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Abstract
We present Seq2SeqPy a lightweight toolkit for sequence-to-sequence modeling that prioritizes simplicity and ability to customize
the standard architectures easily. The toolkit supports several known models such as Recurrent Neural Networks, Pointer Generator
Networks, and transformer model. We evaluate the toolkit on two datasets and we show that the toolkit performs similarly or even better
than a very widely used sequence-to-sequence toolkit.
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1. Introduction
Neural models have attracted a lot of attention in the past
few years. They have become standard models in several
tasks such as machine translation, summarization, Natural
Language Generation (NLG), etc. Recently, several cor-
porations and institutes have released frameworks to help
the progress of neural networks. Two of the most widely
adopted frameworks are Tensorflow by Google and Py-
torch by Facebook AI. These frameworks provide enor-
mous amount of advantages when it comes to designing
and training neural networks. They handle very compli-
cated tasks such as automatic differentiation and comput-
ing with GPU which makes working with neural networks
much easier.
In addition, several toolkits have been developed on top
of these frameworks to help researchers quickly perform
experiments on machine learning tasks in general and se-
quence modeling in particular. Among other, some of the
most known toolkits are: OpenNMT (Klein et al., 2017),
Fairseq (Ott et al., 2019) and Sockeye (Hieber et al., 2017).
Most of these toolkits have extremely complicated cod-
ing structures and they are mainly targeting standard tasks
like machine translation with very large corpora such as
WMT1. This complexity in the code is the artifact of sup-
porting a very large number of features that are needed in
certain cases. However, there are cases where all these
features might not be necessary, for instance, researcher
who are new to sequence-to-sequence (seq2seq) modeling
might need more simpler codes to start with. In addition,
there might be cases where we need to customize the stan-
dard seq2seq architectures to add own research goals. In
such cases, due to their complexity, changing the aforemen-
tioned toolkits is very difficult and time consuming.
In this paper we present Seq2SeqPy, a Pytorch2 based
seq2seq modeling toolkit that we have built by prioritizing
simplicity and ability to customize the provided architec-
tures easily. The main target of this toolkit is researchers
and students who are new to deep learning and seq2seq

1http://www.statmt.org/wmt15
2https://pytorch.org/

models.
The main features of Seq2SeqPy are:

• Support for several seq2eq models

• Easy to use command line arguments

• Implementation in Python based on PyTorch

• Ability to customize and add new architectures

• Ability to easily add pre-trained language models such
as BERT

• Easy to track and reproduce experiments via json con-
figuration files

The toolkit can be accessed, after registration, from
the following link: https://gricad-gitlab.
univ-grenoble-alpes.fr/getalp/
seq2seqpytorch

2. Seq2SeqPy
Seq2SeqPy is an open source toolkit for seq2seq modeling
with all the necessary features needed for sequence mod-
eling tasks. This section describes design principles, sup-
ported architectures and features of the toolkit.

2.1. Design Principles
Simplicity: Our toolkit covers main seq2seq modeling
features with the least amount of code. The whole toolkit
has 25 files and around 2100 lines of code. This helps
researchers who are new to seq2seq models understand the
code faster.

Customizability: Seq2SeqPy has been designed in such
a way that is very easy to change the default seq2seq
architecture to new architectures, for example, one can
easily design a new architecture with two encoders and
dual attention mechanism or a two decoder architecture for
a multi-task learning setup.

Reproducibility: We use configuration files to store all
experiment related information. The configuration file

http://www.statmt.org/wmt15
https://pytorch.org/
https://gricad-gitlab.univ-grenoble-alpes.fr/getalp/seq2seqpytorch
https://gricad-gitlab.univ-grenoble-alpes.fr/getalp/seq2seqpytorch
https://gricad-gitlab.univ-grenoble-alpes.fr/getalp/seq2seqpytorch
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contains information such as, name of the experiment,
the training data, the architecture of the model, decoding
strategy, etc. One can easily reproduce an experiment by
having its configuration file.

