
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6930–6936
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

6930

Correcting the Autocorrect: Context-Aware
Typographical Error Correction via Training Data Augmentation

Kshitij Shah, Gerard de Melo
Department of Computer Science

Rutgers University–New Brunswick
kshitij.shah@rutgers.edu, gdm@demelo.org

Abstract
In this paper, we explore the artificial generation of typographical errors based on real-world statistics. We first draw on a small set of
annotated data to compute spelling error statistics. These are then invoked to introduce errors into substantially larger corpora. The
generation methodology allows us to generate particularly challenging errors that require context-aware error detection. We use it to create
a set of English language error detection and correction datasets. Finally, we examine the effectiveness of machine learning models for
detecting and correcting errors based on this data.

Keywords: Corpus, Error Generation, Deep Learning

1. Introduction
With the emergence of the Internet as the preferred medium
for communication and the rise of social media, the number
of words typed by an average human being has increased
manyfold in the last decades. The majority of this com-
munication is casual in nature, with less attention and time
dedicated by the writer compared to formal writing. This
leads to a plethora of typographical errors in such text. This
problem is exacerbated by the comparably small size of the
keyboard on hand-held devices. Hence, typographical er-
rors, which were somewhat more limited and likely to be
corrected immediately in past decades, are now ubiquitous.
Traditional solutions such as dictionary-based spelling cor-
rection are often inadequate. First of all, online writing
tends to make liberal use of neologisms, slang words, and
so on, that are lacking in pre-existing dictionaries. Any au-
tomated means to mine dictionaries from social media risk
also incorporating frequent misspellings such as *seperate
into the dictionary. Second, a higher error rate also entails a
larger likelihood of a typographical error leading to a form
that happens to be a legitimate word in the dictionary. This
problem exists even with more advanced spelling correction
software, as indeed, many such errors are now caused by
autocorrection software.
To overcome these challenges, an alternative is to draw on
advances in machine learning to identify and correct such ty-
pographical errors. While autocorrection typically considers
just the current and possibly the last few words, deep models
that can account for both sides of a larger context window
have the potential to more accurately determine whether a
word fits in context. Unfortunately, deep learning generally
requires large annotated corpora for effective training. Such
large annotated datasets are difficult to procure, as the la-
beling process tends to be time-consuming and expensive
(Qiu et al., 2020). There have been significant efforts in the
last decade to overcome this gap for the task of grammatical
error correction (Dale and Kilgarriff, 2011; Ng et al., 2013;
Ng et al., 2014). However, no sufficiently large datasets
exist for typographical error correction.
In this paper, we aim to generate realistic typographical
errors based on statistical distributions collected from a rel-

atively small annotated seed dataset. Our method captures
the error patterns from the seed data and generates similar
error distributions on error-free target corpora of arbitrary
size. An important special case, particularly when typing
on hand-held devices, is the abundance of real-word errors,
also known as atomic typos. These occur when misspelled
words happen to also be valid words in the dictionary, but
used in the wrong context, requiring context-aware spelling
correction. We examine inducing such errors automatically
via a dictionary-based spelling corrector. Finally, we ex-
plore the effectiveness of deep neural networks to detect and
correct such errors. While the experiments in this paper are
limited to English, our method is applicable to any language
with a restricted (true) alphabet.

