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Abstract
The goal of the ESTNLTK Python library is to provide a unified programming interface for natural language processing in Estonian.
As such, previous versions of the library have been immensely successful both in academic and industrial circles. However, they also
contained serious structural limitations – it was hard to add new components and there was a lack of fine-grained control needed for
back-end programming. These issues have been explicitly addressed in the ESTNLTK library while preserving the intuitive interface
for novices. We have remastered the basic NLP pipeline by adding many data cleaning steps that are necessary for analyzing real-life
texts, and state of the art components for morphological analysis and fact extraction. Our evaluation on unlabelled data shows that
the remastered basic NLP pipeline outperforms both the previous version of the toolkit, as well as neural models of StanfordNLP. In
addition, ESTNLTK contains a new interface for storing, processing and querying text objects in POSTGRES database which greatly
simplifies processing of large text collections. ESTNLTK is freely available under the GNU GPL version 2 license, which is standard
for academic software.
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1. Introduction
Estonian natural language processing has seen steady ad-
vancements in recent years. As a part of the Universal
Dependencies effort (Nivre et al., 2016), Estonian tree-
banks with standardized grammatical annotations have be-
come available. The Universal Dependencies effort has
fostered the experimentation with multilingual data-driven
parsing models, many of which also cover Estonian (Ze-
man et al., 2018; Yusupujiang, 2018). In the wake of
these developments, a new paradigm – data-driven neu-
ral models – has been introduced into Estonian morpho-
logical analysis (Tkachenko and Sirts, 2018). Still, rule-
based linguistic analysis models are also being successfully
implemented. Kaalep et al. (2018) introduced a finite-
state-transducers-based morphological analyzer for Esto-
nian which uses a revised morphological category system
and provides a more detailed analysis for inflectional forms
and compound words.
Universal Dependencies data sets have enabled the inclu-
sion of automatic analysis of Estonian in multilingual NLP
tools, such as StanfordNLP (Qi et al., 2018) and NLP-Cube
(Boroş et al., 2018). Harnessing the power of deep neural
networks, these tools provide end-to-end text analysis ca-
pabilities, starting from text segmentation into words and
sentences, and leading up to morphological analysis and
syntactic parsing. While these pipelines provide basic anal-
ysis for standard language, they offer no convenient ways
for adapting to specific text domains – apart from amass-
ing a large amount of training data and retraining the sys-
tem. However, when dealing with real-life text analysis
problems, cost-effective ways for pipeline adaptation are
often needed. For instance, in the context of growing in-
terest in applying NLP in Estonian digital humanities re-
search (Laak et al., 2019), more fine-grained control over
text normalization is required to adapt tools for analyzing
old dialects (Pilvik et al., 2019).
In this paper, we present a remastered NLP pipeline for

ESTNLTK, the design of which allows data-driven meth-
ods to be combined with rule-based ones, enabling the end
user to customize the pipeline to their needs.

The next important contributions are revised data represen-
tation and redesign of the programming interface. While
the previous versions of the library were widely used, they
were difficult to extend and customize. In this paper, we
introduce ESTNLTK version 1.6, which addresses these is-
sues explicitly. The remastered basic NLP pipeline consists
of many small cleaning steps that resolve common prob-
lems that occur in typical real-life texts. All of these steps
are easily extendable and researchers can therefore focus
on source-specific problems.

Our evaluation on unlabelled data shows that the remas-
tered basic NLP pipeline outperforms both the previous ver-
sion of the toolkit, as well as state-of-the-art neural models
of StanfordNLP on full morphological processing of Esto-
nian.

Finally, we also introduce a new interface for storing, pro-
cessing and querying text objects in POSTGRES database
which greatly simplifies processing large text collections.

ESTNLTK v1.6 is freely available under the
GNU GPL version 2 license from https:
//github.com/estnltk/estnltk. The rec-
ommended way of installing ESTNLTK is by using
the precompiled Anaconda packages available at
https://anaconda.org/estnltk/estnltk.
The library runs on Linux, Windows, and Mac
OS X platforms, and supports Python versions
3.5 and 3.6. ESTNLTK’s tutorials are available
in the form of interactive Jupyter1 Notebooks:
https://github.com/estnltk/estnltk/
tree/version_1.6/tutorials

