:ConceptSet (instead of a
skos:ConceptScheme), resp. an ontolex:LexicalConcept
(instead of a skos:Concept).

4.3 OntoLex-Lemon Aware Rendering

McCrae et al. (2012) stressed the importance of a suitable
rendering of the components of a lexicon. Accordingly, we
extended VocBench 3 to display lexical entries via their
canonical form. Furthermore, OntoLex-Lemon
lexicalizations of ontologies and RDF datasets should be
used to produce a human-friendly rendering of the
lexicalized entities. To that end, we developed an
implementation of the Rendering Engine extension point
for OntoLex-Lemon. An intrusive modification of the
system enabled the suggestion of this rendering engine for
OntoLex-Lemon projects.

4.4 Dedicated Resource View Templates

The resource view is a general data visualization panel
displaying RDF resources in terms of their property values,
divided into different sections organized by type of
property (with a generic properties section for properties
not failing in any category). For certain types of resources
(e.g. classes, properties, concepts, etc.) the resource view
has a dedicated template consisting of elective sections.
These elective sections optimize the layout of each resource
view with properties often associated to its managed type
of resource, while a default template guarantees that the
resource view is compatible with any resource.
Accordingly, we defined dedicated templates for most of

Figure 2: Lexicon list (on the left) and corresponding lexical entries indexed by (two-letter) prefixes (on the middle) or

returned by a (“starts with”) search (on the right). The system is managing the whole collection of 34 wordnets collected

by Open Multilingual Wordnet (Bond & Paik, 2012)

Figure 3: Dialog for the creation of a concept set

7198

the entities defined by OntoLex-Lemon. Figure 4 shows
(part of) the resource view displaying our example lexical
entry “comics character” (see Section 3). It consists of the
following sections: types, lexical forms, lexical senses,
denotations, evoked lexical concepts, custom form preview,
constituents, RDFS members and other properties. The
meaning of most sections simply follows from the
associated property of OntoLex-Lemon. Nonetheless,
some of these sections will be discussed further in this
paper.

4.5 Support for Decomposition

In our introductory example, the lexical entry “comics
character” (see Figure 1) is connected to its tokens through
the property decomp:constituent, as well as through the
properties rdf:_N (required to encode the order of the
tokens). In the resource view (see Figure 4) these properties
are separated (obeying to a triple-oriented perspective),
nonetheless the values of the property decomp:constituent
are ordered based on the information provided by the RDF
membership properties. Following McCrae et al. (2012),
we provided a dedicated editor to manipulate the sequence
of tokens as a whole, while the system takes care of low-
level triple updates.

10 https://bitbucket.org/art-uniroma2/lemon-vb-customforms/

4.6 Support for Redundant Patterns

In OntoLex-Lemon, the same relationship can be encoded
in redundant ways. For example, the binding of a lexical
entry to an ontology concept can be expressed as a simple
triple (in either direction) or reified via a sense resource.
Our policy about these redundant patterns is as follows:
upon creation, ask the user whether to create other variants
as well, while the system deletes every variant (without
asking the user). A property and its inverse are asserted by
VocBench, unless one of the arguments is not locally
defined (e.g. a third-party lexicon is developed for an
existing ontology, so the references of the senses are really
just mentions of external resources). In these cases,
VocBench does not generate triples having mentioned re-
sources as subjects.

4.7 Custom Forms for Ontology-Lexicon
Design Patterns

The lexical entry in Figure 1 requires the assertion of
dozens of triples about different subjects and, occasionally,
subtly related (e.g. common object expressing the binding
of syntactic and semantic arguments). However, it can be
represented succinctly with the language of design patterns
for ontology-lexicons (McCrae & Unger, 2014) as follows:

ClassNoun(“comics character”, dbo:ComicsCharacter)
with plural “comics character”

We implemented10 most patterns as VocBench custom
forms (already described in Fiorelli et al. (2017)), which
enable to specify: i) the transformation of user input into
RDF nodes, ii) a graph template to be instantiated with
these nodes. These forms can be attached to properties (i.e.
custom ranges) or to classes (i.e. custom constructors).
Specifically, our custom forms for ontology-lexicons are
constructors for the class ontolex:LexicalEntry. When users
create a lexical entry, they can select a custom constructor,
which augments the creation dialog with custom fields.
Figure 5 depicts the dialog for a class noun, in which
standard fields for the canonical form and the selection of
the entry type (e.g. multiword expression) are
complemented (below a horizontal line) by a custom field
for the reference class of the entry being created. The
pictured form is filled with the information to generate the
lexical entry “comics character” in Figure 1 (minus its
decomposition into tokens).