2.2. Supported Architectures
Seq2seq models usually consist of an encoder and a
decoder (Sutskever et al., 2014). The encoder takes a
sequence of source words x = {x1, x2, ..., xTx} and
encodes it to a fixed length vector. The decoder then
decodes this vector into a sequence of target words
y = {y1, y2, ..., yTy

}. Seq2seq models are able to treat
variable sized source and target sequences making them a
great choice for tasks such as natural language generation,
machine translation, summarization, etc. Our toolkit
supports the following types of seq2seq models

Reccurrent Neural Network: In Reccurrent Neural Net-
works (RNNs), both the encoder and decoder rely on re-
current units to process information. The RNN encoder, at
each time step t receives an input word xt (in practice the
embedding vector of the word) and a previous hidden state
ht − 1 then generates a new hidden state ht using:

ht = f(ht−1, xt), (1)

where the function f is an RNN unit such as Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Unit (GRU) (Cho et al.,
2014).
Once the encoder has treated the entire source sequence, the
last hidden state hTx is passed to the decoder. To generate
the sequence of target words, the decoder also uses an RNN
and computes, at each time step, a new hidden state st from
its previous hidden state st−1 and the previously generated
word yt−1:

st = f(st−1, yt−1), (2)

At training time, yt−1 is the previous word in the target se-
quence (teacher-forcing). Lastly, the conditional probabil-
ity of each target word yt is computed in order to generate
a word as follows:

P (yt|y<t,x) = softmax(W [st, ct]+b), (3)

where W and b are a trainable parameters used to map the
output to the same size as the target vocabulary.

Attention: The context vector ct is obtained using the
sum of hidden states in the encoder, weighted by its atten-
tion (Bahdanau et al., 2014). It is computed as follow:

ct =

Tx∑
i=1

αt
i hi (4)

Attention weights αt
i are computed by applying a softmax

function over a score calculated using the encoder and de-
coder hidden states:

αt
i = softmax(eti) (5)

eti = score(st, hi) (6)

The possible choices that we provide in this work for the
scoring function are dot, general, and concat as described
in (Luong et al., 2015):

score(st, ht)=


s>t ht dot
s>t Waht general
v>a tanh (Wa[st;ht]) concat

(7)

The attention mechanism helps the decoder to find relevant
information on the encoder side based on the current
decoder hidden state.

Pointer Generator Network:
The Pointer-Generator (PG) Network (See et al., 2017) is
an improvement over RNNs which helps the network to
learn when to copy a word from the source sequence or
when to generate it from the vocabulary distribution. PG
networks has an additional trainable parameter pgen ∈
[0, 1] to evaluate the probability of generating or copying
a word. More specifically, the pointing mechanism can be
formalized as:

Pfinal(w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ai,

where Pfinal(w) is the final probability of the word w,
Pvocab(w) is the probability of w as estimated by the model
and

∑
i:wi=w ai is the probability of w given the current

attention it receives. In case w is the unknown word, then
if the attention is high and pgen sufficiently low then the
input word will be used as output.

Transformer: The transformer model (Vaswani et al.,
2017) is different from RNN in the sense that instead of
processing the input sequence sequentially, it relies on self-
attention mechanism to process the input sequence tokens
at once in parallel.
The transformer encoder, similar to RNNs, encode every
incoming token using an embedding layer. Then in order
to re-inject the information about the token embeddings —
which is lost due to the parallel processing of the input to-
kens —the encoder adds a positional embedding layer. This
makes sure that the models has knowledge of the position
of each token. Positional embeddings can be constructed as
follows:

PE(pos, 2i) = sin(pos/100002i/d) (8)
PE(pos, 2i+ 1) = cos(pos/100002i/d), (9)

where pos is the position, i is the dimension and d is the
number of hidden states in the model. The rest of the en-
coder is composed of blocks of self-attention and feed for-
ward network (FFN) layers which passes the previously
embedded tokens through each block from top to bottom.
The FFN layer consists of two linear transformations with
a ReLU activation in between as follows;

FFN(x) = max(0, xW1 + b1)W2 + b2 (10)
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Perhaps the most important part of a transformer model is
the self-attention mechanism which works by creating three
trainable parameters K, V , Q to transform the input tokens
into query, key and value representation which in turn are
used to learn representation of each token as following:

A = softmax[
(xWq)(xWk)

T

√
dout

] (11)

C = AT (xWv) (12)

C forms a sequence of encodings learned by the self-
attention mechanism. These encodings are expected to con-
tain context-aware information about each token and their
surrounding tokens in the input sequence. In our work,
as described in (Vaswani et al., 2017), we have imple-
mented the multi-headed attention mechanism, in which
Equation 12 is applied k times. This allows the model to
jointly attend to information from different representation
subspaces at different positions.
The decoder, similarly to the encoder, is composed of
blocks of self-attention and feed forward layers. In ad-
dition, each block has an additional attention mechanism,
which performs multi-head attention over the encoder out-
puts n order to compute the similarity between the decoder
hidden states s and the encoder hidden states h:

A = softmax[
(sWq)(hWk)

T

√
dout

] (13)

C = AT (hWv) (14)

The final layer of the transformer models consists of a linear
transformation followed by a softmax function just like the
standard seq2seq model.

