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Abstract
We describe a novel super-infrastructure for biomedical text mining which incorporates an end-to-end pipeline for the collection,
annotation, storage, retrieval and analysis of biomedical and life sciences literature, combining NLP and corpus linguistics methods.
The infrastructure permits extreme-scale research on the open access PubMed Central archive. It combines an updatable Gene Ontology
Semantic Tagger (GOST) for entity identification and semantic markup in the literature, with a NLP pipeline scheduler (Buster) to collect
and process the corpus, and a bespoke columnar corpus database (LexiDB) for indexing. The corpus database is distributed to permit
fast indexing, and provides a simple web front-end with corpus linguistics methods for sub-corpus comparison and retrieval. GOST is
also connected as a service in the Language Application (LAPPS) Grid, in which context it is interoperable with other NLP tools and
data in the Grid and can be combined with them in more complex workflows. In a literature based discovery setting, we have created an
annotated corpus of 9,776 papers with 5,481,543 words.
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1. Introduction

In many fields, academics rely only on full text searching
and citation networks to find related research. In themedical
domain, much research has been undertaken in literature-
based discovery that relies on knowledge and information
extraction techniques to perform automated hypothesis gen-
eration, in order to find new relationships between existing
knowledge. High-level semantic taxonomies and networks
can be applied to achieve broad linking and identification
of semantic categories, but these fail to identify and dis-
ambiguate sub-discipline-specific terminology, or indeed to
cope with the continued expansion and development of do-
main specific terminologies. For example, a search in the
main biomedical literature citation database (PubMed) for
the term ‘genome wide association study’ results in just five
papers from 1995, 141 from 2005 and 3,633 from 2015.
At the same time, the domain terminology in genomics has
developed, expanded and changed, meaning that broad cov-
erage semantic taxonomies cannot keep in step.
In this paper, we propose a novel combination of Nat-
ural Language Processing (NLP) and Corpus Linguistics
(CL) methods and tools, connected together via SOAP and
REST API calls in a loosely-coupled open infrastructure
intended to provide a range of facilities for researchers to
collect, annotate, store and retrieve large corpora derived
from open access biomedical and life sciences literature.
All the tools used were developed by the authors of this
paper. NLP annotation tools draw from an existing Gene
Ontology (GO) which is updated monthly, and facilitate the
automatic identification of genomics terminology, which is
comprised largely of multiword expressions. In turn, we
combine this with CL methods to permit the large-scale
comparison of sub-corpora of literature to uncover how the

field has developed over time, or uses different vocabulary in
newly developing sub-fields employing keyness, collocation
and n-gram tools combined with the semantic annotation.
Completing the full cycle, our analysis interface is intended
to support the study of the genomics literature corpus, not
just for research purposes, but also to improve the quality
of supporting resources too e.g. the Gene Ontology, by
exposing the usage of terminology in the field and how it
has developed over time, akin to the revolution in lexicogra-
phy via corpus-based dictionary production observed in the
1980s and 1990s.
Our specific contributions in this paper are as follows: 1)
entity identification and semantic linking in the genomics
domain, 2) a novel open infrastructure for biomedical text
mining, 3) a large annotated corpus consisting of open ac-
cess PubMed Central papers, 4) open platforms to support
research reproducibility, and 5) supporting literature based
discovery with a novel combination of NLP and CL meth-
ods.

2. Related Work
Analysing biomedical data usingNatural Language Process-
ing (NLP) and text mining requires a significant amount of
domain knowledge (Tan and Lambrix, 2009). Such knowl-
edge is usually found in domain specific ontologies such
as the Gene ontology resource1 which contains important
information related to gene products and functions (Kumar
et al., 2004).
Over many years, NLP techniques have been widely applied
to biomedical text mining to facilitate large-scale informa-
tion extraction and knowledge discovery from the rapidly
increasing body of biomedical literature. Since the begin-

