
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7009–7014
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7009

Word at a Glance:

Modular Word Profile Aggregator

Tomáš Machálek
Institute of the Czech National Corpus, Faculty of Arts - Charles University

nám. Jana Palacha 1/2, 116 38 Praha 1, Czech Republic
tomas.machalek@ff.cuni.cz

Abstract
Word at a Glance (WaG) is a word profile aggregator that provides means for exploring individual words, their comparison and
translation, based on existing language resources and related software services. It is designed as a building kit-like application that
fetches data from different sources and compiles them into a single, comprehensible and structured web page. WaG can be easily
configured to support many tasks, but in general, it is intended to be used not only by language experts but also the general public.

Keywords: meta search, word profile, web application, user interface, research portal, language resources promotion

1. Introduction
Individual language research centres and other language
infrastructures all over the world have already collected a
vast amount of diverse, well organized language resources
(LRs) for many languages. However, such a diversity of
data sets and services can also be overwhelming and hard
to navigate through for many users. Our experience in the
Czech National Corpus (CNC) shows that it is helpful to
point users towards a careful selection of corpora, as well
as to offer use cases with appropriate reasoning and inter-
pretation of the observed language phenomena.
In this paper, we introduce Word at a Glance (WaG) that has
been created to address the issue. WaG is a web application
that offers a brief profile of a query (typically a single word)
that is attractive, user-friendly and easy to understand. It is
designed as a set of customizable tiles to showcase relevant
characteristics of a given word (or phrase) that can be de-
rived from available data and presented to users (visualiza-
tions of metadata variations, development trends, colloca-
tions, translation equivalents, variation of individual forms
in a paradigm based on real data etc.).
Several alternative approaches that served as an inspiration
for WaG should be mentioned. Most prominently, there
is the DWDS online dictionary (Klein and Geyken, 2010)
that is very similar but lexically oriented. Another set of
ideas comes from English-Corpora.org (Davies, 2008) with
its corpus-based overall statistics, as well as Sketch En-
gine (Kilgarriff et al., 2014) with its collocation profiles.
However, these approaches are not directly usable either
because the interfaces are tailor-made for particular data or
simply because of licensing reasons. In contrast, WaG is an
open-source application created with reusability in mind.
A typical layout of WaG can be seen in Figure 1, the pro-
duction version is available at https://www.korpus.
cz/wag/.

2. Basic characteristics
WaG is a web application accessible either via a desk-
top web browser or a smart mobile device where it adapts

Figure 1: An overview of WaG user interface

its user interface for mobile-specific input and screen. It
focuses on aggregating and compiling information out of
multiple local or remote LRs and its presentation to the
user.
The key strength of WaG lies in its full configurability.
When installed, a provider of a WaG-based website/portal
starts with an ”empty board” where different visualizations
connected to specific LRs can be put and arranged into a
wide range of possible contents.
In this way, WaG can be configured e.g. as a pure lexicolog-
ical tool or as an interface for searching within a digitized
library. It can be run as a support tool for people learning

https://www.korpus.cz/wag/
https://www.korpus.cz/wag/

7010

foreign languages or as a page for side-by-side comparison
of results provided by different LRs.
It should be emphasized that WaG as a software is not just a
platform for running these data presentations but also a set
of ready-to-be-used components covering different areas of
linguistic/humanities research (see Chapter 4.2.).

3. Target audience
WaG is intended to be used by both experienced researchers
and general public users without any prior experience with
linguistics and related tools. We are aware of the fact that
possible use cases may differ significantly within such a
diverse audience.
When considering an experienced researcher, WaG is ex-
pected to serve as a research starting point where it acts as
a meta-search tool or portal providing broad overview of
different word properties and allowing easy access to the
original services/websites which provided respective infor-
mation. In this sense, WaG can be also seen as a tool for
LRs promotion.
For the general public, WaG should be able to provide easy
to use tools helping users with their common language-
related problems and also presenting them interesting facts
about languages. For such a use case, a LRs provider can-
not expect the users to deal with advanced (and sometimes
quite crude) tools.