2. Related Work
Due to the high cost and difficulty of labeling large text
datasets for error correction, several studies explored gener-
ating artificial grammatical mistakes (Foster and Andersen,
2009; Felice and Yuan, 2014; Ng et al., 2013; Rei et al.,
2017; Kasewa et al., 2018). For example, Foster and Ander-
sen (2009) achieved this by moving, substituting, inserting,
and removing words in a sentence, and investigated part-
of-speech tags to induce more realistic errors. Felice and
Yuan (2014) used probability word-level statistics computed
on the CoNLL 2013 shared task data (Ng et al., 2013) to
introduce artificial grammatical errors at the word level. Rei
et al. (2017) used a statistical machine translation system
to translate correct text to ungrammatical text. For training,
they relied on the annotated dataset from CoNLL 2014 (Ng
et al., 2014) but considered in inverted order: They feed
the corrected version as input and the ungrammatical one
as the output. These works aim to mimic the phenomenon
of grammatical errors, i.e., when linguistic utterances are
deemed lacking in grammatical acceptability with respect to
a linguistic standard.
Only very little research has been conducted on simulating
errors originating from basic typographical mistakes made
by a writer. While these may stem from a lack of knowl-
edge of the authoritative spelling or appear as a symptom
of conditions such as dyslexia, they may also be caused by



6931

simple key entry mistakes such as those referred to as fat
finger errors.
In the past, such errors were often corrected by means of a
dictionary-based spelling corrector, but with the prolifera-
tion of hand-held devices, this no longer seems sufficient. In-
deed, many such devices invoke autocorrection tools, which
may lead to entirely new errors that are very hard to de-
tect. Bigert et al. (2003) developed a tool called ‘Missplel’,
which could introduce character-level errors, among others.
However, those errors were not modeled upon real-world
data. Whitelaw et al. (2009) repurposed Web data as a noisy
corpus for spelling correction and used a limited corpus with
artificially inserted misspellings to tune classifiers. Ghosh
and Kristensson (2017) created a synthetic dataset of incor-
rect key strokes by sampling from a Gaussian at each key
location on a virtual keyboard. They also created another
dataset by replacing correct words with their misspellings, as
given by an annotated typo corpus (Aramaki, 2010). Their
paper noted the lack of datasets for this problem, which led
them to create their own to train and test their model. Our
work differs from their approach in that we induce a noise
model from text that can then be used to introduce a wide
range of errors, instead of replacing a small set of words by
their misspellings. Baba and Suzuki (2012) studied different
error categories arising during typing.
Methods for context-aware spelling correction have mostly
focused on small sets of words typically confused in human
writing: Many of the most well-known approaches to this
task rely on predefined confusion sets to solve it (Carlson and
Fette, 2007; Golding and Roth, 1999; Carlson et al., 2001;
Banko and Brill, 2001). However, with the prominence
of autocorrect systems on mobile devices, this approach is
ineffective. Hence, we explore generating realistic spelling
errors requiring context-aware correction in this paper.

3. Method
Our method for artificial error generation consists of two
phases. First, we compute probabilities for different types of
errors based on a small annotated corpus. Subsequently, we
rely on these statistics to generate errors in the target text.

3.1. Model Induction
We classify typographical errors into four categories and
induce a model consisting of a series of probability dis-
tributions. Errors of each of these types are counted in
an annotated corpus and a specific set of rules are used to
calculate probabilities for each category. In many cases,
probability distributions are computed by counting a spe-
cific error pattern with regard to different characters, and
then normalizing by dividing counts by the total number of
errors of that category.

Substitution Errors. A substitution error occurs when an-
other character replaces the correct character. Intuitively, a
character is more likely to be replaced by a nearby character
on a QWERTY keyboard. Moreover, some characters are
more likely to be mistyped compared to others. We empir-
ically determine the probability of each character c being
substituted P (substitution | c), as well as the probability
of each character c′ in the character set C replacing c, i.e.,

Psubstitution(c
′ | c).

P (substitution | c) = fsubstitution(c)

f(c)

Psubstitution(c
′ | c) = fsubstitution(c

′, c)∑
c∈C

fsubstitution(c, c)

where fsubstitution(x) denotes the frequency of character
x being replaced, while fsubstitution(y, x) denotes the fre-
quency of character y replacing character x.

