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Abstract
Many recent studies have shown that for models trained on datasets for natural language inference (NLI), it is possible to make correct
predictions by merely looking at the hypothesis while completely ignoring the premise. In this work, we manage to derive adversarial
examples in terms of the hypothesis-only bias and explore eligible ways to mitigate such bias. Specifically, we extract various phrases
from the hypotheses (artificial patterns) in the training sets, and show that they have been strong indicators to the specific labels. We
then figure out ‘hard’ and ‘easy’ instances from the original test sets whose labels are opposite to or consistent with those indications.
We also set up baselines including both pretrained models (BERT, RoBERTa, XLNet) and competitive non-pretrained models (InferSent,
DAM, ESIM). Apart from the benchmark and baselines, we also investigate two debiasing approaches which exploit the artificial pattern
modeling to mitigate such hypothesis-only bias: down-sampling and adversarial training. We believe those methods can be treated as
competitive baselines in NLI debiasing tasks.
Keywords: Natural Language Inference, Hypothesis-only Bias, Artificial Patterns

1. Introduction
Natural language inference (NLI) (also known as recogniz-
ing textual entailment) is a widely studied task which aims
to infer the relationship (e.g., entailment, contradiction,
neutral) between two fragments of text, known as premise
and hypothesis (Dagan et al., 2006; Dagan et al., 2013).
NLI models are usually required to determine whether a hy-
pothesis is true (entailment) or false (contradiction) given
the premise, or whether the truth value can not be in-
ferred (neutral). A proper NLI decision should apparently
rely on both the premise and the hypothesis. However,
some recent studies (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018) have shown that it is possible for
a trained model to identify the true label by only looking
at the hypothesis without observing the premise. The phe-
nomenon is referred to as annotation artifacts (Gururangan
et al., 2018), statistical irregularities (Poliak et al., 2018) or
partial-input heuristics (Feng et al., 2019). In this paper we
use the term hypothesis-only bias (Poliak et al., 2018) to
refer to this phenomenon.
Such hypothesis-only bias originates from the human anno-
tation process of data collection. In the data collection pro-
cess of many large-scale NLI datasets such as SNLI (Bow-
man et al., 2015) and MultiNLI (Williams et al., 2018), hu-
man annotators are required to write new sentences (hy-
potheses) based on the given premise and a specified label
among entailment, contradiction and neutral. Some of the
human-elicited hypotheses contain patterns that spuriously
correlate to some specific labels. For example, 85.2% of
the hypothesis sentences which contain the phrase video
games were labeled as contradiction. The appearance of
video games in hypothese can be seen as a stronger artifi-
cial indicator to the label contradiction.
To get a deeper understanding of the specific bias captured
by NLI models in the training procedure, we try to extract
explicit surface patterns from the training sets of SNLI and
MultiNLI, and show that the model can easily get decent
classification accuracy by merely looking at these patterns.

After that, we derive hard (adversarial) and easy subsets
from the original test sets. They are derived based on the
indication of the artificial patterns in the hypotheses. The
gold labels of easy subsets are consistent with such indica-
tion while those of hard subsets are opposite to such indica-
tion. The model performance gap on easy and hard subsets
shows to what extend a model can mitigate the hypothesis-
only bias.
After analyzing some competitive NLI models, including
both non-pretrained models like Infersent (Conneau et al.,
2017), DAM (Parikh et al., 2016) and ESIM (Chen et al.,
2017b) and popular pretrained models like BERT (Devlin et
al., 2018), XLNet (Yang et al., 2019) and RoBERTa (Liu et
al., 2019), we find that the hypothesis-only bias makes NLI
models vulnerable to the adversarial (hard) instances which
are against such bias (accuracy < 60% on InferSent), while
these models get much higher accuracy (accuracy > 95%
on InferSent) on the easy instances. This is an evidence to
show that the NLI models might be over-estimated as they
benefit a lot from the hints of artificial patterns.
A straightforward way is to eliminate these human arti-
facts in the human annotation process, such as encouraging
human annotators to use more diverse expressions or do
dataset adversarial filtering (Zellers et al., 2018) and multi-
round annotation (Nie et al., 2019b). However in this way,
the annotation process would inevitably become more time-
consuming and expensive.
To this end, this paper explores two ways based on the de-
rived artificial patterns to alleviate the hypothesis-only bias
in the training process: down-sampling and adversarial de-
biasing. We hope they would serve as competitive baselines
for other NLI debiasing methods. Down-sampling aims at
reducing the hypothesis-only bias in NLI training sets by
removing those instances in which the correct labels may
easily be revealed by artificial patterns. Furthermore, we
exploring adversarial debiasing methods (Belinkov et al.,
2019; Belinkov et al., 2018) for the sentence vector-based
models in NLI (Yang et al., 2016; Lin et al., 2017; Wu et
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Multi-word Patterns Unigram Patterns
Entailment Neutral Contradiction Entailment Neutral Contradiction