4. Architecture
4.1. Operation modes
Based on our analysis and on the experience with our other
applications, we have been able to recognize three distinct
operating modes which, as we believe, cover most impor-
tant use cases one may encounter when performing word-
based search:

• single word search within a single language,

• two or more words comparison within a single lan-
guage (Figure 2),

• word translation (two languages).

Each of the modes can be configured for one or more pri-
mary languages which means the search within WaG is gen-
erally meant as a search within a language where different
modules may use different corpora and other resources to
fulfill the task. In addition, the translation mode is expected
to have also at least one target language configured.

4.2. Tile
Tile is the basic building block of the WaG. It can be seen as
an extraction of a specific functionality and data out of an
existing application. Visually, it occupies a part of WaG re-
sult page (see Chapter 4.3.) where it transforms a response
from a configured service into a visualisation which is typ-
ically a chart, word cloud, tabular data, structured text etc.
Furthermore, a tile may offer an alternative view mode
which typically means table-formatted data as an alterna-
tive to some more graphical presentation form.

Figure 2: An example of a result page in the word compar-
ison mode. Set-up like this can be applied e.g. in discourse
analysis.

A tile may also offer end-user interactive configuration of
its parameters (e.g. a search range for collocation calcula-
tion, min. frequency in a frequency distribution).
It is also possible to define a backlink to the original appli-
cation which serves as a source of data/functionality for the
tile. This property is important for the ”portal-like” behav-
ior of WaG.
In general, there are no restrictions on which function and
which data a tile may present. However, WaG prepackaged
tiles cover the most typical corpus-based research topics
(as viewed by CNC and its users). Most prominently, we
should mention the CNC’s database of translation equiva-
lents Treq (Škrabal and Vavřı́n, 2017), an application for the
study of competing language variants called SyD (Cvrček
and Vondřička, 2011) and also KonText (Machálek, in
press) as a provider of concordance-related search and anal-
ysis functions.
In terms of data resources, it is preferred if every tile
type can be configured to fetch data from several alter-
native LRs or APIs of similar functionality. For WaG-
prepackaged tiles, this means they typically rely on some
abstract programming interface which is then implemented
by different data services (see Chapter 4.5.). For example
the WordSimTile (word similarity) is already able to load
results from Datamuse.com service, from CNC’s internal
word2vec service or from the REST API of the Leipzig Cor-
pora Collection. As another example, the ConcordanceTile

7011

Figure 3: An example of geographically mapped frequency
information

can be configured to read data from KonText or via the
CLARIN Federated Content Search service.
The following WaG-prepackaged tiles are currently avail-
able:

• basic word profile (lemmatized variant, part of speech,
relative frequency, frequency band, words with similar
frequency),

• concordance (including parallel variant for two
aligned languages),

• concordance merged from multiple filtered subsets of
a source concordance,

• collocation profile,

• existing word forms of a given lemma,

• words with similar usage patterns (based on word em-
beddings),

• general pie chart and bar chart for text metadata fre-
quency information,

• multi-source frequency bar chart (e.g. data merged
from two or more different corpora),

• geographic area information mapped to an SVG image
(Figure 3),

• development over time of a metadata attribute (e.g.
publication date),

• general word translation and side-by-side comparable
word translations based on multiple data sources,

• translation differences when restricted to specific data
sources (e.g. fiction vs. newspapers),

• matching documents (list of documents with the high-
est occurrence of a searched word).

Some of those tiles have their counterparts in the word com-
parison mode, some tiles are able to operate in multiple
modes themselves.
An example of an output provided by a production-ready
instance can be seen in Figure 1 which shows a profile of

Figure 4: An example of a tile with results dependent on
other tile

the Czech word ”proces” (process). From user’s point of
view, there are the most frequent word forms and colloca-
tions with examples, as well as the distribution of ”proces”
across the main text registers (where non-fiction largely
prevails). This is supplemented by the frequency develop-
ment across time. From technical point of view, there are
various types of tiles employed that combine several differ-
ent LRs in order to get an accurate picture of the actual use
of this word as it is reflected in the CNC corpora.