Insertion Errors. Insertion errors occur when an addi-
tional character is inserted by mistake. We assess the proba-
bility of a given inserted character depending on the adjacent
characters, assuming that these typically result from nearby
keys being activated near-simultaneously. However, the
added character could be attributed to either the previous
or to the next character. We resolve this by attributing it
to the adjacent character that is nearer to it on a virtual
keyboard. If the distance to both neighbors on the virtual
keyboard is the same, we assign it to one of them randomly.
The computed statistics include probabilities of any char-
acter being inserted before or after a given character c, i.e.,
P (insertion | c), and the individual probabilities for the
inserted character, given by Pinsertion(c

′ | c). The proba-
bilities for insertion before and after a given character are
computed separately.

P (insertion | c) = finsertion(c)

f(c)

Pinsertion(c
′ | c) = finsertion(c

′, c)∑
c∈C

finsertion(c, c)

where finsertion(x) is the frequency of any character being
inserted adjacent to x, and finsertion(y, x) denotes the fre-
quency of character y being inserted adjacent to character
x.
Another caveat is when the inserted character is the same
as its neighbor, i.e., the same character is typed twice. In
this case, we cannot easily decide which of these two occur-
rences ought to be considered as the added one. To address
this issue, we define the distinct subcategory of replication
errors, which we measure separately.

Replication Errors. A replication error occurs when a
character is repeated twice. We compute a separate probabil-
ity of replication P (replication | c) given each character.

P (replication | c) = freplication(c)

f(c)

Deletion Errors. A deletion error occurs when a user
misses a particular character that should have been entered.
Some characters exhibit a higher tendency of getting missed.
Hence, we compute the probability P (deletion | c) of each
character c getting missed.

P (deletion | c) = fdeletion(c)

f(c)



6932

Transposition Errors. A transposition error is registered
when two consecutive characters are typed out of order.
Only consecutive character pairs are considered for this
type of error and the probability of transposition for every
possible sequence of two characters c1 and c2 is represented
as P (transposition | c1c2).

P (transposition | c1c2) =
ftransposition(c1c2)

f(c1c2)

3.2. Error Generation
Corpus Cleaning. Before introducing errors, we seek to
ensure that the original corpus does not have substantial
typographical errors. Thus, in a preprocessing step, given a
dictionary vocabulary V , documents with out-of-vocabulary
words not in V are discarded.

Error Induction. Our error generation process is based
on the assumption that typing proceeds progressively charac-
ter by character and that errors may occur at every keystroke.
Hence, the errors are generated at each character based on
the precomputed statistics. Each error category is considered
individually in random order with its respective probability
multiplied by a weighting coefficient for that error category.
The weighting coefficients allow us to control the relative
frequency of each error category individually as well as
the overall error rate. Retaining a uniform distribution of
coefficients mimics the original distribution observed on
annotated data. These coefficients also enable us to the use
of character frequency distributions from a corpus other than
the one used to compute error statistics. This later allows us
to compute probability values based on the character distri-
bution of the target corpus we are inducing errors on, while
still using the error distribution from the annotated corpus.
In the case of insertion or substitution errors, if an error
is determined to be generated, the candidate for insertion
or substitution is selected based on the computed statistics.
If a particular error category is applied to a character, the
remaining error categories are no longer considered for it.

Error Replacement. Having generated the corrupted text,
we invoke a dictionary-based spelling correction algorithm
to generate confused words that are valid words but unlikely
to fit in the context. Specifically, confusion is enforced by
selecting the highest-ranked suggestion that is not correct.1

However, if Enchant makes only one suggestion for a given
error, it is accepted without forcing confusion.
This results in hard to detect errors calling for context-aware
spelling correction.