1 http://www.geneontology.org
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ning of biomedical language processing in the late 1990s,
the field continued to receive great attentionwith specialised
events and workshops focusing on biomedical NLP, such as
the BioNLP Workshop series.
Current biomedical libraries such as MEDLINE2 by the US
National Library of Medicine (NLM)3 provide searchable
databases that are rich with citations and abstracts from the
biomedical domain. Tools such as PubMed4 by NLM can
be used to freely search and retrieve abstracts and publi-
cations from MEDLINE database. MEDLINE’s citations
are updated and added to PubMed seven days a week and
in 2017 alone more than 800,000 citations were added to
MEDLINE5. This shows the need for NLP and text mining
tools to be able to analyse the constantly growing field.
Among the early researcherswhoworked on information ex-
traction from MEDLINE was Yakushiji et al. (2000), who
implemented an information extraction system using the text
of full papers from MEDLINE to investigate the feasibility
of text mining, using a general-purpose parser and grammar
applied to biomedical domain. Shortly after that, Srini-
vasan (2001) explored text mining from metadata included
in MEDLINE citations. This work introducedMeSHmap, a
textmining system that exploits theMeSH6 indexing accom-
panyingMEDLINE.MeshMap supports searching PubMed
using MeSH terms and subheadings, it also allows to com-
pare entities of the same type such as pairs of drugs or pairs
of procedures.
The size of the biomedical literature and the variety of ci-
tations provide new challenges to text mining. Ananiadou
et al. (2006) identified the unmanageable issue of finding
useful information manually from the plethora of biomed-
ical scientific literature. Others such as Kann (2007) have
also suggested that text mining and analysis approaches are
essential for discovering hidden information about given
diseases and protein interactions buried within millions of
biomedical texts.
Since the recognition of the importance of the biomedical
text mining, a variety of NLP tools have been developed and
modified to support it. Among the main tools and corpora
developed for such purposes include the Genia tagger and
corpus (Tsuruoka et al., 2005; Thompson et al., 2017),
GOST tagger (El-Haj et al., 2018), and Termine7. A related
biomedical annotation tool is the PennBioTagger8 (Jin et al.,
2006), which is capable of tagging gene entities, genomic
variations entities and malignancy type entities.
In addition, several infrastructures supporting biomedical
text mining have been developed, including U-Compare
(Kano et al., 2008) andArgo (Rak et al., 2012). TheGeneral
Architecture for Text Engineering (GATE) (Cunningham et
al., 2011), a broader-based framework for text mining, also
includes some tools for handling biomedical texts. These

2 https://www.nlm.nih.gov/bsd/medline.html
3 https://www.nlm.nih.gov/
4 https://www.ncbi.nlm.nih.gov/pubmed
5 https://www.nlm.nih.gov/bsd/medline.html
6 Medical Subject Heading (MeSH) terms are a tree of controlled
vocabulary maintained by the Library Operations division of
NLM.

7 http://www.nactem.ac.uk/software/termine/
8 http://seas.upenn.edu/∼strctlrn/BioTagger/BioTagger.html

tools and infrastructures are typically self-contained and
focused on lexical, syntactic and shallow semantic (named-
entity) approaches. More recently, the LAPPS Grid (Ide et
al., 2014) has been augmented to supportmining biomedical
literature (Ide et al., 2018), as well as sophisticated inter-
active annotation and machine learning tools for domain
adaptation to support mining literature in the life sciences.

3. Biomedical Text Mining Infrastructure
In order to fully support the complete cycle of literature-
based discovery and symbiotic improvement in language
resources in the genomics domain with an existing vast
body of work, we need large scale infrastructures. The
following subsections discuss our Gene Ontology Seman-
tic Tagger (GOST) (section 3.1.) and its integration with
both our new Buster NLP pipeline (section 3.3.) and the
LAPPS Grid (section 3.2.) which was previously developed
by co-authors from Vassar College. By connecting GOST
both with Buster and LAPPS Grid, we are able to provide
annotation pipelines to drive full text into our simple web
front-end application to support CL style queries (section
3.5.), as well as flexible interoperable NLP workflows.