4.3. Layout
While a configured tile can be seen as a ready-to-be-used
building block, a layout can be seen as a tile installation
frame.
On a desktop computer, the layout is composed of N ×
3 (rows × columns) cells where each tile may declare its
desired width (1, 2 or 3 cells). More sophisticated tiles may
offer an extra visual content when put across 2 or 3 cells.
On a smartphone, the layout typically switches to N × 1
grid.
To provide easy navigation through presented results, tiles
are required to be organized into groups where each group
has its heading and optional description (Figures 1 and 6).
Because of their different nature, each of the three operation
modes (4.1.) must have its own layout configuration. Yet it
is possible to omit some of the modes completely, in which
case, users won’t be able to select the disabled mode.

4.4. Tile dependency and interaction
Bringing results from different sources together and nor-
malizing them is undoubtedly useful by itself. In addition,
WaG offers also a mechanism for interconnection of the in-
dividual tiles.
Thinking about result types of some tiles, we can see that
they produce basically lists of words. E.g. if we search for
word collocations, similar words or word forms, we typ-
ically obtain a list of words probably along with a score
information.

7012

"CollocExamplesSynchronic": {
 "tileType": "ConcFilterTile",
 "label": {"cs-CZ": "Ukázky kolokací", "en-US": "Collocation examples"},
 "readSubqFrom": ["CollocationsSynchronic"],
 "apiURL": "http://kontext.korpus.test/kontext-api/quick_filter",
 "apiType": "kontext"
 "corpname": "syn2015",
 "posAttrs": ["word"],
 "metadataAttrs": [
 {"value": "doc.title", "label": {"cs-CZ": "Název", "en-US": "Title"}},
 {"value": "doc.author", "label": {"cs-CZ": "Autor", "en-US": "Author"}},
 {"value": "doc.biblio", "label": {"cs-CZ": "Bib. info", "en-US": "Bib. info"}}
]
}

Figure 5: A tile configuration example

A tile T1 producing a list of words as a result, can be used
in WaG as a source of so called sub-query. Once a tile T2 is
configured to listen to such a sub-query, it can base its result
not just on the original user query but also on the sub-query
provided by the T1. So for example besides producing col-
locations of a word we can easily provide concordances
containing examples of those collocations (Figure 4). Or
we can extend user search by looking for synonyms and
then looking for collocations of all the similar words.

4.5. Data service
Data service is an abstraction that interconnects WaG with
various kinds of external data and remote services. In WaG,
it is the client-side (i.e. a web browser) which deals with the
data services. This predetermines WaG as an aggregator of
services accessible via HTTP protocol which in our experi-
ence covers most of the published LRs and services today.
From a more technical point of view, data service is typi-
cally a simple module wrapping some HTTP API and trans-
forming its response to a normalized form suitable for use
by WaG and prescribed by a respective programming inter-
face so other implementations can be introduced as well.
Universal data storage systems can be accessed and queried
too, as long as they provide HTTP-based access. This typi-
cally applies by default for the family of NoSQL databases
(ElasticSearch, MongoDB, Cassandra, CouchDB etc.). In
case of more traditional relational (SQL) databases which
are also used as full-blown corpus search engines (e.g. The
Corpus del Español (Davies, 2005) at English-Corpora.org
(Davies, 2008)) the problem is not yet addressed by WaG
but we are examining possible solutions. For example, in
case of the PostgreSQL database, the PostgREST project
(Nelson, 2017) provides a general HTTP REST API above
any PosgreSQL schema.

4.6. Configuration
WaG set-up and deployment is very easy since an adminis-
trator just selects suitable tiles, data services and LRs, and
finally defines a required layout.
Specifically, the application is configured via two main
JSON files. One for the server properties and one for the
client set-up (where all the tiles and layouts are defined).
The client configuration can be further split into smaller
files (general configuration, tiles, layouts, chart colors) for
easier editation. WaG provides JSON schemata and val-
idation scripts for all the configuration files which makes
the process of creating the set-up more convenient and less
error-prone. An example of a tile configuration can be seen

"cs": {
 "single": {
 "groups": [{
 "groupLabel": {
 "en-US": "Written language",
 "cs-CZ": "Psany jazyk"
 },
 "groupDescURL": {
 "en-US": "/path/to/freqProfile.en.html"
 "cs-CZ": "/path/to/freqProfile.cs.html"
 },
 "tiles": [
 {
 "tile": "CollocationsSynchronic",
 "width": 1
 },
 {
 "tile": "CollocExamplesSynchronic",
 "width": 2
 }
]
 }]
 }
}

Figure 6: A layout configuration example

in Figure 5 and an example of a layout configuration can be
seen in Figure 6.