SNLI
in this picture 96.4 tall human 99.7 Nobody # # . 99.8 outdoors 78.8 vacation 91.0 Nobody 99.7
A human 96.4 A sad 95.6 dog # sleeping 97.5 sport 75.1 winning 89.9 No 95.8
A # # outdoors . 95.9 A # human 94.1 There # no 96.2 instrument 74.4 favorite 88.7 cats 93.4
A # # outside . 89.8 the first 88.6 in # bed 94.2 animal 68.5 date 87.4 naked 88.7
is near # # . 87.6 on # way 87.0 at home 93.5 moving 67.8 brothers 85.6 tv 88.4

MultiNLI
It # possible 71.7 , said the 93.6 There are no 92.4 Several 54.7 addition 69.6 None 85.4
There # a # # the 70.8 They wanted to 81.4 does not # any 91.9 Yes 54.4 also 68.6 refused 80.5
There is an 68.8 the most popular 78.7 no # on 91.5 various 53.7 locals 65.7 never 79.0
are two 67.0 addition to 78.4 are any 90.1 ... 53.1 battle 63.3 perfectly 77.3
There # some 65.9 because he was 77.8 are never 89.9 According 53.1 dangerous 63.2 Nobody 77.1

Table 1: Top 3 artificial patterns sorted by the pattern-label conditional probability p(l|b) (Sec 2.1.). The listed patterns
appear at least in 500/200 instances in SNLI/MultiNLI training sets, notably the numbers 500/200 here are chosen only for
better visualization. ‘#’ is the placeholder for an arbitrary token. The underlined artificial pattern serves as an example in
Sec 2.1..

al., 2018; Luo et al., 2018). The experiments show that the
guidance from the derived artificial patterns can be helpful
to the success of sentence-level NLI debiasing.

2. Datasets
In this section, we identify the artificial patterns from the
hypothesis sentences which highly correlate to specific la-
bels in the training sets and then derive hard, easy subsets
from the original test sets based on them.

2.1. Artificial Pattern Collection
‘Pattern’ in this work refers to (maybe nonconsecutive)
word segments in the hypothesis sentences. We try to iden-
tify the ‘artificial patterns’ which spuriously correlate to a
specific label due to certain human artifacts.
We use H(M, t, λ) to represent a set of artificial patterns.
M and t denotes the max length of the pattern and the max
distance between two consecutive words in a pattern, re-
spectively. For a artificial pattern b ∈ H(M, t, λ), there
exists a specific label l for b that the conditional probability
p(l|b) = count(b, l)/count(b) > λ. For example, for the
underlined pattern ‘A # # outdoors .’ in Table 1, the length
of this pattern is 3, and the distance between the consecu-
tive words ‘A’ and ‘outdoors’ is 2. Its conditional proba-
bility with the label entailment is 95.9%. Notably, all the
recognized artificial patterns in our paper appear in at least
50 instances of the training sets to avoid misrecognition1.
In the rest of paper, unless otherwise specified, we setM =
3, t = 3 2. By doing so, we only tune the hyper-parameter λ
in H(3,3,λ) to decide using a rather strict (smaller λ) or mild
(bigger λ) strategy while deriving the artificial patterns.

2.2. Analysis of Hypothesis-only Bias
Previous work (Gururangan et al., 2018; Poliak et al., 2018)
trained a sentence-based hypothesis-only classifier which

1Suppose a pattern only appears once in a training instance, its
p(l|b) always equals 1 for the label in that instance.

2We also tried larger M and t, e.g. 4 or 5, but did not observe
considerable changes of the artificial patterns, e.g. 95.4% patterns
in H(5,5,0.5) are covered by H(3,3,0.5).