3.1. GOST
GOST is an updatable Gene Ontology Semantic Tagger (El-
Haj et al., 2018). GOST automatically annotates biomedical
genomics terms with GO IDs9 to provide a better coverage
via amore fine-grainedmedical terminology, which helps to
include an extra level of annotation by tagging biomedical
corpora using the Gene Ontology Consortium’s OBO Basic
Gene Ontology (go-basic.obo) categories10. GOST permits
genomics researchers to explore their rapidly growing liter-
ature in new ways.
GOST was created by adding a gene ontology dictionary
to USAS11 - a framework for undertaking the automatic
semantic analysis of text. This was done by parsing theOBO
Basic Gene Ontology. The go-basic.obo is the basic version
of theGOontology, filtered such that the graph is guaranteed
to be acyclic paths, and annotations can be propagated up the
graph. GOST focuses on the is_a relation in order to trace
ancestors and children for each entry in the ontology. The
is_a relationship was chosen in the first instance because it
has a more intuitive meaning. Something is only considered
is_a if an instance of the child process is an instance of the
entire parent process. The USAS extended gene ontology
dictionary was created following the five steps below:
1. Determine whether a child entry in OBO is single or

multi-word expression (e.g. “Cell” vs “Immune Sys-
tem Process”).

2. trace the number of paths from a child to the root (i.e.
“biological process”).

3. extract GO ID entries (i.e. child node’s ancestors).

4. determine the level of each ancestor (e.g. appending
.1 to the end of that tag refers to the first parent of the
node).

9 http://geneontology.org
10http://current.geneontology.org/ontology/go-basic.obo
11http://ucrel.lancs.ac.uk/usas/
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Figure 1: GOST in the LAPPS Grid Galaxy instance

5. determine whether the path passes through an “Im-
mune System Process”, if so the tag will end with a .I
to refer to an immune entry otherwise .N referring to a
non-immune entry.

The process above resulted with a dictionary of 433 single-
word bioterms and 44,180 multiword bioterms, which has
been merged into USAS creating a new USAS semantic
annotation system, named GOST (Gene Ontology Semantic
Tagger).

3.2. LAPPS Grid
The Language Applications (LAPPS) Grid (Ide et al., 2014)
provides a large collection of NLP tools exposed as SOAP
(Simple Object Access Protocol) web services, together
with access to a variety of resources commonly used in
the domain. The services are made available to users via a
customised instance of the Galaxy web-based workflow de-
velopment engine12 (Goecks et al., 2010), directly via SOAP
calls, and programmatically through Java and Python inter-
faces. Crucially, all tools and resources in the LAPPS Grid
are rendered mutually interoperable via transduction to the
JSON-LD LAPPSGrid Interchange Format (LIF (Verhagen
et al., 2016)) and the Web Service Exchange Vocabulary
(WSEV (Ide et al., 2015)), both designed to capture funda-
mental properties of existing annotation models in order to
serve as a common pivot among them.
Recently, the LAPPS Grid has been augmented to support
mining biomedical literature (Ide et al., 2018) by providing
interoperable access to a wide variety of bio-oriented tools,
including GOST (Figure 1), the Penn BioTokenizer, Penn
BioTagger, the ABNER Biomedical Named Entity Recog-
nizer13, and cTakes software14 for analysing clinical texts.
Notably, the LAPPS Grid also provides interoperable ac-
cess to major resources for biomedical publication mining,
including several gold standard corpora from several past
BioNLP shared tasks as well as the holdings of PubMed
and PubMed-Central15. The LAPPS Grid has recently in-
corporated reciprocal access to resources and tools available
from PubAnnotation16, a platform for collaborative annota-

12https://galaxy.lappsgrid.org
13http://pages.cs.wisc.edu/ bsettles/abner/
14https://ctakes.apache.org
15https://www.ncbi.nlm.nih.gov/pmc/
16http://pubannotation.org

Number of Articles 9,776
Number of Journals 1,178
Words 5,481,543
Download size 72 GB
Corpus Size (Single File) 11 GB
Corpus Size (Tokens) 2.4 GB
Processing Time Approx 5 days

Table 1: Annotated Corpus

tion of biomedical publications; and an Apache Solr query
engine to extract relevant publications from PubMed Cen-
tral (PMC)17. The Grid also incorporates PubAnnotation’s
TextAE annotation editor, which, coupled with facilities for
machine learning, provides an environment for rapid adap-
tation of trainable named entity recognition (NER) modules
to domain-specific vocabularies and development of gold
standard data for machine learning and evaluation.