5. Implementation
As already mentioned in Chapters 2. and 4.5., WaG is an
end-user web application where most of the work is left
up to the client-side. The reason for this lies in the asyn-
chronous nature of the result presentation where all the tiles
handle their data fetching as well as data rendering mostly1

independently and concurrently. This makes the user inter-
face more responsive because as soon as a tile obtains its
data response, it can be immediately shown to a user while
other tiles may still process their data.
The decision to put most of the logic to the client-side along
with our experience with developing corpus search inter-
face KonText and other CNC applications has led us to an
idea to implement WaG as so called isomorphic (or univer-
sal) application where most of the code (in case of WaG, it
is TypeScript) is shared between server and client with the
server part running on Node.JS runtime. The isomorphic
design allows us to:

• reduce duplicated code involved in data exchange be-
tween client and server (as compared to a more tradi-
tional design where similar code must be written e.g.
in PHP and JavaScript for server and client respec-
tively),

• use single data and code for handling user interface
texts translations,

• render user interface components on both client and
server.

Using a typed variant of JavaScript called TypeScript
proved to be an effective solution for handling WaG code-
base (currently about 32.000 LOC 2). In our experience,

1Definable tile dependencies discussed in 4.4. put some limits
to this as dependent tiles must wait for intermediate results pro-
duced by their ”source” tiles.

2Lines of code.

7013

strictly typed code makes regular changes in the applica-
tion much less error prone with many errors caught during
the compilation process. Also, having formally defined ab-
stract interfaces and data types makes reasoning about the
code and its understanding easier 3.
The view part of the application is written using React li-
brary which provides component-based design with clear
component lifecycle and state handling.
WaG application state management and event handling is
written using Rx.JS library which is based around the con-
cept of Reactive programming. This part is loosely inspired
by libraries/approaches like Flux and Redux.
The WaG implementation in general emphasizes functional
programming style by prefering pure functions, data im-
mutability, function composition and careful treatment of
side-effects produced by actions within the application.

5.1. Extensibility
WaG functionality can be extended mainly by:

• creating new tile types,

• developing new data services.

The process of making custom tiles and data services in
WaG has been designed in a way allowing developers to
avoid interfering with the core source code.
To create a new tile, a developer makes a directory within
src/js/tiles/custom directory with an entry module index.ts.
The entry module is expected to export a tile type identifier
constant TILE TYPE and a factory function TileFactory
creating a tile instance. The tile instance must implement a
single interface ITileProvider which mainly addresses test-
ing for tile’s different capabilities and properties. The tile
logic itself is handled by a model object which must re-
spond at least to a RequestQueryResponse action message
and produce at least a TileDataLoaded action message no-
tifying WaG that the tile is ready to render its data.
Alternative data services for individual tile types can be
written by implementing respective interfaces defined in sr-
c/js/common/api/abstract. Custom tiles with data services
not described by those interfaces can include any needed
data service code within their ”home” directories.

5.2. Performance
Given by its purpose and architecture, WaG client-side ap-
plication creates many individual requests to all the config-
ured LRs which may put a significant short-term load on
LR servers (Figure 7). This can be addressed by:

• Client-side caching (part of WaG) where web-browser
application stores few recent results to handle situa-
tions like clicking the ”back” button without involving
additional network and server load.

• Accessing LR services via a caching web proxy server
which sits between WaG and those services and which
can reuse responses from already dispatched requests.

3There is no clear consensus on this among software develop-
ers which means that we present our individual experience here
rather than a general statement.

Figure 7: A typical measured load (in num. of requests) on
a WaG data service backend with large, narrow peaks (time
step: 15 minutes)

5.3. Development process
The WaG project is open-source (Apache 2 license)
with development coordinated via a GitHub repository at
https://github.com/czcorpus/wdglance. A
production version run by the CNC has been launched in
September 2019 at https://www.korpus.cz/wag/
with currently about two thousand user queries per week.
We welcome any comments, bug reports and pull requests.