In addition to simplifying the construction of complex
resources, custom constructors ease the comprehension of

Figure 4: Resource view on the example lexical entry

“comics character”

Figure 5: Dialog for the creation of the class noun “comics

character”

https://bitbucket.org/art-uniroma2/lemon-vb-customforms/

7199

data, as well. When computing the resource view,
VocBench considers the custom constructors associated
with any class of the resource, and then it identifies the one
that best explains the data (i.e. its graph pattern matches the
most triples): a custom form preview section is added to the
resource view (see Figure 4), showing the name of the
custom form and the values bound to the form variables.

4.8 Search Aware of OntoLex-Lemon

Full-text search in VocBench 3 attempts to match
lexicalizations of resources expressed through some
lexicalization model, chosen project-wide. The
introduction of OntoLex-Lemon as an additional
lexicalization model required an extension of this
mechanism, so that a resource can be found via the written
representation of the lexical entries associated with it.
Differently from other lexicalization models, lexical entries
are first-class citizens of a lexicon, as they can be related to
each other and reused in different lexicalizations.
Therefore, we extended the search to make it able to find
lexical entries. The advanced search and the custom search
capabilities of VocBench support, respectively, the
specification of more complex search criteria (e.g. in terms
of different property values) and the use of custom search
dialogs (powered by saved SPARQL queries).

4.9 LIME Metadata Exporter

In Section 4.1, we explained that VocBench 3 enforces
some integrity constraints based on certain lime metadata
(e.g. the language of a lexicon). Actually, lime supports a
much richer description of lexicons, concept sets, and how
these are related to each other or to ontologies/RDF
datasets. This description combines descriptive metadata
(usually entered by hand) and statistics (best computed
automatically). VocBench 3 addressed this kind of use case
with its Dataset Metadata Exporter extension point, which
can be implemented for different metadata vocabularies.
As part of this work, we developed an implementation for
lime, which uses our Lime API (Fiorelli, Pazienza, &
Stellato, 2017) to compute several statistics. Figure 6
depicts the form that can be filled with descriptive metadata
(persisted across sessions); upon export, this information is
combined with the computed statistics. Fiorelli et al. (2019)

11 http://www.uxforthemasses.com/usability-reviews/

showed the utility of lime metadata for automatic and
robust configuration of semantic mediation processes.

5. Evaluation

In the following sections, we report on how we evaluated
the quality of our system by means of an ensemble of
approaches.

5.1 Conformance to OntoLex-Lemon

In this section, conformance is loosely intended as the
degree to which VocBench supports different parts of
OntoLex-Lemon through a convenient combination of
general editing capabilities and dedicated extensions.
Therefore, it should be understood as a usability review
carried on by the developers of the systems11.

5.1.1 Core Module

Additional panels or customizations of existing ones
support listing and browsing both lexicons and concept
sets. The creation of a lexical entry together with its
canonical form and the creation of a lexical form together
with its written representation are both handled as macro-
operations. We managed the different ways of creating a
lexicalization (i.e. plain triple vs sense), while the
management of conceptualizations relating lexical entries
and lexical concepts will be completed in a forthcoming
release. VocBench does not render lexical senses by
default; however, a custom form for the property
ontolex:sense supports the rendering via a property path
and the form-based preview.

5.1.2 Syntax and Semantics Module

The correspondence between syntactic and semantic
arguments may be edited via triple-level operations.
However, the custom forms implementing the design
patterns for ontology-lexicons ease the comprehension and
editing of this module in a specific use case.