Output Dataset. During this entire process, the number
of tokens is kept the same as in the original text. For single
character words and rarely for other short words, it is possi-
ble that an entire word is removed during the character-level
corruption. In such cases a placeholder token is used in its
place. The placeholder is a special symbol such as <UNK>.
If a word is split in two by the spelling corrector, the longer
one is chosen and the shorter one discarded. For instance,

1Another variant of the data, which picks the best suggestion
without forcing confusion is also generated, but not used in the
subsequent experiments presented in this paper. It will be available
to the community as part of the dataset.

if blike is corrected as be like, we only consider like and
discard be. This constraint facilitates working with our data,
because the labels are on every word and are easier to pro-
cess if the number of words does not diverge between the
actual text and our generated version. Thus, in the final error
detection datasets that we induce, each word has a binary
label associated with it. Introduced errors are labeled as
positive, while original words are labeled as negative. We
also provide the original word as the ground truth for the
task of error correction.

4. Analysis of Error Statistics
We derive error statistics from the Twitter Typo Corpus
(Aramaki, 2010), which contains 39,171 pairs of words with
typographical errors along with the correct word. While the
dataset only includes lower-case English letters, our method
can generalize to any character set.
Figure 1 shows the distribution of errors among the error
types described in Section 3 in the Twitter Typo Corpus
(Aramaki, 2010) used for error induction. We found that
the error distribution is dominated by substitution, insertion,
and deletion errors, while the replication and transposition
errors are relatively scarce. Note that the latter two can be
considered derivative. For instance, replication errors can be
viewed as insertion errors with the inserted character being
the same as an adjacent character.

Figure 1: Distribution of Error Types

Figure 2 shows the frequency distribution of inserted char-
acters. We observe several patterns emerging from the data.
The characters that on standard QWERTY keyboards are
located near the finger tips in a natural typing position are
more likely to be inserted by mistake. For example, ‘a’, ‘d’,
‘e’, and ‘i’ exhibit high insertion error frequencies. Figure 3
shows the frequencies for deletion errors, which accounts for
a certain character being missed by the writer. The deletion
frequency is highly correlated with the natural occurrence
frequency of characters. Frequently used vowels such as
‘a’, ‘e’, ‘i’, ‘o’ show a higher deletion frequency. However,
this does not imply that they are more likely to be missed.
Our model combines these statistics with the occurrence fre-
quencies and error rate hyperparameter in order to generate
probabilities of deletion errors. A noticeable characteristic
that emerges is that the characters in the middle row of QW-
ERTY keyboards such as ‘d’, ‘f’, ‘g’, ‘j’, ‘k’ are less likely



6933

Figure 2: Frequency of Insertion Errors by Characters

Figure 3: Frequency of Deletion Errors by Characters

Figure 4: Frequency of Substitution Errors by Characters

to be missed. Figure 4 depicts the frequencies of different
characters being replaced by another character, i.e., substitu-
tion errors. This type of error also exhibits correlation with
the occurrence frequencies of characters. This statistic is
used to determine the probability of a substitution error at
a given character during error induction. Figure 5 shows
the probabilities of particular characters being replaced by
particular other characters, given that a substitution error is

Figure 5: Substitution Probabilities between Characters

Error Level Corrupted Words (%)

(% of corrupted char) Amazon IMDB

Low (3.75%) 15.73 15.75
Medium (7.5%) 28.66 27.27
High (15%) 48.27 42.07

Table 1: Generated Error Percentage

present. These probabilities are independent of the error rate
and are only applied once a substitution error is determined.

5. Experiments
Input Data. We rely on the statistics derived from the
Twitter Typo Corpus (Aramaki, 2010), described in Section
4 to introduce errors into two corpora, a food review corpus,
and a large movie review one. For food reviews, we consider
the Amazon fine food review dataset, which consists of
568,454 food reviews collected from Amazon, along with
metadata (McAuley and Leskovec, 2013). The large movie
review dataset (Maas et al., 2011) contains 50,000 labeled
and 50,000 unlabeled movie reviews collected from IMDB.
We only use the text from both of these datasets.

Error Corpus Induction. First of all, to remove pre-
existing typographical errors from these corpora, we con-
struct a dictionary V from the Enchant spell checker, en-
hanced by the vocabulary of GloVe embeddings trained on 6
billion words from Wikipedia and Gigaword (Pennington et
al., 2014).2 On the fine food review dataset, we also remove
reviews that are outliers in terms of their length.3 This leads
to 254,638 samples in the fine food review dataset, from

2We do not rely on embeddings trained on CommonCrawl, as
Web data contains substantially more misspelling forms.