1https://jupyter.org (accessed 2019-12-02)

https://github.com/estnltk/estnltk
https://github.com/estnltk/estnltk
https://anaconda.org/estnltk/estnltk
https://github.com/estnltk/estnltk/tree/version_1.6/tutorials
https://github.com/estnltk/estnltk/tree/version_1.6/tutorials
https://jupyter.org
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2. Related Work
As Python is a popular programming language in NLP
and data science communities, there are many Python li-
braries for NLP. Among them, ESTNLTK is most closely
related to NTLK (Bird and Klein, 2009) and TextBlob (Lo-
ria, 2014) .
NTLK library provides basic text processing, such as tok-
enization, lemmatization, part-of-speech tagging, and pars-
ing, as well as more advanced tools for building classi-
fiers, extracting information, or using semantic reasoning.
ESTNLTK uses NTLK’s word tokenizer and Estonian sen-
tence tokenization model as a basis, and improves their out-
comes by rule-based post-corrections. While ESTNLTK
also provides a basic text analysis pipeline, the two toolkits
diverge notably in the representation of (linguistic) anno-
tations. By design, ESTNLTK also allows ambiguities in
annotations, which enables experimentation with different
disambiguation strategies. We see it as crucial for morpho-
logically rich languages like Estonian.
TextBlob library builds upon NLTK, and makes basic text
processing functionalities (and also more advanced func-
tionalities, such as translation) accessible through a cen-
tral TextBlob object, which provides a convenient inter-
face for both initiating text analysis (launching pipelines)
and storing / accessing results of the analysis. ESTNLTK
shares these design principles with TextBlob: we use a cen-
tral Text object, from which the programmer can call for
text analyzers (taggers) and access their results (e.g. ask for
words, sentences, lemmas or part-of-speech tags).
Most recent Python NLP libraries are built upon deep learn-
ing models. AllenNLP (Gardner et al., 2017) focuses on
supporting NLP research and allows users to experiment
with different NLP architectures, but it can be difficult for
a beginner level user to start with. spaCy2 offers a rela-
tively easy user interface and a fast processing speed, mak-
ing it suitable for large scale text analysis and product ap-
plications; however, it currently lacks support for process-
ing Estonian. To our best knowledge, there are only two
multilingual neural NLP pipelines that offer a relatively
easy API (suitable for entry-level teaching) and also sup-
port Estonian. These are StanfordNLP (Qi et al., 2018)
and NLP-Cube (Boroş et al., 2018). However, compared
to ESTNLTK, these libraries offer only NLP pipelines (and
training utilities), but lack the support for customizing the
pipeline (e.g. adding custom taggers and making rule-based
post-corrections) and providing a convenient interface for
database storage.

3. Revised Design Principles
Since the first version of the library (Orasmaa et al., 2016),
the basic premise of ESTNLTK has stayed the same.
ESTNLTK library is an extendable collection of NLP util-
ities which use Text objects to communicate with each
other. However, practice showed that the original structure
of Text objects was not easily extendable and we had to
rethink how the information is stored and structured.
Text object consists of a raw text string, metadata, and a
collection of layers. Layer is a collection of spans together

2https://spacy.io (accessed: 2019-12-01)

with metadata. Each span has at least one annotation. All
annotations in a layer have the same fixed list of attributes.

Annotations. In our library, an analysis component can
only add annotations to the original text. Each annotation
refers to a span that specifies a text region and a list of at-
tributes. As sentences consist of words and some words
consist of several tokens, spans must also reflect this struc-
ture. Hence, a span can be specified as a continuous text
region or a list of other spans. There can be multiple spans
that cover the same text regions. A span can have several
annotations, e.g. alternative outcomes of morphological
analysis. Such ambiguous annotations are represented as
a list of attribute tuples. The latter is needed to capture the
relation between attributes.

Layers. Layer is a collection of annotations with the
same set of attributes. For instance, the outcome of mor-
phological analysis can be stored by annotating words with
lemma, part-of-speech, and form attributes. Different lay-
ers may share the same spans. For instance, words are un-
derlying spans in morphological and syntax analysis. These
annotations can be combined by indexing different layers
with the same spans. However, the information of which
annotation pairs are valid if both layers have ambiguous
annotations is not captured. If such correspondence is rele-
vant, a single layer with a joint attribute set must be created.

Taggers. All NLP utilities are taggers that take in some
layers and create or update a layer. More than forty taggers
are included in the ESTNLTK library. Approximately a
fifth of those are system level taggers which encapsulate
code for common tasks, such as annotating text based on
regular expression patterns. Users must provide only the
configuration and the rest is done by the tagger.