5.1.3 Decomposition Module

We addressed the tokenization of lexical entries and the
subterm relation. Their phrase structure should be edited
triple by triple, and it can’t be displayed as a whole: nesting
of resource views would be a partial solution.

Figure 6: Dialog for the generation of Lime metadata

http://www.uxforthemasses.com/usability-reviews/

7200

5.1.4 Variation and Translation Module

The corresponding ontology is loaded implicitly in
OntoLex-Lemon datasets, so that standard triple-level
operations can be used to edit relationships expressed
through simple triples. To improve the user experience, we
provide a dedicated selector of lexical senses. However, we
do not support reified relationships, since there is no
dedicated browser nor are they reported in the resource
view of the related entities (unless these entities contain in
turn a link to the reified relationship).

5.1.5 Lime Module

Metadata are checked to forbid user requests that violate
some integrity constraints (e.g. lexical entries should be in
the language of the lexicon). Additionally, we support the
interpolation of hand-written metadata and automatically
computed statistics to produce a dataset description.

5.2 Support for Design Patterns for Ontology
Lexicons

We support 11 of the 15 patterns that are listed in the
catalog to date. In addition, we have a partial support for
ConsequenceVerbs. For comparison, Lemonade only
supports 3 patterns (all supported by our implementation).
In Section 4.7, we showed that these patterns ease the
development of a lexical entry, by substantially reducing
the number of explicit actions that the user shall carry on.
Consequently, our support of different design patterns
correlates with the usability of the system.

We implemented the full form of the patterns, although
some of them (e.g. StateVerbs) offer abbreviations based
on default values. In fact, our implementation introduces
some approximations. Firstly, we use generic syntactic
frames (e.g. lexinfo:VerbFrame), while the reference
implementation tries to compute the most specific frame
based on the provided arguments (e.g.
lexinfo:TransitiveFrame). Secondly, our forms always
assign a POS tag to the lexical entry (e.g.
lexinfo:commonNoun), while in the reference
implementation multiword expressions are given a phrase
type (e.g. lexinfo:NounPhrase). The grammar of the pattern
language includes productions such as 〈arg〉 → Subject | …
| PrepositionalObject (〈string〉). In the language of custom
forms, we flatten this definition: we have adjacent fields for
the argument and the optional accompanying string.
Regarding the patterns that we do not support
(RelationalMultivalentNoun, EventVerb, ScalarAdjective),
the root cause is the inability to represent a variable number
of fields in the form. Evaluating the support for the design
patterns, we ignored tokenization, other (inflected) forms
and linguistic annotation, already supported by VocBench.

5.3 Comparison with Related Work

In this section, we compare our OntoLex-Lemon editor to
related systems. Because of their limited availability and
high heterogeneity, we couldn’t perform a competitive
usability testing nor an all-to-all-comparison. Instead, we
decided to compare our work with each of them from the
viewpoint of functionality, in order to assess qualitatively
their relative usability and utility12.

12 https://www.nngroup.com/articles/usability-101-introduction-

to-usability/

5.3.1 Lemon Source

This system is compatible with Monnet lemon, and
consequently it doesn’t support lexical concepts introduced
in OntoLex-Lemon. Lexico-semantic resources are thus
seen as a special case of ontology lexicons, rather than as
first-class citizens like in VocBench 3. Lemon Source
explicitly addresses the rendering of certain model artifacts
(e.g. senses, parse trees, etc.) and the manipulation of
complex graph patterns as a whole (e.g. subcategorization
frames). Additionally, it bootstraps the creation of lexicons
from the mere labels that can be found in most ontologies,
by applying a (configurable) pipeline of NLP tools (e.g. a
parser to compute the parse tree of a lexical entry) and
reusing lexical entries in existing resources (e.g. Princeton
WordNet). Currently, VocBench 3 lacks these NLP
capabilities, but it features extensive support for cross-
project linking and Linked Data exploitation (however,
necessary extensions of these capabilities are still under
development). Since automatically generated entries may
be unsuitable for publication, Lemon Source includes a
workflow mechanism that enables to validate these entries.
Following the paradigm of wikis, Lemon Source supports
tracking the history of pages. VocBench 3 supports both
functionalities as optional addons, respectively, history and
validation. Both Lemon Source and VocBench support
multiple projects, multiple users and access control.