3Specifically, those with a character length three standard devi-
ations above or below mean. Hence, we filter out reviews longer
than 1,715 characters, but no reviews with shorter length, as three
standard deviations below mean is less than 0.



6934

which we sample 160,000 for training, 40,000 as a held-out
validation set, and 50,000 as test data. The total size of the
dataset is 1.13 GB. From the movie review data, we only
exclude reviews with out-of-vocabulary words. The dataset
already provides training and test splits, and we reserve
20% of the former for validation, leading to 42,452 training,
10,613 validation, and 17,915 test samples. Despite hav-
ing fewer sentences, the average sentence length is longer,
resulting in a size of 1.27 GB.
We use our proposed method to introduce three levels of
error rates, independent of one another. At the highest error
rate setting, we induce errors in 15% of the total charac-
ters. The other two levels are 7.5% and 3.75%, respectively.
For generating confused words, we selected the the highest
ranked incorrect suggestions by the Enchant spell-checker
(Lachowicz, 2018). This allow us to consistently obtain
challenging real-word errors. Table 1 shows the percentage
of words with spelling errors corresponding to each level.
For analysis purposes, we evaluate separate neural models
as baselines to detect and correct these errors. This allows
us to evaluate the detection and correction independently
and use the most suitable model for each task.

Hyperparameter Value

Number of Epochs 50
Learning Rate 0.005
Optimizer Adam
Embedding Dimensions 100
Recurrent Units 100
Dropout 0.5
Mini-batch Size 512

Table 2: Hyperparameters for Error Detection

Hyperparameter Value

Number of Steps 5,000
Number of Layers 6
Number of Units 512
Number of Heads 8
FFN Dimensions 2,048
Attention Dropout 0.1
FFN Dropout 0.1

Table 3: Hyperparameters for Error Correction

Spelling Error Detection. For context-aware spelling er-
ror detection, we evaluate the effectiveness of a Bidirec-
tional LSTM based sequence labeling model to predict the

Dataset (Error Level) Recall Precision F1 score

Amazon (3.75%) 0.8867 0.9298 0.9077
Amazon (7.50%) 0.9105 0.9448 0.9273
Amazon (15.00%) 0.9329 0.9560 0.9433
IMDB (3.75%) 0.8172 0.8576 0.8369
IMDB (7.50%) 0.8673 0.8901 0.8786
IMDB (15.00%) 0.9105 0.9155 0.9130

Table 4: Effectiveness of Bidirectional LSTM for Context-
Aware Error Detection

probability of every word’s label being positive, with a sig-
moid activation function. We initialize our embeddings
with 100-dimensional GloVe vectors trained on Wikipedia
and Gigaword (Pennington et al., 2014) and make it further
trainable. Out-of-vocabulary words are initialized randomly
with the same center and scale as the GloVe vectors. The
recurrent layer contains 100 LSTM units. We also employ
Dropout with a rate of 0.5 to avoid overfitting. For training,
we use Adam optimization with a learning rate of 0.005 for
50 epochs on mini-batches of size 512, with early stopping
enabled. To address the class imbalance and to achieve maxi-
mum effectiveness, the threshold for positive prediction is fit
on the validation set to maximize the F1 score. Hyperparam-
eters are given in Table 2. Table 4 shows the effectiveness
of the detection model on the test data. We observe that
with higher error rates, the F1 score is also higher, in part
because the F1 measure is not completely resilient to class
imbalance. We also observe a difference in effectiveness
between the two datasets, which may stem from the smaller
training size for the IMDB dataset combined with its longer
sequence lengths.