Text collections. The ESTNLTK library provides a
mechanism for storing and analyzing text corpora. A col-
lection is a set of texts that are stored in a database. The
library provides an API for iterating over a subset of texts
that match a filter criterion which can be specified in terms
of attribute values. It is also possible to run a tagger over
the entire collection and compare different layers. This al-
lows the user to inspect how changes in a tagger affect its
outcomes.

User interaction. The ESTNLTK library tries to balance
between two main use cases: interactive data exploration
and back-end programming. Tight integration with the
JUPYTER environment makes it easy to explore the data.
There are convenience methods for hiding the underlying
complexity. Knowing just a few commands is enough for
common tasks. At the same time, there is a parallel API that
gives a precise control over the execution without surprises.

4. Pipeline for Standard NLP Tasks
The ESTNLTK library can perform a wide range of stan-
dard analyses. The corresponding pipeline starts from to-
kenization and ends with syntax analysis and information
extraction. Different steps depend on each other. The in-
formation flow is unidirectional and the outcomes of the
analysis are not used to update the results of the preceding
steps. Correction and disambiguation steps based on the re-

https://spacy.io
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verse information flow are not part of the pipeline but they
can be added by the user.

4.1. Text Segmentation
Tokens. The new ESTNLTK version makes a distinction
between words and tokens. Tokens are smallest units form
which words are formed, but they also include punctuation
separated from words. Most tokens are words but some-
times several tokens form one word, e.g. abbreviations,
URLs, and proper names. As the tokenizer does not have to
recognize multi-token words it can be simple, i.e. splitting
tokens based on whitespace characters.

Words. After the input text has been tokenized, words
are formed by using a rule-based combiner that first iden-
tifies compound tokens and then normalizes their spelling.
For example, a compound token m-mõ-mõtlema ’t-th-think’
(prolonged pronunciation) is corrected to the word mõtlema
’think’. The corrected form will be stored as normalized
form attribute.
By default, ESTNLTK handles hyphenation, common ab-
breviations, numeric expressions, units of measurement,
XML-tags, common emoticons, case and number markers
of proper names and numerals. However, the system is eas-
ily expandable.

Paragraphs and sentences. Paragraphs are defined
through double line-breaks as usual. A pre-trained NLTK
PunktSentenceTokenizer (which works on raw
text) is used to get sentences. But, unlike in previous ver-
sions, post-processing guarantees that no words are split be-
tween sentences. Additional rules are used to handle com-
mon errors caused by direct speech, abbreviations, emoti-
cons, and missing punctuation marks.

4.2. Morphological Analysis
Standard analysis pipeline. ESTNLTK uses C++ library
Vabamorf (Kaalep and Vaino, 2001) for standard morpho-
logical analysis. The corresponding VabamorfTagger
tagger provides analyses for words and solves the disam-
biguation when a word has several possible analyses. It
works best on standard written language and can serve
as off-the-shelf linguistic preprocessing step for applica-
tions and experiments. However, non-standard varieties
of Estonian, such as Internet slang or transcripts of spo-
ken language require more fine-grained control. Thus,
VabamorfTagger can be split into three sub-taggers.
The first of them, VabamorfAnalyzer is responsible
for analyzing all the words in the input, including anal-
yses for unknown words and proper names. Its guessing
component for unknown words can be switched off, reveal-
ing non-standard words, such as misspelled words or words
from a dialect. By design, VabamorfAnalyzer pro-
vides analyses without disambiguation, so its output layer
will be ambiguous. Approximately 45% of word tokens
have more than one valid analysis in Estonian texts (Kaalep
et al., 2010).
The second component, PostMorphAnalysisTagger
fixes part-of-speech and case information of numerals
(which is often incorrect in Vabamorf’s output), and cor-
rects analyses of compound tokens (e.g. fixes part-
of-speech tags of emoticons and abbreviations). For

instance, if a number has a case ending, such as
’10e’ in the phrase 10e euroga ’with 10 euros’, then
Vabamorf incorrectly analyses it as an abbreviation, and
does not assign a correct form (singular genitive) to it.
PostMorphAnalysisTagger fixes this problem. In
addition, the tagger can flag words as ”to-be-ignored” by
the morphological disambiguation. Words corresponding
to emoticons and XML tags are flagged this way.
The third component, VabamorfDisambiguator fi-
nalizes the morphological analysis process with the Hid-
den Markov Model based morphological disambiguation,
provided by the Vabamorf tool (Kaalep and Vaino, 2001;
Kaalep et al., 2010).