3.3. Buster
Buster is a linear NLP pipeline that downloads full-text,
open access papers from PubMed Central (PMC), tags them
using GOST, and indexes them in LexiDB (Section 3.4.) to
create an annotated corpus (Table 1). Our initial tests of
Buster processed almost 10,000 papers from PMC over a
five day period.
The pipeline was developed in Python18 leveraging mod-
ern technologies such as docker to provide a modular and
scalable system for researchers.
The system comprises of five key components as shown in
Figure 2:
Web server: This hosts both thewebsite (web front-end) that
can be used to interact with the dataset, and communicates
with the NLP pipeline system.
MySQL Databases: There are two auxiliary databases for
the system; notifications, and papers. Notifications is used
to store status messages passed by the NLP pipeline to the
web server to enable progress to be tracked. Papers contains
the set of all the papers that have been passed through the
pipeline, including metadata.
LexiDB: This is the corpus databases as explained in section
3.4., that is used to store the textual data extracted from all
the PMC papers. LexiDB contains two corpora; a tokens
corpus containing all of the single word tokens extracted
from each paper along with some metadata, and a publica-
tions corpus which contains the set of all papers passed that
the tokens were extracted from.
Celery: We used celery19 as a distributed task queue, us-
ing RabbitMQ20 as our message broker, and Redis21 as the
backend. This was used to provide a management system
to the pipeline. Each of Buster’s components is defined as
a celery worker that receives start commands from the cel-
ery component. Celery provides reliability by guaranteeing
that each worker receives by utilising the redis back-end as
a persistent message queue.

17https://services.lappsgrid.org/eager/ask
18https://delta.lancs.ac.uk/BioTM/BUSTER
19http://www.celeryproject.org/
20https://www.rabbitmq.com/
21https://redis.io/
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Figure 2: Buster System Architecture Diagram

Buster Pipeline: The Buster pipeline was developed with
modularity in mind. Each component is containerised us-
ing docker and managed using docker-compose. This en-
ables functionality such as components replication for load-
balancing and an overlay network for intra-container com-
munication. Each component takes a predefined file input,
and presents a defined file output. As a result of this design,
any of the components can be replaced or augmented, so
long as the expected input and output are presented.
Figure 2 shows Buster’s architecture diagram and the inter-
action between the components, includingGOST as follows:

Fetcher
This component will download all of the open-access files
from PMC open-access-subset22 using their FTP service23.
Files are downloaded one at a time in compliance with the
PMC FTP API regulations24. We first download the OAS
Non-commercial papers list and download each paper on
that list that appears within our PMC query. The set of
papers that match our query is acquired using selenium25

on the PMC search tool and returning the PMCID of each of
the results. The fetcher then extracts the .nxml file from the
downloaded ZIP folder and places each of these in a folder
named by the PMCID of the paper.

Preprocessor
The preprocessor will take the .nxml file extracted by the
fetcher and convert it to plain text. It first finds the body of
the paper (or the abstract if one cannot be found), proceeding
to then remove any of the XML from the text. At this stage,
we also extract any meta-data available within the .xml file
and insert it into the papers database.