Model SNLI MultiNLI
Matched Mismatched

majority class 34.3 35.4 35.2
fasttext 67.2 53.7 52.5

Unigram 60.2 49.8 49.6
Pattern 64.4 52.9 52.9

Table 2: The accuracies of the hypothesis-only classifiers
on SNLI test and MultiNLI dev sets. We train a MLP classi-
fier with unigrams (Unigram) or multi-words patterns (Pat-
tern) as features. Details in Sec 2.2..

achieves decent accuracy. Different from them, we show
that in Table 2 the classifier which merely uses the artifi-
cial patterns as features achieves comparable performance
with the fasttext (Joulin et al., 2016) classifier. Table 2
shows the classifier based on multi-word patterns with the
defaultM and t (see Footnote 2, H(3,3,0.5)) achieves much
higher accuracy than that based on only unigram patterns
(H(1,1,0.5)).
We also compare the test accuracies on the easy and hard
sets (Sec 2.3.) of the baseline models (I-9,D-9,E-9) in Ta-
ble 5 and 6. Empirically we find that the NLI models
achieve very high accuracy on the easy sets while perform-
ing poorly on the hard sets. We also observe the same ten-
dency in the models trained on the randomly downsampled
training sets (e.g. I-1, I-3, I-5, I-7, etc.). It shows that NLI
models fit the artificial patterns in the training set very well,
which makes them fragile to the adversarial examples (hard
set) which are against these patterns. Thus we assume the
artificial patterns contributes to the hypothesis-only bias.

2.3. Hard and Easy Subsets
Some instances contain artificial patterns that are strong in-
dicators to the specific labels. We treat the instances in the
test sets which are consistent with such indication as ‘easy’
ones and those instances which are against such indication
as ‘hard’ ones.
For easy subsets, the labels of all the artificial patterns in
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Premise: Two cats playing on the bed together .
Hypothesis: The dogs are playing on the bed .
Gold Label: CONTRADICTION
Artificial patterns: (bed ., CONTRADICTION, 83.2%
); (The dogs are # on, CONTRADICTION, 82.9%)

(a) An easy instance

Premise: A bare-chested man fitting his head and arm
into a toilet seat ring while spectators watch in a city.
Hypothesis: A gentleman with no chest hair ,
wrangles his way through a toilet seat .
Gold Label: ENTAILMENT
Artificial patterns: (no, CONTRADICTION, 82.7%)
(his way, NEUTRAL, 82.4%)

(b) A hard instance

Table 3: Examples for easy and hard instances. The indica-
tions of artificial patterns are consistent with the gold label
in the easy case while they are against the gold label in the
hard case. The triple (P, l, p) show the related label indica-
tions l for specific artificial patterns P and their conditional
probability p.

the specific hypotheses must be consistent with the gold la-
bels. We show an easy instance below: the artificial patterns
‘The dogs are # on’ and ‘bed .’ (bed is the last word of the
sentence) are strong indicators to the correct classification.
For the hard subsets, on the other side, the indications of the
artificial patterns should be all different from gold labels.
We also show a hard instance below: in this situation, the
artificial patterns ‘no’3 and ‘his way’ may misguide the NLI
models to the wrong answers.
Notably we do not put instances with conflicting indica-
tions (e.g. an instance with 2 artificial patterns, one of
which has the same label with the gold label while the other
does not) into easy or hard subsets to build more challeng-
ing adversarial examples.
The sizes of hard and easy sets actually depend on how we
harvest artificial pattern, i.e. λ in H(M = 3, t = 3, λ)
(Sec 2.1. and Footnote 2). For the sake of simplicity, we
utilize λ = 0.8 and λ = 0.7 4 as the thresholds to derive
easy and hard subsets for SNLI and MultiNLI respectively
in the following experiments, as adopting a relatively big-
ger λ can choose the instances which largely accord with
the artificial patterns and are thus eligible to serve as adver-
sarial examples.
The sizes of easy and hard sets in SNLI test set, MultiNLI-
matched dev set and MultiNLI-mismatched dev set are
327/1760; 410/1032; 371/1085 respectively. 5 The perfor-
mance of an ideally unbiased NLI model on the easy and
hard sets should be close to each other. Besides we should
not see huge gap between the model accuracy on the easy
and hard subsets.

3‘no’ is different from ‘No’ shown in Table 1 as the latter in-
dicates the word appears in the beginning of the sentence.

4MultiNLI’s pattern-label conditional possibilities are gener-
ally smaller than those of SNLI as shown in Table 1. So we use
smaller λ to ensure the size of derived subsets.