Corpus-based morphological disambiguation. There
are many word forms in Estonian that can have at least
two valid lemmas even if the part-of-speech and gram-
matical form tags are fixed (Kaalep et al., 2012). For
instance, the noun teod, which is in plural nominative
case, has two valid lemmas: tigu ’snail’ and tegu ’deed’.
Kaalep et al. (2012) argue that looking at the local sen-
tence context is not enough for resolving such ambigu-
ity. They propose an algorithm that uses the idea of ”one
sense per discourse”, which originates from word sense dis-
ambiguation (Gale et al., 1992) and can be summarized
as follows: count all the instances of ambiguous lemmas
in the context corpus and choose the most frequent read-
ing (Kaalep et al., 2012). The algorithm is implemented
in CorpusBasedMorphDisambiguator, which post-
corrects morphological analysis and resolves lexical ambi-
guities based on the lemma frequency information gathered
from a user-specified context (a list of texts).
The tagger VabamorfCorpusTagger combines
CorpusBasedMorphDisambiguator and compo-
nents from VabamorfTagger into a single pipeline,
which includes analysis and both local context and
corpus-based disambiguation. Unlike other taggers,
VabamorfCorpusTagger operates on a list of Text
objects, which is both the context used in corpus-based dis-
ambiguation for collecting lemma frequency information,
as well as the target of disambiguation.

Pipeline based on finite-state transducers. In addi-
tion to the standard analysis pipeline, ESTNLTK includes
HfstEstMorphAnalyser which provides morpholog-
ical analysis based on the Helsinki Finite-State Technol-
ogy (Lindén et al., 2009; Kaalep et al., 2018). Compared to
the standard pipeline, it provides following improvements:

• fine-grained analysis of the structure of compound and
inflected words (e.g. lemma, part-of-speech and form
information is available for each sub word);

• revised morphological category system, which pro-
vides more detailed analyses of verb categories;

• special tags that describe word form’s usage charac-
teristics, e.g. whether the form is rare, or commonly
used, but not in normative dictionaries;

Fine-grained analysis of compound and inflected words’
structure can be useful in information extraction. For in-
stance, analysis of the common noun kanadalane ’Cana-
dian’ shows that the common noun has been derived from
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the proper noun Kanada ’Canada’, and this information can
be used to enhance search of named entity mentions.
Vabamorf’s morphological category system uses verb end-
ing morphemes as category names. If the ending mor-
pheme is (syntactically) ambiguous, a single category name
is used, e.g. the category ’sid’ stands for both 2nd person
in singular and 3rd person in plural past indicative mood
(Kaalep, 2015). HfstEstMorphAnalyser’s category
system makes verb categories explicit, distinguishing be-
tween voice, tense, mood, person and polarity categories,
and, in turn, enables straightforward building of syntactic
analysis upon the morphological annotations. Word use
characteristics tags can be used in stylometry, e.g the de-
gree to which the word usage follows the language norm.
It must be noted that while HfstEstMorphAnalyser
provides an alternative to VabamorfTagger, the model
is still under development. Its guessing component for un-
known words has a low coverage and morphological dis-
ambiguation has not yet been integrated. Both of these are
serious limitations in practice and thus, at its current stage,
HfstEstMorphAnalyser is an experimental tool.

4.3. Syntactic Analysis
While the first version of ESTNLTK (Orasmaa et al., 2016)
did not include syntactic analysis, the current version pro-
vides access to two dependency syntactic analyzers: rule-
based VislCG3 (Karlsson et al., 1995; Müürisep et al.,
2003) and statistical MaltParser (Nivre et al., 2006).
As both analyzers need a detailed morphological analy-
sis, MorphExtendedTagger is used to add detailed in-
formation about verb forms (person, tense, mood, voice,
number, polarity), and subtype information for verbs and
other word classes (e.g. pronoun types). VislCG3 parser
VislTagger can be applied directly on the resulting
layer while MaltParser needs an additional conversion to
CONLL format (Buchholz and Marsi, 2006) performed by
ConllMorphTagger.
Both parsers add a syntax layer to the text object that con-
tains the morphological information together with the syn-
tactic function labels and dependency information. We
have also implemented several tools to analyze the correct-
ness of automatic syntax labelling. For instance, it is pos-
sible to import syntactic information from several CONLL
files into different layers of one text object and calculate a
LAS score between those layers.