22https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
23https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
24https://www.ncbi.nlm.nih.gov/pmc/tools/developers/
25https://www.seleniumhq.org/

Tagger/GOST
GOST was dockerised along with a python handler for call-
ing the java application, and replicated within the pipeline
to increase performance. GOST takes the plain text files
composed by the preprocessor and begins to tag each token.
The result of this is a CSV file, with each row representing
a token in the file, along with its semantic information.
GOST also has the capabilities to be updated periodically
with an updated version of the Gene Ontology by generating
a list of single words and multiword expressions using a
separate tool26 that can be used to generate a new lexicon
resource for GOST.27

Indexer
The final component of this pipeline is the indexer. This
interacts with LexiDB’s REST API to create new corpora
and send processed chunks.

3.4. lexiDB
LexiDB is a column centric database management system
(DBMS) designed to handle annotated text, similar series
data and accompanying metadata. It provides mechanisms
for performing complex corpus queries on tagged token
streams and can be scaled out across multiple nodes to
provide scalability and accommodate corpora consisting of
tens of billions of tokens.
Previous work (Coole et al., 2015) has shownwhilst existing
DBMSs are capable of storing and searching corpora they
fall short in both their ability to express corpus queries in
a meaningful syntax for linguistic users and their ability to
scale up to handle multi-billion word corpora. LexiDB was

26https://github.com/drelhaj/BioTextMining
27It is left up to the domain expert end user to decide if they wish
to retag existing corpora in the system. It is not clear that new
versions of the Gene Ontology should be retrospectively applied
to earlier papers.
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Figure 3: Concordances of the query ‘blood’

developed with these factors in mind and has been shown
(Coole et al., 2016) capable of fulfilling both the corpus
query and scalability requirements making it well suited to
being the final data-sink for the Buster Pipeline.
The data is stored in two primary tables within the Lex-
iDB database, a token stream table and a publications table.
The token stream table leverages the Zipfian column family
store for storing and indexing tokens and their associated
POS tags and semantic annotations. A continuous column
family store is then utilised to provide a means of fast and
efficient joins on queries between the token stream and the
publications table. These queries are sent by means of a
REST API from the corpus interface as described in Sec-
tion 3.5..

3.5. Corpus interface
The corpus interface is managed by the web-server as noted
in section 3.3.. This is aweb-app that comeswith a graphical
user interface (GUI) styled using bootstrap v428 for acces-
sibility and responsiveness. This is the entered end-point
through which researchers will interact with the corpus.
Interactions with the corpus are facilitated by LexiDB us-
ing a REST API that supports querying of the corpus. At
present, concordance and keyness queries are supported by
the corpus interface. Figure 3 shows concordances returned
for the query “blood”. Queries are sent to the REST API
via asynchronous javascript calls using the fetch29 API. This
approach enables the users to continue to use the website
while queries are processed by the backend, which will only
show results whenever the query has completed. Present-
ing a cleaner user-experience than a synchronous alternative
that would make the user wait until the query has been pro-
cessed.
Queries from the corpus interface are generated via
javascript based on the input values in the search tool using
query templates based on the desired result. Requests are
sent to LexiDB as POST requests, sending the table and
token users want to query. Results are returned in JSON
format, and displayed using a relevant page template. Each
displayed result has a reference back to the original PMC
paper from which it was extracted (based on the metadata
stored in LexiDB). An example is shown in Listing 1.