BLEU Score

Dataset (Error Level) Noisy Corrected Gain

Amazon (3.75%) 0.6491 0.8685 0.2194
Amazon (7.50%) 0.4263 0.8107 0.3844
Amazon (15.00%) 0.1878 0.6661 0.4783
IMDB (3.75%) 0.6378 0.6852 0.0474
IMDB (7.50%) 0.4122 0.4169 0.0047
IMDB (15.00%) 0.1778 0.4806 0.3028

Table 5: Effectiveness of Transformer Network for Context-
Aware Spelling Error Correction

Context-Aware Spelling Error Correction. To evaluate
our data on error detection as well as correction, we rely
on a Transformer model (Vaswani et al., 2017) to transform
the noisy sequence with errors to the correct sequence. The
intuition is that the model will consider the wider context to
detect and correct errors. We use the base configuration de-
scribed by Vaswani et al. (2017) but only train our model for
5,000 steps, as this problem is simpler than machine transla-
tion. We use separate vocabularies for source and target, and
for efficiency consider only words in the corpus with multi-
ple occurrences (others as <UNK>). Hyperparameters for
this model are given in Table 3. As an evaluation metric, we
rely on BLEU scores (Papineni et al., 2002) using the correct
sentence as reference. We also report the BLEU scores for
the original noisy data (i.e., a baseline that does not make
any correction) to show the improvement. The results are
provided in Table 5. We observe substantial improvements
on the Amazon dataset. However, the performance suffers
on IMDB owing to its longer sequence lengths and limited
training data. This suggests that our novel datasets will be
useful in encouraging further research on this task.

6. Qualitative Analysis of Generated Data
Table 6 compares the different levels of introduced errors.
With a low error rate, the sentence is still intelligible with



6935

a few spelling errors. However, the quality quickly dete-
riorates as the error rate increases. At 15% error rate by
character, the sentence becomes very hard to understand
even for a human. One can observe an increase in the length
of the sentence as the error increases, as the rate of inser-
tion errors is higher than for deletion errors in the statistics
computed from the real-world data.

Type Sentence

Original These coffee k cups have an
exceptionally bold flavor. The
value is great. We bought a sec-
ond box and will continue to en-
joy more in the future.

Low Error Rate (3.75%) These coffee k cups hate an ex-
ceptionallly bold flavor. The
value is great. We bought a sec-
ond box and will kontinue to en-
joy more in thye futurt.

Medium Error Rate (7.5%) Thsse coffee k cups ahbe an ex-
ceeptionall bold falvor. Thye
value is great. We bought a sec-
ond box and wgll contikre ot en-
jos more in the future.

High Error rate (15%) Thkese cvfffe uk dups ave an etx-
cepiionallyy bolg fladvor. The
value ics great. We beught a sec-
ond box and whll continnue yo
renjy mre un the futere.

Table 6: Levels of Introduced Error

Type Sentence

Original These coffee k cups have an
exceptionally bold flavor. The
value is great. We bought a
second box and will continue
to enjoy more in the future.

Medium Error Rate (7.5%) Thsse coffee k cups ahbe
an exceeptionall bold falvor.
Thye value is great. We
bought a second box and wgll
contikre ot enjos more in the
future.

Enchant Spell Corrector
(without confusion enforced)

These coffee k cups ah an
exceptional bold flavor. Tye
value is great. We bought a
second box and well continent
OT enjoys more in the future.

Enchant Spell Corrector (with
confusion enforced)

Those coffee k cups ah an
exceptional bold flavor. Tye
value is great. We bought a
second box and well continent
OT enjoys more in the future.