5.3.2 Lemonade

Lemonade integrated Lemon Assistant (the web frontend)
and LEIRE (a linter), currently available as unintegrated
services13,14. The goal was to avoid or catching errors,
respectively using a higher-level abstraction (i.e. the design
patterns) and through the linter. Nowadays, the frontend is
a wizard to create individual lexical entries in the language
of design patterns. Therefore, search and browsing
capabilities are irrelevant. Lemon Assistant only supports
class nouns, state verbs and relational nouns. Indeed,
VocBench supports all of them and much more (see Section
4.7). Let us compare in greater details the wizards of
Lemon Assistant to our custom forms. We will refer to
relational nouns (structurally identical to state verbs),
which are the most complex. The wizard has a field for the
lemma and an optional field for the plural form. In
VocBench, the field for the lemma is provided by the core
creation dialog, while fields for other forms are not
included (to be language independent). However, our
custom forms can be extended with these extra fields. A
relational noun denotes a property: in Lemon Assistant it is
searched (with autocompletion) inside a preloaded
ontology, while VocBench supports both search-based and
browsing-based selection. Unfortunately, custom forms
can’t constraint the chosen reference to be a property.
Relational nouns have two syntactic and semantic
arguments, which can be bound either linearly (i.e. subject-
subject) or reversely (i.e. subject-object). Lemon Assistant
provides a dropdown menu to select either mapping.
Custom forms do not support such menus, so we developed
two separate forms. This approach is less usable, requiring
that users figure out beforehand which mapping will be
suitable, and in case of mistake forcing them back to the
selection of the appropriate pattern. As an alternative, we
developed a combined form, in which the user must

13 http://lemonadetools.linkeddata.es/lemonAssistant/
14 http://lemonadetools.linkeddata.es/leire/

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://lemonadetools.linkeddata.es/lemonAssistant/
http://lemonadetools.linkeddata.es/leire/

7201

indicate the syntactic argument (as an RDF property)
bound to each semantic argument. In fact, our form is
potentially more general than Lemon Assistant, which
assumes that the syntactic arguments are a copulative
subject and a possessive adjunct, or a prepositional object
if a preposition is indicated. The drawback of our approach
is the possibility to provide inconsistent information, such
as using a preposition with arguments that do not expect it.
With respect to Lemon Assistant, our forms also support
domain and range restrictions, e.g. the word “son” denotes
the property “dbo:child”, if the object is male. Furthermore,
Lemon Assistant doesn’t support multiword expressions,
and it is limited to English, Spanish and German. This
limitation stems from its ability to generate usage examples
of a lexical entry, which are useful to catch errors in the
specification of a lexical entry (e.g. wrong selection
between linear and reverse mapping). This feature is not
supported by VocBench 3. Overall, custom forms in
VocBench 3 are more general and they have been used to
implement more design patterns. They are not only used to
create lexical entries, but also to analyze and interpret RDF
data. On the other side, Lemon Assistant is slightly more
usable, because of (easily fixable) missing constraints in
our user interface and (more difficult to implement) lack of
usage examples in our custom forms. However, the utility
of Lemon Assistant is limited to a specific application of
lemon, because it is not a general lemon editor. Hence, it
doesn't support seemingly simple tasks, such as specifying
relationships between lexical entries or between senses.