28https://getbootstrap.com/
29https://fetch.spec.whatwg.org/

Listing 1: LexiDB REST API Query Example
que ry =

{
" que ry " : {

" t o k en s " : [
{" sem " : "GO:1904124"}

]
} ,
" r e s u l t " : {" t ype " : " kwic "}

}

4. LAPPS Grid and GOST
GOST has been added to the LAPPS Grid as a callable
service for annotating texts with semantic tags and GO
identifiers. There are several advantages to incorporating
GOST into the LAPPS Grid, most notably that incorpo-
ration requires that GOST is interoperable with all other
applications available in the Grid. This is accomplished by
mapping GOST’s input and output formats to the LAPPS
Interchange Format (LIF) (Verhagen et al., 2016) and the
LAPPS Grid Web Service Exchange Vocabulary (WSEV)
(Ide et al., 2015), an ontology of terms and their properties
commonly used in the Natural Language Processing (NLP)
field. GOST output can then be processed by tools that may
generate additional annotation layers (“views" in LAPPS
Grid terminology), with or without using GOST’s semantic
annotations. The LAPPS Grid also provides a Solr-based
query engine for PubMed data that is augmented with rank-
ing rules whose weights can be tweaked as desired by the
user, results from which can be used as input to GOST.
A major advantage of incorporating GOST into the LAPPS
Grid is the access to PubMed data provided by the newly-
established incorporation of the facilities of PubAnnotation
(Kim and Wang, 2012) into the Grid. PubAnnotation not
only provides access to all PubMed texts, but also, crucially,
serves as a repository of annotations that are linked together
by common reference (via standoff annotation) to the canon-
ical texts. A common annotation repository enables com-
bining GOST’s semantic annotations with annotations gen-
erated by other software and/or by human annotators, which
in turn can yield insight into linguistic and semantic prop-
erties of biomedical terminology and improve our ability
to extract meaningful information from biomedical publi-
cations. PubAnnotation also provides an annotation editor,
now available within the LAPPS Grid, to support “human-
in-the-loop" manual correction of automatically generated
annotations–in particular, the semantic annotations gener-
ated by GOST. Automatically-generated annotations that
have been subsequently curated by human experts can be
exploited to (re-)train machine learning algorithms in order
to gain increased tagging accuracy. Finally, from within
the LAPPS Grid one can publish annotations to the PubAn-
notation repository, which links them to the canonical text
alongside other contributed annotations over the document
for use by others.
The potential formutual exploitation of capabilities between
the LAPPS Grid and GOST are considerable. We can, for
example, compare results from the respective query engines
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and potentially exploit both to achieve maximal results. It is
also possible to “decompose” GOST into its components so
as to allow for alternative part-of-speech taggers to provide
GOST input. In future work, we intend to pursue these
capabilities as well as explore the potential to use GOST
output as input to sophisticated text mining tools.

5. Results and Evaluation

Figure 4: Gene Ontology Term 1 Example
To demonstrate the benefit of using the multiple levels in the
GOST annotation as described in Section 3.1., we examined
two PubMed searches based on two GO terms to investigate
the utility of expanding searches through the relationship
tree of a term. Term 1 “Microglial Cell Migration” as in
Figure 4, refers tomicroglial cells that remove cellular debris
including dead neurons. This term is a biological process
with multiple paths and at least 5 steps before it reaches the
root. Term 2 “Synaptic Signalling” as in Figure 5 refers to a
specific form of cell signalling involving a structure within
neurons.
It is also a biological process with only two nodes back to
the root the shortest which has only three steps. Searching
PubMed for “Microglial Cell Migration” resulted in only
32 exact match results, whereas “Synaptic Signalling” re-
sulted in 679 – which shows that the topics covered are
broader in the later search. As you step up the tree to search
for “Macrophage Migration” and “Cell-Cell Signalling” re-
spectively the number of results increases to 5657 and 718.
This shows that the level of annotation provides a degree of
expansion where the closer you get to the root, the broader
the search becomes.
To demonstrate the advantage of incorporating GOST into
the LAPPS Grid we ran the infrastructure using a sentence
extracted from a biomedical article30 (Figure 6). The GOST

30Article PMID: 30374459

Figure 5: Gene Ontology Term 2 Example

Figure 6: Example Sentence

tagger extracted the multi-word-expression (MWE) phrase
“carbohydrate utilization” as it exists in the OBO dictio-
nary (GO:0009758). Figure 7 shows the OBO Graph of
the MWE. Figure 8 shows the LAPPS Interchange Format
(LIF) version of the GOST output when used to annotate
the sentence in Figure 6. The LIF format of GOST output
in Figure 8 can then be processed by tools that may generate
additional annotation layers as mentioned in Section 4.. We
should note that if the sets of GO IDs returned for MWEs
are different in length, any overlaps are dealt with via ex-
isting USAS heuristics to prioritise the longest continuous
spanning items.