4.4. Other Tools
ESTNLTK also includes less commonly used linguistic
analysis tools introduced in the first version: clause seg-
menter and verb chain detector (Orasmaa et al., 2016).
The NLP pipeline ends with information extraction tools:
temporal expression tagger (Orasmaa, 2012), named en-
tity recognizer (Tkachenko et al., 2013), and a newly intro-
duced component: grammar-based address recognizer. The
library also contains neural morphological disambigua-
tor (Tkachenko and Sirts, 2018) the performance of which
is comparable to VabamorfDisambiguator.

5. Pipeline for Fact Extraction
Automatic fact extraction is useful only for large data sets
where the initial setup cost is small compared to the re-

sources needed for manual processing. Also, it is easy
to achieve decent performance with simple methods but it
becomes increasingly difficult to handle remaining corner-
cases correctly. The latter is true even if we apply state of
the art deep learning methods (Li, 2018).
To address these issues, ESTNLTK offers taggers for ba-
sic tasks, an API for handling large text collections, and
a robust framework for building rule-based fact extraction
tools. To support iterative development, the library pro-
vides tools for regression testing and error analysis, and
methods for highlighting differences between alternative al-
gorithms.

5.1. Standard Taggers For Simple Tasks
Almost all rule-based fact extraction algorithms start from
token detection. In this context, tokens are the smallest tex-
tual units from which phrases are constructed. These could
be words, sub-phrases, or sequences of symbols. For in-
stance, if we are interested in Estonian car registration num-
bers, tokens could be triples of numerals and letters, such as
‘145‘, ‘9 7 6‘, ‘ABC‘, and ‘K F C‘. If we need to process a
text that contains many typing errors, tokens can be joined
with other words or even overlap with each other.
In many cases, RegexTagger that provides a simple way
to identify tokens with regular expressions is sufficient. The
amount of overlapping spans can be reduced by using pat-
tern priorities and prepackaged conflict resolving strategies.
The amount of false matches can be reduced by a decorator
that uses additional program logic to validate the match and
derive the values of annotation attributes.
In some cases, the set of relevant tokens can be speci-
fied as a finite list, such as common food item names.
PhraseTagger fixes a particular attribute such as
lemma, and each entry in the list is defined by a tuple of
attribute values. Again, additional program logic can be
added to filter out false positives and to define the values of
annotation attributes.
Many documents consist of subsections that are separated
by header lines. TextSegmentsTagger allows for the
extraction and annotation of these subsections, provided
that the headers have been identified and stored in a sep-
arate layer.

5.2. Fact Extraction With Finite Grammars
Rule-based fact extraction can be viewed as a compact way
to describe all the possible text fragments below a certain
length threshold that correspond to a particular fact. Finite
grammars are particularly suitable for this as they are sim-
ple to write and comprehend, and efficient to parse. More-
over, fingerprint patterns for discarding texts that cannot
contain facts can be generated automatically.

Grammar. The component Grammar allows the user to
specify a finite grammar with two extensions. First, there is
a special SEQ(α) extension that makes it possible to spec-
ify repetitions of the same grammar symbol α. The lat-
ter compacts the description of repeating patterns, such as
rows in food recipes. Second, for each rule, it is possible to
add program logic to validate and decorate matches. This
reduces the size of the grammar and increases readability.
For example, we do not have to define a special category for
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foods that are measured in teaspoons, instead the validator
can look up from a large table if a food item and a unit
match. Decorators are useful for bottom-up propagation of
information that is needed for validation and for computing
final annotation attributes.

Ambiguous tokenization and parsing. The true com-
plexity in phrase detection lies in correct tokenization. In
theory, tokenization is assumed to produce a list of non-
overlapping tokens. In practice, it is not possible to dis-
tinguish between numbers and dates without surrounding
text, e.g. consider the token 22.03. Moreover, if we
use machine-learning methods to identify complex tokens
(such as named entities), we have no guarantees for what
happens with overlaps. Similar problems arise if we want to
treat non-conventional ways of writing numbers. To resolve
an ambiguity, we can add disambiguation rules into the
grammar and let the parser choose the most consistent tok-
enization. GrammarParsingTagger implements such
a robust parsing algorithm by lifting the standard bottom-
up CYK parser to the setting where the ordering of tokens
is represented by a graph. More precisely, there is an arc
A → B if there exists a valid disambiguation . . . ,A,B, . . .
without overlapping tokens.