5.3.3 LexO

LexO is the most advanced from the linguistics viewpoint,
even though support for different phenomena is scattered
among different, specialized versions of the system. We
compared VocBench to the demo site indicated in the
presentation page of the system15. LexO supports browsing
lemmas, (other) forms, senses and the ontology. The first
three panels are flat lists, which can be filtered via a search
constraint (either starts with or contains): they are similar
to the search-based mode of VocBench. The ontology panel
is just a class hierarchy with options to create, delete or
rename classes. It is not possible to edit the details of
classes, nor is it possible to create properties or instances.
Conversely, VocBench features a much more
comprehensive support for ontology, thesaurus and general
RDF editing. When the user selects a lemma, a form or a
sense, the system opens an editing panel on the right-hand
side, showing (in a single page) the lemma, the forms and
the senses. It is possible to add multiple forms,
distinguished by language annotations (e.g. number or
gender), as well as multiple senses. A sense can contain a
definition, and relations to other senses. These actions are
also supported in VocBench. Furthermore, VocBench
supports the use of unanticipated properties (simply
importing or specifying their definition). It seems to be
possible to add comments on forms and senses, but this
capability was not enabled in the demo. Like Lemon
Source, it is possible to flag a lemma as validated. LexO
supports multi-word expressions and, applying some basic
NLP capabilities (e.g. tokenization), suggests the
components in the decomposition. Conversely, in
VocBench, decomposition should be specified manually.
LexO also provides a read-only “dictionary view” like a

15 http://licolab.ilc.cnr.it/index.php/en/software-and-demo/

page in a printed dictionary. The advanced search in LexO
is subsumed by the one in VocBench, but LexO also
supports a diachronic search depending on a dedicated
extension of lemon. LexO sidesteps problems with
rendering and search by generating the identifier of lexical
entries, forms and senses from the actual words.

The documentation of the still unreleased LexO-lite (see
Section 2) indicates the support for most of OntoLex-
Lemon and other improvements.

6. Conclusions

We presented an extension of VocBench 3 addressing most
issues associated with the use of OntoLex-Lemon inside
generic data-driven editors. The evaluation was positive,
but it also revealed some shortcomings to be addressed in
future. Interestingly, these are related to general
improvements of VocBench (e.g. improve custom forms),
showing that our extensions heavily depend on the
mechanisms provided by VocBench rather being an
entirely separated addition to the system, thus supporting
the importance of a unified platform for RDF management.

While, due to its recent release, we cannot provide
extensive evidence of the impact of the OntoLex extension
for VocBench, there are a few factors that position this
extension as a corner stone in the development of lexicons
and ontology-lexicon interfaces. Firstly, VocBench is
nowadays widely adopted: the Publications Office of the
European Commission provides an instance hosting more
than 50 projects belonging to several Directorate Generals
(DGs) within the commission itself, while diverse
organizations belonging to United Nations, various
member states of the EU, other organizations from China
and US, are adopting VocBench for managing their linked
open data; not to count the hundreds of users adopting it in
private/academic/commercial settings. Secondly, while
born as a sort of niche in the Semantic Web universe, the
LLOD is gathering more interest and growing, with several
resources being ported to OntoLex and linked to the cloud.
While the initial effort has been focused on recovering
existing resources by lifting their content to OntoLex (in
order to “bootstrap” the cloud), the attention is now
switching towards means to author new resources.
Additionally, while OntoLex implicitly required to develop
a model to represent lexical resources, its original objective
remains to be a vocabulary for linking lexicons (or, in
general, advanced lexical descriptions) to ontologies, a role
for which VocBench can provide an extensive support that
can be hardly matched by other systems, bringing together
ontology, thesaurus and lexicon development in one
solution. Finally, as remarked in sections 2 and 5.3, VB3 is
the only stable and developed system for developing
lexicons and for advanced lexical enriching of ontologies.

7. Acknowledgements

This work has been supported by the PMKI project, under
the 2016.16 action of the ISA2 Programme
(https://ec.europa.eu/isa2/). ISA2 is a programme of the
European Commission for the modernization of public
administrations in Europe through the eGovernment
solutions.

http://licolab.ilc.cnr.it/index.php/en/software-and-demo/
https://ec.europa.eu/isa2/

7202

8. Bibliographical References

Bellandi, A., Giovannetti, E., & Weingart, A. (2018).
Multilingual and Multiword Phenomena in a lemon Old
Occitan Medico-Botanical Lexicon. Information, 9(3).
doi:10.3390/info9030052

Bellandi, A., Giovannetti, E., Piccini, S., & Weingart, A.
(2017). Developing LexO: A Collaborative Editor of
Multilingual Lexica and Termino-ontological Resources
in the Humanities. Proceedings of Language, Ontology,
Terminology and Knowledge Structures Workshop
(LOTKS 2017),co-located with the 12th International
Conference on Computational Semantics (IWCS), 19
September 2017 Montpellier. Retrieved from
http://www.aclweb.org/anthology/W17-7010

Bond, F., & Paik, K. (2012). A survey of wordnets and their
licenses. Proceedings of the 6th Global WordNet
Conference (GWC 2012). Matsue, Japan, January, 9-13,
2012, (pp. 64-71).