Figure 7: OBO Graph for “carbohydrate utilization”

5.1. Evaluating GOST on the CRAFT Dataset
The Colorado Richly Annotated Full-Text (CRAFT) is an
independently annotated corpus. It is a collection of 97
full-length, open-access biomedical journal articles anno-
tated semantically and syntactically to support research in
biomedical NLP (Bada et al., 2012; Cohen et al., 2017b).
The later version of CRAFT includes co-reference relations
to deal with the challenges of false negatives extractions
due to the failures in co-reference resolution (Cohen et al.,
2017a).
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Figure 8: GOST LIF output for “carbohydrate utilization”

We downloaded the CRAFT annotated dataset from its
GitHub repository31. The pre-processing of the data in-
volves extracting the relevant data from the original XML
format and presenting them in plain text format for the ac-
tual evaluation process. Each instance of the data contains
a gene ontology ID followed by a word or phrase e.g.:

< GO : XXXXXXX >< word|phrase >

Item Counts
No of articles 97
Concept entries 12,962
Concept lexicon 723
Concept types (GO ids) 721

Table 2: Basic statistics from the CRAFT Corpus
Table 2 shows that multiple concepts map to the same type
or GO id. However, a closer look at the counts for Concepts
lexicon andConcepts types (i.e. 723 and 721), indicates that
there is actually a near 1-to-1mapping between the concepts
and their types. The only exception found is GO:0051867
corresponding to 3 entries – ‘general adaptation syndrome,
behavioral process’, ‘general adaptation syndrome’, ‘be-
havioral process’ – which are basically the same concepts.
The top 20 most common concepts (with their GO ids)
are presented in Table 3 showing that the term ‘gene ex-
pression’ constitutes more than 25% of the entire concept
entries. Figure 9 also indicates that more than two-thirds
of the entire concept types are 2- or 3-word phrased e.g.
embryo development or meiotic nuclear division.
The evaluation method passes each instance from the ex-
tracted and untagged CRAFT (gold) dataset to the GOST
and compares the returned output with the expected output
in the tagged version. GOST returns a set of GO ids for each
word (non-words or words without GO id tags are excluded)
of the text given. For example, if we pass brain to GOST
we will get something like:

31https://github.com/UCDenver-ccp/CRAFT

GO ids Concepts Count
GO:0010467 gene expression 3704
GO:0065007 biological regulation 823
GO:0007608 sensory perception of smell 462
GO:0007567 parturition 425
GO:0009294 DNA mediated transformation 275
GO:0016265 death 210
GO:0008283 cell proliferation 209
GO:0006915 apoptotic process 176
GO:0009790 embryo development 150
GO:0007613 memory 141
GO:0007565 female pregnancy 136
GO:0008380 RNA splicing 135
GO:0000239 pachytene 129
GO:0007126 meiotic nuclear division 127
GO:0007618 mating 120
GO:0008152 metabolic process 118
GO:0007067 mitotic nuclear division 117
GO:0007612 learning 108
GO:0030154 cell differentiation 100
GO:0006281 DNA repair 97

Table 3: Distribution of Concept Types in CRAFT: Top 20
most common GO ids in the CRAFT dataset

Figure 9: Distribution of the CRAFT Concepts by numbers
words used to describe it

brain GO:0048856 GO:0048513 GO:0032502 ...
The returned GO ids are ranked according to their likeli-
hood of being predicted by GOST in that context and so
‘GO:0048856’ is assumed to be the most likely. Therefore,
for evaluation purpose, we implement different schemes:

Top n: If the correct GO id is among the top n predicted
by GOST

Top ALL: If the correct GO id is in the list of all ids pre-
dicted by GOST

We used n values of 1,5,10,15 and ALL. For instance, Top
5 checks whether the correct GO id is among the top 5
predicted by GOST. Top 1 is the most strict and checks if
the first GO id is the correct one. Also, if we pass a phrase
instead (e.g. brain development), GOST returns:
[brain GO:0048856 GO:0048513 GO:0032502 ...]
[development GO:0048856 GO:0048513 GO:0032502 ...]