Table 7: Result from Dictionary-based Spelling Correction

Table 7 shows the output of the Enchant spell corrector on
a sentence corrupted with medium error rate. For the given
sentence, we get the same result for both with and without
enforcing confusion. This happens when Enchant does not
suggest the correct word for any of the errors. These errors

Type Sentence

Original my baby eats these like they
are going out of style they
are the perfect size for her to
grasp with her fingers so nu-
tritional too

Medium Error Rate (7.5%) my baby eats these likx thre
are going oht of style tehy
ared the perfect sjze for her
yo grasp wivh herv fingers so
nutriitional to

Enchant Spell Corrector (with
confusion enforced)

my baby eats these alix thee
are going hot of style thy ares
the perfect saxe for her yew
grasp wive herb fingers so
malnutrition to

Corrected with Transformer
(from Enchant correction)

my baby eats these like they
are going hot of style they
are the perfect size for her to
grasp with her fingers so nu-
tritional too

Original don’t the sellers read these re-
views and say something to
the manufacturer it is a terri-
ble that amazon can sell this
product to the public

Medium Error Rate (7.5%) do’t the sellers read these re-
vies nad say something to he
manufacturer pit is a rerri-
ble that amazon can ysle ths
prxduct to hte public

Enchant Spell Corrector (with
confusion enforced)

dot the sellers read these re-
vise bad say something to eh
manufacturer pit is a revert-
ible that amazon can isle th
duct to ht public

Corrected with Transformer
(from Enchant correction)

got the sellers read these re-
views and say something to
the manufacturer it is a terri-
ble that amazon can ship the
product to the public

Original i bought this for my niece
for christmas she loves it the
bamboo showed up intact and
looking gorgeous and green in
the middle of december

Medium Error Rate (7.5%) i booqhtt htis for my niece
for chrustmas she loves it the
bmbou showed up intact and
looking gorgeous antd creen
in the wmiddle fo dacember

Enchant Spell Corrector (with
confusion enforced)

i booth hits for my niece
for christmas she loves it the
bomb showed up intact and
looking gorgeous ants screen
in the middle few december

Corrected with Transformer
(from Enchant correction)

i bought this for my niece
for christmas she loves it the
combo showed up intact and
looking gorgeous and screen
in the middle of december

Table 8: Randomly Selected Examples of Context-Aware
Spelling Correction



6936

can manifest themselves as out-of-context words such as
‘well’ and ‘continent’ in the given example or as a grammat-
ical mistake, where ‘enjoy’ becomes ‘enjoys’.
Table 8 provides a few examples of text corruption and sub-
sequent corrections for qualitative comparison. The samples
were picked randomly from the medium error variant of
the Amazon dataset. 4 We can see that the error correction
model is quite accurate at simple corrections like ‘wive herb
fingers’ to ‘with her fingers’ in example 1, and ‘i booth
hits’ to ‘i bought this’ in example 2. It is also able to accu-
rately predict complex correction requiring more context,
e.g., ‘malnutrition’ is correctly predicted to be ‘nutritional’
given the positive sentiment of the review. In a more am-
biguous situation where the exact word is harder to predict,
the model still makes a sensible prediction. For instance,
‘bomb’ is corrected to ‘combo’ in example 3, and ‘isle’ to
the verb ‘ship’ in example 2, which, albeit not correct, is a
sensible prediction in the context, similar in meaning to the
ground truth word ‘send’.. However, it often fails to correct
obvious errors, especially when the out-of-context word is a
fairly common one. For example, ‘hot of style’ in example 1
and ‘gorgeous and screen’ in example 3 are left uncorrected.
This model is entirely independent of the error detection
model. A two-component design feeding the prediction of
the detection model into the correction model may improve
the results.

7. Conclusion
This paper proposes a method to induce typographical er-
rors based on realistic error modeling, which is used to
induce two novel typographic error datasets from different
domains, each generated at three different error levels. We
show that BiLSTM neural networks are fairly effective in
detecting these errors and that Transformer networks show
potential in correcting them. Our data is freely available on-
line at http://typo.nlproc.org for the community
to make further progress on this challenging task.

8. References
Aramaki, E. (2010). Typo corpus. http://luululu.
com/tweet/.

Baba, Y. and Suzuki, H. (2012). How are spelling errors
generated and corrected?: a study of corrected and uncor-
rected spelling errors using keystroke logs. In Proceed-
ings of ACL 2012, pages 373–377.