2.3. Features
Seq2SeqPy supports most of the necessary seq2seq model-
ing features. The following is a brief description of some
of the most important features:

Text processing: We use a simplified version of the
torchtext3 toolkit that we call torchtext lite. torchtext
lite has many additional features that the original toolkit
doesn’t have, such as contextual pre-trainined embeddings
(e.g., BERT), ability to have non-textual sequence as input
or output, saving and loading vocabulary, etc. While many
other features that are not needed for seq2seq modeling
have been removed to make the toolkit as lite as possible.
We have also re-written some complicated parts of the code
(e.g., bucketing,) in a simpler way to help understanding
the text processing part easier for beginners.

Decoding: Seq2SeqPy uses batching during inference in
order to make the decoding process faster. We support both
greedy decoding and beam search decoding with length
penalty. In addition, we provide an option for interactive
decoding which is particularly interesting for making quick
tests on the model outputs.

3https://github.com/pytorch/text

Logging: Logging experiment results is extremely impor-
tant. Our toolkit records every detail related to the model
architecture, configuration file, training and validation loss
values at each iteration along with the time that each event
happened.

Visualization: We provide visualization options at differ-
ent levels. All the losses and the accuracies can be visual-
ized from tensorboard 4. When needed there is an option
to visualize the attention weights at decoding time. Finally,
we provide a tool that can summarize several experiments
along with their loss charts in a single html page.

3. Experiments
Although our toolkit can handle a dataset of any size,
our target is mainly small to medium sized datasets. In
this section we report results of two experiments con-
ducted using our toolkit on two datasets: E2E NLG Chal-
lenege dataset (Novikova et al., 2017) and PORTMEDIA
dataset (Lefevre et al., 2012). We test all the three mod-
els explained in Section2.2. namely, RNN, PG, and trans-
former. The results will be compared to OpenNMT, since
it is the only toolkit that supports all the three models.

3.1. Datasets
E2E NLG Challenge Dataset: This dataset has become
one of the benchmarks of reference for end-to-end NLG
systems. It is still one of the largest dataset available for this
task. The dataset was collected via crowd-sourcing using
pictorial representations in the domain of restaurant recom-
mendation. Although the E2E challenge dataset contains
more than 50k samples, each MR is associated on average
with 8.1 different reference utterances leading to around
6K unique MRs. Each MR consists of 3 to 8 slots, such
as name, food or area, and their values and slot types are
fairly equally distributed. The majority of MRs consist of 5
or 6 slots while human utterances consist mainly of one or
two sentences only. The vocabulary size of the dataset is of
2780 distinct tokens.
PORTMEDIA Dataset: This is a dataset of telephone
French conversations collected from the ticket reservation
service for the festival of Avignon in 2010 [19]. It con-
tains 700 annotated dialogues of 140 speakers in a simu-
lated telephone booking task with 32 slot categories and
450 value categories label annotation (plus 4 intents). The
dataset has been formatted for a sequence to sequence task.
For instance, the sentence “euh no I would like information
about euh the authors Olivier Cadiot and Ludovic Lagarde
regarding the title un mage en attaque” has been anno-
tated with the following semantic information: piece-nom-
auteur[ ludovic lagarde ], command-tache[ information ],
. . . . PORTMEDIA will be used to test the capabilities of
our toolkit when it comes to the Natural Language Under-
standing (NLU).

3.2. Hyper-parameter Search
To have a fair comparison between our toolkit and Open-
NMT, we decided to perform a separate hyper-parameter

4https://www.tensorflow.org/tensorboard

https://github.com/pytorch/text
https://www.tensorflow.org/tensorboard
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System BLEU ROUGE METEOR
OpenNMT (RNN) 0.628 0.664 0.436
+ beam search 0.651 0.681 0.436
OpenNMT (Transf.) 0.559 0.618 0.384
+ beam search 0.584 0.645 0.380
Seq2SeqPy (RNN) 0.655 0.673 0.450
+ beam search 0.675 0.694 0.446
Seq2SeqPy (Transf.) 0.669 0.689 0.445
+ beam search 0.660 0.704 0.447

Table 1: Results on the test set of E2E Challenge dataset.