Chiarcos, C., Nordhoff, S., & Hellmann, S. (Eds.). (2012).
Linked Data in Linguistics. Springer.

Cimiano, P., Buitelaar, P., McCrae, J., & Sintek, M. (2011).
LexInfo: A declarative model for the lexicon-ontology
interface. Web Semantics: Science, Services and Agents
on the World Wide Web , 9(1), 29-51. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1570
826810000892

Cimiano, P., McCrae, J. P., & Buitelaar, P. (2016). Lexicon
Model for Ontologies: Community Report, 10 May
2016. Community Report, W3C. Retrieved from
https://www.w3.org/2016/05/ontolex/

Cimiano, P., Unger, C., & McCrae, J. (2014). Ontology-
Based Interpretation of Natural Language. Synthesis
Lectures on Human Language Technologies, 7(2), 1-
178. Retrieved from
http://dx.doi.org/10.2200/S00561ED1V01Y201401HL
T024

Fiorelli, M., Lorenzetti, T., Pazienza, M. T., & Stellato, A.
(2017). Assessing VocBench Custom Forms in
Supporting Editing of Lemon Datasets. In J. Gracia, F.
Bond, J. P. McCrae, P. Buitelaar, C. Chiarcos, & S.
Hellmann (Eds.), Language, Data, and Knowledge
(Lecture Notes in Artificial Intelligence) (Vol. 10318,
pp. 237-252). Springer, Cham. doi:10.1007/978-3-319-
59888-8_21

Fiorelli, M., Pazienza, M. T., & Stellato, A. (2017). An API
for OntoLex LIME datasets. OntoLex-2017 1st
Workshop on the OntoLex Model (co-located with
LDK-2017). Galway.

Fiorelli, M., Stellato, A., Lorenzetti, T., Schmitz, P.,
Francesconi, E., Hajlaoui, N., & Batouche, B. (2019).
Metadata-driven Semantic Coordination. In E.
Garoufallou, F. Fallucchi, & E. William De Luca (Eds.),
Metadata and Semantic Research (Communications in
Computer and Information Science) (Vol. 1057).
Springer.

Fiorelli, M., Stellato, A., Lorenzetti, T., Turbati, A.,
Schmitz, P., Francesconi, E., . . . Batouche, B. (2018).

Towards OntoLex-Lemon editing in VocBench 3.
AIDAinformazioni(special issue).

Fiorelli, M., Stellato, A., Mccrae, J. P., Cimiano, P., &
Pazienza, M. T. (2015). LIME: the Metadata Module for
OntoLex. In F. Gandon, M. Sabou, H. Sack, C. d’Amato,
P. Cudré-Mauroux, & A. Zimmermann (Eds.), The
Semantic Web. Latest Advances and New Domains
(Lecture Notes in Computer Science) (Vol. 9088, pp.
321-336). Springer International Publishing.
doi:10.1007/978-3-319-18818-8_20

Frischmuth, P., Martin, M., Tramp, S., Riechert, T., &
Auer, S. (2015). OntoWiki – An authoring, publication
and visualization interface for the Data Web. Semantic
Web, 6(3), 215-240. doi:10.3233/SW-140145

Jupp, S., Bechhofer, S., & Stevens, R. (2009). A Flexible
API and Editor for SKOS. In L. Aroyo, P. Traverso, F.
Ciravegna, P. Cimiano, T. Heath, E. Hyvönen, . . . E.
Simperl (Eds.), The Semantic Web: Research and
Applications (Lecture Notes in Computer Science) (Vol.
5554, pp. 506-520). Springer, Berlin, Heidelberg.
doi:10.1007/978-3-642-02121-3_38

McCrae, J. P., & Unger, C. (2014). Design Patterns for
Engineering the Ontology-Lexicon Interface. In P.
Buitelaar, & P. Cimiano (Eds.), Towards the
Multilingual Semantic Web (pp. 15-30). Springer Berlin
Heidelberg. doi:10.1007/978-3-662-43585-4_2

McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P., &
Cimiano, P. (2017). The OntoLex-Lemon Model:
Development and Applications. In I. Kosem, C.
Tiberius, M. Jakubíček, J. Kallas, S. Krek, & V. Baisa
(Ed.), Electronic lexicography in the 21st century.
Proceedings of eLex 2017 conference., (pp. 587-597).