Banko, M. and Brill, E. (2001). Scaling to very very large
corpora for natural language disambiguation. In Proceed-
ings of ACL 2001, pages 26–33.

Bigert, J., Ericson, L., and Solis, A. (2003). Autoeval and
missplel: Two generic tools for automatic evaluation. Pro-
ceedings of NoDaLiDa, Reykjavik, Iceland, 3.

Carlson, A. and Fette, I. (2007). Memory-based context-
sensitive spelling correction at web scale. In Sixth interna-
tional conference on Machine Learning and Applications
2007 (ICMLA 2007), pages 166–171. IEEE.

Carlson, A. J., Rosen, J., and Roth, D. (2001). Scaling up
context-sensitive text correction. Urbana, 51:61801.

4A constraint was placed to not select sentences longer than 30
words due to space limitations.

Dale, R. and Kilgarriff, A. (2011). Helping our own: The
hoo 2011 pilot shared task. In Proceedings of the 13th
European Workshop on Natural Language Generation.

Felice, M. and Yuan, Z. (2014). Generating artificial errors
for grammatical error correction. In Proceedings of the
Student Research Workshop at EACL, pages 116–126.

Foster, J. and Andersen, Ø. E. (2009). Generrate: gener-
ating errors for use in grammatical error detection. In
Proceedings of the 4th Workshop on Innovative Use of
NLP for Building Educational Applications, pages 82–90.
Association for Computational Linguistics.

Ghosh, S. and Kristensson, P. O. (2017). Neural networks
for text correction and completion in keyboard decoding.
arXiv preprint arXiv:1709.06429.

Golding, A. R. and Roth, D. (1999). A winnow-based ap-
proach to context-sensitive spelling correction. Machine
learning, 34(1-3):107–130.

Kasewa, S., Stenetorp, P., and Riedel, S. (2018). Wronging
a right: Generating better errors to improve grammatical
error detection. In Proceedings of EMNLP 2018.

Lachowicz, D. (2018). Enchant. https://abiword.
github.io/enchant/.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for senti-
ment analysis. In Proceedings of ACL 2011.

McAuley, J. J. and Leskovec, J. (2013). From amateurs
to connoisseurs: modeling the evolution of user exper-
tise through online reviews. In Proceedings of the 22nd
international Conference on World Wide Web. ACM.

Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C., and Tetreault,
J. (2013). The CoNLL-2013 Shared Task on Grammati-
cal Error Correction. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learn-
ing: Shared Task, pages 1–12.

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto,
R. H., and Bryant, C. (2014). The CoNLL-2014 Shared
Task on Grammatical Error Correction. In Proceedings
of the Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of ACL 2002, pages 311–318.

Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings
of EMNLP 2014, pages 1532–1543.

Qiu, S., Xu, B., Zhang, J., Wang, Y., Shen, X., de Melo, G.,
Long, C., and Li, X. (2020). EasyAug: An automatic
textual data augmentation platform for classification tasks.
In Proceedings of The Web Conference 2020. ACM.

Rei, M., Felice, M., Yuan, Z., and Briscoe, T. (2017). Artifi-
cial error generation with machine translation and syntac-
tic patterns. arXiv:1707.05236.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. arXiv:1706.03762.

Whitelaw, C., Hutchinson, B., Chung, G. Y., and Ellis,
G. (2009). Using the web for language independent
spellchecking and autocorrection. In Proceedings of
EMNLP 2009, pages 890–899.

http://typo.nlproc.org
http://luululu.com/tweet/
http://luululu.com/tweet/
https://abiword.github.io/enchant/
https://abiword.github.io/enchant/

	Introduction
	Related Work
	Method
	Model Induction
	Error Generation

	Analysis of Error Statistics
	Experiments
	Qualitative Analysis of Generated Data
	Conclusion
	References