https://github.com/UCDenver-ccp/CRAFT
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We have a similar evaluation method but the GO ids in
similar positions for each word are grouped together before
applying the schemes. For example, we will pre-process the
above result to look like:
[brain development (GO:0048856, GO:0048856)
(GO:0048513, GO:0048513) ... ]

Then we apply the same schemes by checking whether the
CRAFT representation of brain development is found in the
1st tuple or within the first 5, 10 etc. tuples. Table 4 shows
the evaluation scores for the schemes on the key metrics of
Accuracy, Precision, Recall and F1.
Also, since GOST is expected to return a GO id for any
concept given, we had to decide what the ‘default’ GO id
will be when the correct one is not found at the top of the
predicted list. Three default approaches were considered:

Default = Top predicted: selects the top predicted GO id
when as default

Default = GOST most common selects the most common
GO id predicted by GOST

Default = CRAFT most common selects the most com-
mon GO id in the CRAFT dataset

Top Accuracy Precision Recall F1
Default == Top predicted

Top 1 22.71 12.07 12.21 12.07
Top 5 62.55 30.51 30.65 30.51
Top 10 68.15 41.05 41.19 41.05
Top 15 68.95 43.97 44.11 43.97
Top All 81.29 62.60 62.60 62.60
Default == GOST most common (GO:0008150)

Top 1 22.76 12.07 12.21 12.07
Top 5 62.60 30.51 30.65 30.51
Top 10 68.20 41.05 41.19 41.05
Top 15 68.99 43.97 44.11 43.97
Top All 81.35 62.69 62.83 62.69
Default == CRAFT most common (GO:0010467)
Top 1 51.28 12.12 12.21 12.14
Top 5 62.54 30.43 30.51 30.46
Top 10 68.15 40.98 41.05 41.00
Top 15 68.94 43.89 43.97 43.92
Top All 81.29 62.64 62.69 62.66

Table 4: Evaluation of scores on Accuracy, Precision,
Recall and F1

Across the metrics, Table 4 shows that there is a strong
similarity between the set of results got from using the top
predicted GO id and the most common GOST predicted
GO id as the default. Although, the latter got slightly better
results especially with the Top All, this trend is not entirely
surprising given that the top predicted GO id is also pro-
duced by applying the GOST tagger.
As expected, the third approach (i.e. using the CRAFT
most common GO id as the default tag) that leverages the
knowledge of the GO id distribution in the CRAFT dataset
gave a better performance for using the first predictedGO id.

But the rest of the other schemes gave similar results as the
previous schemes. This evaluation assumes a closed-world
scenario where the evaluation is done with only the CRAFT
dataset. We also used only the concepts in the ‘biological
process’ subset which was closer to the lexicon integrated
in GOST.

6. Conclusion
In order to support the large scale application of more ad-
vanced computational methods to biomedical and life sci-
ences literature, we have created a novel super-infrastructure
from a number of existing tools and developed a new
pipeline scheduler in order to integrate the paper download-
ing, tagging, storage, retrieval and analysis phases. This
combined open super-infrastructure permits flexible NLP
annotation workflows and corpus linguistics analysis meth-
ods such as frequency listing, concordancing, keyness, col-
location and n-grams to facilitate exploratory comparative
analysis.
We have evaluated our new infrastructure in two ways.
First, qualitatively, via performing PubMed searches and
observing the effect of query expansion with the Gene On-
tology. Second, quantitatively, using information retrieval
metrics to compare the annotation performance of GOST
itself against a manually annotated corpus.
We have utilised only open access PubMed Central archived
papers and have focused on creating an open infrastructure
by exploiting SOAP and REST APIs for connectivity across
our distributed architecture. A crucial feature of the tagging
process is the hierarchical nature of our semantic annotation
which derives from the latest update of the Gene Ontology,
thus facilitating searching and corpus comparisons with a
meaningful domain specific semantic category set.
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