6. Outlook
The development takes place in two main areas. The first
and more practical one is aimed at creation of new tiles and
LR APIs to offer additional datasets and functionality. The
second and more abstract area concerns the core of WaG
where we will work towards a better formalization of the
representation of searched words and their relationship for
easier integrability with other services and LRs.

7. Conclusion
WaG is a universal language resource integration platform
equipped with many ready-to-be-used modules (tiles) cov-
ering typical corpus-related research topics. Its bulding kit-
like architecture and some of the recently created tiles open
it also for use in the broader area of digital humanities. Al-
though its primary purpose is now to serve as a part of the
CNC web portal, its design allows easy deployment and
customization by other LR providers and research projects.
WaG is developed with both newcomers and advanced
users in mind. The newcomers can easily see the power
of the data, while the advanced users appreciate it as an
overview of typical word’s behavior and a portal connect-
ing more advanced and specialized tools. The general mes-
sage is: ”wherever you go, just start with WaG that may
show you something interesting you didn’t know about.”
We believe this could greatly improve not only the usability
of many infrastructures, but also attract potential users and
bring them closer to the language tools and technologies.

8. Acknowledgements
This paper resulted from the implementation of the Czech
National Corpus project (LM2018137) funded by the Min-
istry of Education, Youth and Sports of the Czech Republic

https://github.com/czcorpus/wdglance/blob/76a8c9da4e36d72c3195d5ceaefebfcdd4c3e728/src/js/common/tile.ts#L274
https://github.com/czcorpus/wdglance/blob/8ffc4cff7c0c3ee6a8f1b1b38577627cd17b4c50/src/js/common/tile.ts#L211
https://github.com/czcorpus/wdglance/blob/f5c899f83822325fce2e35ffa0555df9301e6ca8/src/js/models/actions.ts#L28
https://github.com/czcorpus/wdglance/blob/f5c899f83822325fce2e35ffa0555df9301e6ca8/src/js/models/actions.ts#L32
https://github.com/czcorpus/wdglance
https://www.korpus.cz/wag/

7014

within the framework of Large Research, Development and
Innovation Infrastructures.
The author would also like to thank Michal Křen for valu-
able comments on this article.

9. Bibliographical References
Cvrček, V. and Vondřička, P. (2011). Výzkum variability v

korpusech češtiny. František Čermák (ed.): Korpusová
lingvistika Praha 2011. 2. Výzkum a výstavba korpusů.,
page 184–195.

Davies, M. (2005). The advantage of using relational
databases for large corpora: Speed, advanced queries,
and unlimited annotation. International Journal of Cor-
pus Linguistics.

Davies, M. (2008). English-corpora.org. http://
english-corpora.org. Accessed: 2019-11-20.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář,
V., Michelfeit, J., Rychlý, P., and Suchomel, V. (2014).
The sketch engine: Ten years on. Lexicography.

Klein, W. and Geyken, A. (2010). Digitales wörterbuch
der deutschen sprache. das wortauskunftssystem zur
deutschen sprache in geschichte und gegenwart. hrsg.
v. d. Berlin-Brandenburgischen Akademie der Wis-
senschaften.

Machálek, T. (in press). Kontext: Advanced and flex-
ible corpus query interface. In Nicoletta Calzolari,
et al., editors, Proceedings of the Twelfth International
Conference on Language Resources and Evaluation
(LREC 2020). European Language Resources Associa-
tion (ELRA).

Nelson, J. (2017). Postgrest. http://postgrest.
org. Accessed: 2019-11-20.

Škrabal, M. and Vavřı́n, M. (2017). The translation equiv-
alents database (treq) as a lexicographer’s aid. In Iztok
Kosem, editor, Electronic lexicography in the 21st cen-
tury. Proceedings of eLex 2017 conference, pages 124–
137. Lexical Computing.

http://english-corpora.org
http://english-corpora.org
http://postgrest.org
http://postgrest.org

	Introduction
	Basic characteristics
	Target audience
	Architecture
	Operation modes
	Tile
	Layout
	Tile dependency and interaction
	Data service
	Configuration

	Implementation
	Extensibility
	Performance
	Development process

	Outlook
	Conclusion
	Acknowledgements
	Bibliographical References