5The datasets used in this paper can be found in
https://tyliupku.github.io/publications/

Full Easy Hard UW+CMU

InferSent 84.5 97.2 58.9 69.3
DAM 85.8 97.8 62.1 72.0
ESIM 87.6 97.7 68.2 75.2

BERT 90.5 98.2 71.2 80.3
XLNet 90.9 98.0 73.6 80.7
RoBERTa 91.7 98.9 75.8 82.7

(a) Models trained on SNLI
Full Easy Hard

InferSent 70.4 92.7 54.4
DAM 70.5 92.0 55.1
ESIM 76.7 93.9 65.6

BERT 83.4 95.2 75.0
XLNet 86.5 96.3 78.2
RoBERTa 87.2 96.5 81.4
(b) Models trained on MultiNLI

Table 4: Model baselines on the proposed hard and easy test
sets. For MultiNLI, we trained the models using matched
dev sets as the valid set and reported the test accuracies on
mismatched dev sets. ’UW+CMU’ refers to the adversar-
ial set detected by a neural based hypothesis-only classi-
fier(Gururangan et al., 2018).

2.4. Baselines
We set up both pretrained and non-pretrained model base-
lines for the proposed adversarial datasets. We rerun
their public available codebase with the default hyper-
parameter and optimizer settings, including InferSent6,
DAM7, ESIM8, BERT (uncased base), XLNet (cased base)
and RoBERTa (base)9. For BERT, XLNet and RoBERTa,
we concatenate the premise sentence and hypothesis sen-
tence with [SEP] token as the input. For output classifier,
we use a linear mapping to transform the vector at the po-
sition of [CLS] token at the last layer of these pretrained
models to a normalized 3-element vector (using softmax)
which represents the scores for each label. We report the
test accuracies on easy, hard subsets and the UW+CMU
hard subsets (Gururangan et al., 2018) which are derived
from a hypothesis-only classifier. From Table 4, we can
tell that the proposed hard sets are more challenging than
UW+CMU hard subsets.

3. Exploring Debiasing Methods
3.1. Down-sampling Baselines
Sec 2.2. verifies that the artificial patterns lead to correct
hypothesis-only classification, which motivates us to re-
move such patterns in the training sets by down-sampling.
Specifically we down-sample the training sets of SNLI and
MultiNLI and retrain 3 prevailing NLI models: InferSent,
DAM and ESIM.

6https://github.com/facebookresearch/InferSent
7https://github.com/harvardnlp/decomp-attn
8https://github.com/coetaur0/ESIM
9https://github.com/huggingface/transformers
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λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
I-1 Rand 76.4 93.8 48.7 45.1
I-2 Debias 66.9 64.6 56.0 8.6

0.6
I-3 Rand 81.1 96.1 54.1 42.0
I-4 Debias 76.9 79.8 58.0 21.8

0.7
I-5 Rand 82.8 96.9 56.0 40.9
I-6 Debias 80.9 86.4 61.5 24.9

0.8
I-7 Rand 83.5 96.9 56.6 40.3
I-8 Debias 82.9 90.4 60.0 30.4

1.0 I-9 All 84.5 97.2 58.9 38.3
(a) InferSent trained on SNLI

λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
D-1 Rand 74.1 92.3 46.7 45.6
D-2 Debias 67.5 67.8 53.3 14.5

0.6
D-3 Rand 82.4 96.3 56.7 39.6
D-4 Debias 79.3 84.4 62.1 21.3

0.7
D-5 Rand 84.4 97.3 59.4 37.9
D-6 Debias 83.0 89.6 63.1 26.5

0.8
D-7 Rand 85.3 97.8 60.1 37.7
D-8 Debias 84.6 93.5 62.6 30.9

1.0 D-9 All 85.8 97.8 62.1 35.7
(b) DAM trained on SNLI

λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
E-1 Rand 76.8 94.6 48.9 45.7
E-2 Debias 65.3 62.5 53.8 7.7

0.6
E-3 Rand 83.6 96.6 62.2 34.4
E-4 Debias 78.6 79.4 63.6 15.8

0.7
E-5 Rand 85.9 97.2 64.2 35.0
E-6 Debias 83.8 88.2 68.8 19.4

0.8
E-7 Rand 86.9 97.3 67.9 29.4
E-8 Debias 86.2 92.1 70.9 21.3

1.0 E-9 All 87.6 97.6 68.2 29.4
(c) ESIM trained on SNLI

Table 5: Model performance on the SNLI test set. We
report the average scores of multiple independent runs.
∆Hard

Easy represents the gap between hard and easy test sets
(lower is better). λ is the debiasing threshold. We use
2 ‘modes’ to down-sample the training sets, namely bi-
ased instances removing (‘Debias’) and randomly down-
sampling (‘Rand’), the latter has the same training size
and label distribution with with ‘Debias’ mode for a fair
comparison. The downsampled training sizes are 4.0%,
19.8%, 43.8%, 67.4% and 100% of the whole training
size (549867) for λ ∈ {0.5, 0.6, 0.7, 0.8, 1.0} respectively.
Note that when λ=1.0, we use the whole training set with-
out any downsampling.