Conflict resolving strategies. To reduce the amount of
superfluous phrases a grammar can match in a text, we
use rule prioritization and phrase scoring. Rule prioritiza-
tion allows for blocking some derivation rules when alter-
natives are present, e.g. to force that ’2 kg’ is parsed as
measurement although ’2’ can be interpreted as a number.
Phrase scoring allows pruning alternative interpretations of
the same phrase. If the same set of tokens has several differ-
ent parsing trees with the same root node, the parser keeps
the one with the highest score. Even with these additions,
the parser can still match overlapping phrases. Thus, the
user can specify which phrases to keep. Normally, maxi-
mal phrases are kept.

5.3. Tools For Iterative Development
The best way to organize the development of a fact extrac-
tion pipeline is to store all the texts as an ESTNLTK col-
lection and then iteratively develop the set of necessary tag-
gers. Each text object in a collection is stored as a search-
able JSON object in a PostgreSQL database. The collec-
tion provides an API for applying taggers. When a tagger
is applied, a new layer is generated and stored as a separate
JSON object. Results can be retrieved by select queries that
reassemble the text object from different JSON objects.
Such setup allows the user to iteratively generate all the
necessary layers and to measure the progress on a dedi-
cated test collection. For that, the output layers of different
taggers can be compared using DiffTagger after which
either the results can be summarized over the collection or
examples of differences can be extracted. Collections have
specific API calls for doing that. Regression tests for fixing
the expected behaviour on selected examples can be gener-
ated in a similar manner.

6. Empirical Validation
We compared the new version of ESTNLTK (v1.6.4b) with
the old version of ESTNLTK (v1.4.1) and with the Stan-

fordNLP’s neural NLP pipeline (Qi et al., 2018)3 on the
complete morphological processing, which involved word
segmentation, sentence segmentation, and morphological
analysis and disambiguation4.
As the performance scores of all these systems are close
to maximum values, it is impossible to use traditional test
set for comparison. Statistical fluctuations are much bigger
than true performance differences unless the test set size
is enormous. To bypass this restriction, we evaluate the
systems on unlabelled data and resolve manually a small set
of randomly chosen differences. This allows us to estimate
the relative differences in performance precisely.

Corpus. Evaluation data was initially taken from the Es-
tonian National Corpus (ENC) (Kallas and Koppel, 2018),
which is the largest published collection of Estonian texts
so far. However, we discovered errors in one of its subcor-
pora. The Estonian Reference Corpus (ERC) was missing
information about paragraph boundaries, which is crucial
for sentence segmentation. Thus, we replaced the ERC with
the original version by exporting texts from (Laur, 2018), in
which paragraph endings are marked by double newlines.
For the evaluation, we chose documents randomly from
the ENC focusing on 5 text types: periodicals, fiction,
and science (from the ERC subcoprus), web texts (blogs
and forums from the Estonian Web 2013 subcorpus), and
Wikipedia articles (from the Estonian Wikipedia 2017 sub-
corpus). While four of these text types represent standard
written language (the analysis of which is the main aim of
our pipeline), texts from blogs and forums allow us to eval-
uate the pipeline’s performance on non-standard language.
During the corpus selection process, we excluded docu-
ments belonging to the Estonian UD treebank (Muischnek
et al., 2016) and the Estonian Web UD treebank (Särg et al.,
2018)5, because these have been used for training language
models. For each text type, a subcorpus in size of approx.
2,100,000 tokens6 was chosen. Table 1 describes corpus
structure and statistics.

Evaluation setup. To compare StanfordNLP’s linguistic
analysis output with that of ESTNLTK’s, we converted an-
notations of both tools into a common format. This for-
mat uses 3 attributes in each annotation: lemma, part-of-
speech tag, and form. In the attributes of part-of-speech
and form, we use Vabamorf’s categories7, which are more
geared towards expressing Estonian morphological features

3We used StanfordNLP’s latest Estonian model (v0.2.0).
4The source code of our experiments is available at https:

//github.com/estnltk/eval_experiments_lrec_
2020 (accessed: 2020-02-27)

5https://github.com/
UniversalDependencies/UD_Estonian-EDT
(v2.4) and https://github.com/
UniversalDependencies/UD_Estonian-EWT (v2.4)

6Here, we mean tokens that appear on the tokens layer of
ESTNLTK v1.6 . Tokens also include punctuation separated from
words.