McCrae, J., Montiel-Ponsoda, E., & Cimiano, P. (2012).
Collaborative semantic editing of linked data lexica. In
N. Calzolari, K. Choukri, T. Declerck, Doğan, M. Uğur,
B. Maegaard, . . . S. Piperidis (Ed.), Proceedings of the
Eight International Conference on Language Resources
and Evaluation (LREC'12). Istanbul Lüfti Kirdar
Convention & Exhibition Centre, Turkey, 21-27 May
2012, (pp. 2619-2625). Retrieved from http://www.lrec-
conf.org/proceedings/lrec2012/pdf/544_Paper.pdf

McCrae, J., Spohr, D., & Cimiano, P. (2011). Linking
Lexical Resources and Ontologies on the Semantic Web
with Lemon. In The Semantic Web: Research and
Applications (Lecture Notes in Computer Science) (Vol.
6643, pp. 245-259). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-21034-1_17

Pazienza, M. T., Scarpato, N., Stellato, A., & Turbati, A.
(2012). Semantic Turkey: A Browser-Integrated
Environment for Knowledge Acquisition and
Management. Semantic Web Journal, 3(3), 279-292.
doi:10.3233/SW-2011-0033

Rico, M., & Unger, C. (2015). Lemonade: A Web Assistant
for Creating and Debugging Ontology Lexica. In Natural
Language Processing and Information Systems (Lecture
Notes in Computer Science) (Vol. 9103, pp. 448-452).
Springer, Cham.

7203

Stellato, A., Fiorelli, M., Turbati, A., Lorenzetti, T., van
Gemert, W., Dechandon, D., . . . Costetchi, E. (2019).
VocBench 3: a Collaborative Semantic Web Editor for
Ontologies, Thesauri and Lexicons. Semantic Web.

Stellato, A., Turbati, A., Fiorelli, M., Lorenzetti, T.,
Costetchi, E., Laaboudi, C., . . . Keizer, J. (2017).
Towards VocBench 3: Pushing Collaborative
Development of Thesauri and Ontologies Further
Beyond. In P. Mayr, D. Tudhope, K. Golub, C. Wartena,
& E. W. De Luca (Ed.), 17th European Networked
Knowledge Organization Systems (NKOS) Workshop.
Thessaloniki, Greece, September 21st, 2017, (pp. 39-
52). Retrieved from http://ceur-ws.org/Vol-
1937/paper4.pdf

	1. Introduction
	2. Related Work
	3. OntoLex-Lemon
	4. Facilities for OntoLex-Lemon
	4.1 Lexicon and Lexical Entry Management
	4.2 Concept Set and Lexical Concept Management
	4.3 OntoLex-Lemon Aware Rendering
	4.4 Dedicated Resource View Templates
	4.5 Support for Decomposition
	4.6 Support for Redundant Patterns
	4.7 Custom Forms for Ontology-Lexicon Design Patterns
	4.8 Search Aware of OntoLex-Lemon
	4.9 LIME Metadata Exporter

	5. Evaluation
	5.1 Conformance to OntoLex-Lemon
	5.1.1 Core Module
	5.1.2 Syntax and Semantics Module
	5.1.3 Decomposition Module
	5.1.4 Variation and Translation Module
	5.1.5 Lime Module

	5.2 Support for Design Patterns for Ontology Lexicons
	5.3 Comparison with Related Work
	5.3.1 Lemon Source
	5.3.2 Lemonade
	5.3.3 LexO

	6. Conclusions
	7. Acknowledgements
	8. Bibliographical References