System Intent Slot Value
OpenNMT (RNN) 3.19 14.27 18.75
+ beam search 3.29 14.75 18.77
OpenNMT (PG) 2.79 12.94 16.66
+ beam search 2.79 12.97 16.74
Seq2SeqPy (RNN) 3.14 13.71 15.48
+ beam search 2.84 13.07 15.35
Seq2SeqPy (PG) 2.34 13.37 16.60
+ beam search 2.34 13.40 16.56

Table 2: CER on the test set of PORTMEDIA dataset.

search for each toolkit. This is because, even under same
settings and parameters, different toolkits often yield dif-
ferent results. Indeed, this is what we observed during our
initial experiments, as same parameters gave extremely dif-
ferent results.
Hyper-parameters that were the same for both toolkits are
the following: RNN type was set as LSTM (BiLSTM for
the encoder), 500 for embedding dimensions, attention type
was dot attention, 0.2 dropout, transformer head was set
to 8 and its hidden dimensions and feed forward size as
512 and 2048 respectively. The vocabulary size was 50K
with 320 of batch size and finally beam size was set as
5. Nonetheless, few parameters were different, Seq2SeqPy
had 2 encoder and 2 decoder layers for the RNN, PG and
transformer models with 256 hidden state, while Open-
NMT had 1 encoder and 1 decoder layers with 512 hidden
states.

3.3. Results
Table 1 and Table 2 show the results on the E2E NLG
challenge and PORTMEDIA datasets for NLG and NLU
tasks respectively. We used standard metrics like BLEU,
ROUGE an METEOR to evaluate the NLG task. For the
NLU task, we used Concept-Error-Rate (CER) as intro-
duced in (Desot et al., 2019). Since each sample in the
PORTMEDIA dataset has an intent and a sequence of slots
and values, we report error rates for each of the three en-
tities separately. No particular preprocessing or data aug-
mentation techniques were used for any of the datasets.
The results on the E2E datasets shows that Seq2SeqPy
achieves higher scores than OpenNMT in all the three met-
rics. Between RNN and transformer models, the latter has
the highest ROUGE score with the help of beam search,
however, RNN achieves better scores in BLEU and ME-
TEOR scores. On the NLU side, the differences between

the two toolkits are less obvious. Seq2SeqPy has the low-
est CER for intent and value, while OpenNMT achieved the
lowest CER on slots.
Overall, we think the results prove that currently available
complex toolkits are not necessarily the best choice for non
standard tasks and datasets. One can achieve same or even
better results with a much simpler code base. Moreover,
simple code is always easier to understand and customize
for specific tasks and architectures. This is particularly im-
portant for researchers who are just beginning to experi-
ment seq2seq models and need simpler codes to start with.

4. Demonstration of Customization
In this section, we demonstrate that by changing few lines
in few files we can change the default architecture provided
with Seq2SeqPy to easily add new features. The modifica-
tion that we propose is to integrate a contextual pre-trained
embedding called BERT5. Contrary to traditional pre-
trained embeddings like word2vec, BERT embeddings
have contextual knowledge, i.e., the embedding of each
token is determined based on the other surrounding tokens.
This provides a great deal of advantage for some tasks such
natural language understanding. The following is a list of
steps needed to add BERT to Seq2SeqPy:

Step 1: Change the source field from TextField to
BertField
File: utils/data utils.py
Line: 66
src field = torchtext.TextField() 7

src field = torchtext.BertField() 3

Step 2: Remove vocabulary builder for src field
Since BERT has its own tokenizer and vocabulary builder,
we need to remove all related lines.
File: utils/data utils.py
Line: 117 & 122
src field.vocab = trg field.vocab 7

src field.build vocab(voc dataset ... ) 7

Step 3: Replace default embedding with BERT embed-
ding in the encoder
File: models/rnn layers.py
Line: 1
from transformers import BertModel

bert = BertModel.from pretrained

(’bert-base-uncased’)
Line: 121
embedded = self.embedding(src) 7

embedded = bert(src)[0] 3

Step 4: Update the configuration file
In the configuration file, the embedding dim should be
changed to 768 in order to make your seq2seq model
compatible with Bert model.

5We use the BERT implementation provided by https://
github.com/huggingface/transformers.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Several other customization tutorials are provided on the
website of the toolkit.

5. Conclusion
In this paper, we presented Seq2SeqPy, a toolkit for se-
quence modelling that prioritizes simplicity and ability to
customize standard architectures easily. The toolkit targets
researchers who are new to deep learning and seq2seq mod-
els. Experiments that we conducted on two datasets showed
that our toolkit achieves better performance under different
settings and architectures. This shows that competitive per-
formances can still be achieved with much simpler toolkits.
Seq2SeqPy has already been used for NLG (Qader et al.,
2018; Qader et al., 2019; Mehta et al., 2019) and NLU tasks
(Desot et al., 2019; Kocabiyikoglu et al., 2019) as well as
for user tracking in pervasive environments (Portet et al.,
2019).
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