7For description of the tagset (in Estonian), see:
https://github.com/estnltk/estnltk/blob/
version_1.6/tutorials/nlp_pipeline/A_02_
morphology_tables.ipynb (2019-11-21)

https://github.com/estnltk/eval_experiments_lrec_2020
https://github.com/estnltk/eval_experiments_lrec_2020
https://github.com/estnltk/eval_experiments_lrec_2020
https://github.com/UniversalDependencies/UD_Estonian-EDT
https://github.com/UniversalDependencies/UD_Estonian-EDT
https://github.com/UniversalDependencies/UD_Estonian-EWT
https://github.com/UniversalDependencies/UD_Estonian-EWT
https://github.com/estnltk/estnltk/blob/version_1.6/tutorials/nlp_pipeline/A_02_morphology_tables.ipynb
https://github.com/estnltk/estnltk/blob/version_1.6/tutorials/nlp_pipeline/A_02_morphology_tables.ipynb
https://github.com/estnltk/estnltk/blob/version_1.6/tutorials/nlp_pipeline/A_02_morphology_tables.ipynb


7157

Corpus Structure and Statistics
Fiction Periodicals Science Blogs and

forums
Wikipedia Total

Documents 53 5,917 230 3,016 9,270 18,486
Tokens 2,190,173 2,170,290 2,230,925 2,096,558 2,127,617 10,815,563
Word segmentation
span similarity ratios
ESTNLTK v1.4 vs v1.6 0.9979 0.9892 0.9713 0.9715 0.9584 0.9780
ESTNLTK v1.6 vs StanfordNLP 0.9977 0.9893 0.9638 0.9601 0.9690 0.9763
Sentence segmentation
span similarity ratios
ESTNLTK v1.4 vs v1.6 0.8467 0.8845 0.8744 0.9014 0.9542 0.8904
ESTNLTK v1.6 vs StanfordNLP 0.7496 0.8297 0.7338 0.8878 0.9125 0.8230
Morphological analysis
annotation similarity ratios
ESTNLTK v1.4 vs v1.6 0.9954 0.9874 0.9710 0.9706 0.9595 0.9772
ESTNLTK v1.6 vs StanfordNLP 0.8451 0.8268 0.8056 0.8024 0.7823 0.8131

Table 1: Statistics of the evaluation corpus and pairwise agreement scores for tool outputs. ESTNLTK v1.6 was compared
with ESTNLTK v1.4 and with StanfordNLP in terms of word and sentence segmentation (marking segmentation spans)
and morphological analysis (adding morphological annotations to words). Morphological analysis matches were calculated
only over those words for which both tools found the same spans.

than Universal Dependencies’ categories (used by Stan-
fordNLP).

Agreement score. We first estimated the agreement be-
tween each pipeline pair. In case of segmentation annota-
tions, we calculated span similarity ratio as

r = 2u/(n1 + n2) (1)

where u is the number of spans same in both outputs and
n1 and n2 are the span counts for both outputs. In case of
morphological annotations, the same formula was used, but
u was now defined as the number of annotations for which
spans and attribute values were equal and n1 + n2 was de-
fined as the total number of annotations. Micro-averaging
was used: span and annotation counts were summarized
over the corpus before calculating ratios.
The results are depicted in Table 1. All the tools have
very similar performance on word segmentation. For sen-
tence segmentation, there is a notable disagreement, es-
pecially between ESTNLTK v1.6 and StanfordNLP. For
morphological annotations, the difference between the two
ESTNLTK’s versions is minor, but a notable difference
emerges when comparing ESTNLTK with StanfordNLP.

Manual evaluation. To obtain a relative ranking between
pipelines, we collected all annotation differences and ran-
domly chose 100 differences (20 from each text type) for
manual evaluation. The process involved aggregation of
differences to make human judgements easier. For segmen-
tation tasks, we aggregated differences into gaps, defining
a gap as any number of consecutive differences (missing,
extra or partially overlapping spans) between two match-
ing spans8. For morphological analysis, we grouped an-

8... or between start of the document and the first matching
span, or between the last matching span and end of the document.

notations by words, so that overlapping and differing mor-
phological annotations of a word formed a single unit of
evaluation. As a result, situations arose when, despite the
difference, ”both tools are correct”, because ESTNLTK can
leave morphological analysis ambiguous. Ambiguous out-
put triggers a ”difference” even if there is a pair of matching
(and possibly correct) annotations for the word.
Table 2 shows the corresponding results. The evaluation of
segmentation differences shows that v1.6 performs notably
better than both v1.4 and StanfordNLP on word and sen-
tence segmentation tasks. This indicates that our rule-based
improvements have met the target. Note that when compar-
ing StanfordNLP to v1.6 on word segmentation, Table 1
shows only a minor difference between the two pipelines,
and yet the manual evaluation (Table 2) reveals a large gap
between the annotation quality of the two tools. Our rule-
based corrections effectively address rare / infrequent to-
kenization cases, which would be infeasible to address by
neural models due to the need for a large amount of train-
ing data. 9-23% uncertain cases in the segmentation eval-
uation indicate that tasks themselves need further clarifica-
tions, e.g. how to segment sentences in the context of the
web language with irregular usage of punctuation.
ESTNLTK v1.6 also performed better than the alternatives
on the task of full morphological analysis. Table 1 shows
only a minor difference between outputs of v1.6 and v1.4,
and the difference in qualities (Table 2) is again due to
addressing/fixing rare cases in v1.6. However, the situa-
tion is different when comparing v1.6 with StanfordNLP.
The morphological analysis differences become notable al-
ready in the automatic comparison (Table 1), and the man-
ual evaluation (Table 2) shows v1.6 outperforming Stan-
fordNLP. When examining StanfordNLP’s morphological
analysis errors, in most cases there were problems with
lemmatization – the neural model was suggesting a wrong
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Manual evaluation of differences between EstNLTK v1.4 and v1.6
Both correct Only v1.6 correct Only v1.4 correct Both wrong Uncertain

Segmentation: words 0 72 7 12 9
Segmentation: sentences 0 61 12 10 17
Morphological analysis 41 32 18 6 3
Manual evaluation of differences between EstNLTK v1.6 and StanfordNLP

Both correct Only EstNLTK v1.6
correct

Only StanfordNLP
correct

Both wrong Uncertain

segmentation: words 0 69 17 2 12
segmentation: sentences 0 51 16 10 23
morphological analysis 42 24 12 4 18

Table 2: Results of the manual evaluation of 100 randomly picked annotation differences.

Morphological disambiguation
similarity ratios

Fiction Periodicals Science Blogs and
forums

Wikipedia Total

Default vs corpus-based
disambiguation

0.9790 0.9804 0.9790 0.9882 0.9774 0.9807

Default vs neural
disambiguation

0.9095 0.9186 0.9154 0.9099 0.9239 0.9154

Manual evaluation of 100 randomly picked differences
both correct only default

correct
only improved
method correct

both wrong uncertain

Default vs corpus-based
disambiguation

18 19 45 7 11

Default vs neural
disambiguation

65 18 16 0 1

Table 3: Automatic comparison and manual evaluation of ESTNLTK’s disambiguation tools.

lemma, even if the grammatical tags were guessed cor-
rectly. Due to the Zipfian distribution of word lemmas,
the neural model needs (possibly infeasibly) large amounts
of data to learn correct the lemmatization of rare words.
However, ESTNLTK’s Vabamorf-based lemmatizer, which
combines a lexicon with derivation rules, maintains rela-
tively stable performance even on rare words.

Enhanced morphological disambiguation. We also
measured the performance of the two new disambiguation
components: the corpus-based morphological disambigua-
tor (VabamorfCorpusTagger) and the neural morpho-
logical disambiguator (SoftmaxEmbCatSumTagger).
As the neural model outputs only grammatical informa-
tion and uses Universal Dependencies’ categories, anno-
tations of the tools under comparison were again con-
verted into a common format. In this format, an anno-
tation included only 2 attributes: part-of-speech tag and
form in Vabamorf’s category system. Table 3 compares
the standard morphological disambiguation (provided by
VabamorfTagger) to alternative (corpus-based and neu-
ral) disambiguation methods. Results show that corpus-
based disambiguation9 introduces only minor differences

9The context used in the corpus-based disambiguation was the
document under analysis.

compared to the standard one (very high similarity ratios),
but still outperforms the standard one with its higher num-
ber of correct analyses. On the other hand, neural mor-
phological disambiguation is notably dissimilar from the
standard disambiguation, but if we consider the manual
quality evaluation, the performance difference is insignifi-
cant. Moreover, the neural model outputs only grammatical
information and does not resolve lemma ambiguities dis-
cussed by Kaalep et al. (2012). Hence, if obtaining correct
lemmas is also important, then VabamorfTagger and
its successor VabamorfCorpusTagger are still better
choices.

7. Conclusion
We presented a remastered version of the Estonian NLP
pipeline in ESTNLTK library. We introduced library’s re-
vised design principles, modifications and enhancements to
the standard pipeline, as well as new tools for fact extrac-
tion and iterative tagger development. The work concluded
with an empirical evaluation, showing that our remastered
morphological processing pipeline improves upon the pre-
vious version of ESTNLTK, and outperforms the Stanford
NLP pipeline for Estonian.
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