3.1.1. Downsampling Details
We down-sampled the training sets by removing the biased
instances (‘Debias’ mode) that contain the artificial pat-
terns.
Choosing down-sampling threshold λ: The threshold λ
is exactly the same λ defined in Sec 2.1.. We consider a
training instance as a biased one even if it contains only
one artificial pattern. When adopting smaller λ, we harvest
more artificial patterns as described in Sec 2.1.. Accord-
ingly more training instances would be treated as biased
ones and then filtered. In a word, smaller λ represents more
strict down-sampling strategy in terms of filtering the arti-
ficial patterns. λ = 0.5 serves as the lower bound because

λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
I-1 Rand 67.5 92.6 50.9 41.7
I-2 Debias 64.2 76.0 56.1 19.9

0.6
I-3 Rand 69.0 92.7 53.4 39.3
I-4 Debias 67.5 80.9 59.7 21.2

0.7
I-5 Rand 69.1 93.0 52.2 40.8
I-6 Debias 68.3 84.6 57.1 27.5

0.8
I-7 Rand 69.2 92.5 52.5 40.0
I-8 Debias 69.6 91.4 53.6 37.8

1.0 I-9 All 70.4 92.7 54.4 38.3
(a) InferSent trained on MultiNLI

λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
D-1 Rand 64.4 91.9 46.2 45.7
D-2 Debias 61.9 77.4 52.0 22.4

0.6
D-3 Rand 68.3 91.8 52.5 39.3
D-4 Debias 65.8 79.0 58.0 21.0

0.7
D-5 Rand 69.6 92.6 52.2 40.4
D-6 Debias 68.0 83.9 57.5 25.4

0.8
D-7 Rand 70.0 92.4 53.8 38.6
D-8 Debias 69.6 91.6 54.9 26.7

1.0 D-9 All 70.5 92.0 55.1 36.9
(b) DAM trained on MultiNLI

λ No. Mode Full Easy Hard ∆Hard
Easy (↓)

0.5
E-1 Rand 70.4 92.8 59.0 33.8
E-2 Debias 67.0 75.2 63.6 11.6

0.6
E-3 Rand 73.9 93.8 61.6 22.2
E-4 Debias 73.2 84.8 66.4 18.4

0.7
E-5 Rand 74.6 92.8 64.5 28.3
E-6 Debias 74.9 89.1 65.9 23.2

0.8
E-7 Rand 75.7 94.0 64.4 29.6
E-8 Debias 75.8 93.4 65.0 28.4

1.0 E-9 All 76.7 93.9 65.6 28.3
(c) ESIM trained on MultiNLI

Table 6: Models performance on MultiNLI mismatched
dev set. We tune the models on MultiNLI matched dev
set. The training sizes are 24.4%, 53.1%, 68.0%, 81.2%
and 100% of the whole training size (392702) for λ ∈
{0.5, 0.6, 0.7, 0.8, 1.0} respectively. Note that we do not
report the scores on MultiNLI test sets as they are unable
to access. The bold numbers mark higher scores between
‘Rand’ and ‘Debias’ mode for each λ. The underlined num-
bers highlight the highest scores in each column.

the highest pattern-label conditional probability (p(l|b) in
Sec 2.1.) for premises, which aren’t observed the same bias
as hypotheses, is less than 0.5 in both SNLI and MultiNLI
training set..
Ruling out the effects of training size: The model per-
formance might be highly correlated with the size of train-
ing set. To rule out the effects of training size as much as
possible, we set up randomly down-sampled training sets
(‘rand’ mode) with the same size as the corresponding ‘de-
bias’ mode under different λ for a fair comparison.
Keeping the label distribution balanced: After removing
the biased instances in the training set by different λ (‘de-
bias’ mode), suppose we get n1, n2, n3 (n1 ≥ n2 ≥ n3)
instances for the 3 pre-defined labels of NLI in the down-
sampled training set. Then we down-sample the subsets
with n1, n2 instances to n3 instances and get a dataset with
3n3 instances. For the corresponding ‘rand’ mode, we sam-
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ple n3 instances for each pre-defined label from training set.

Convincing scores of multiple runs: To relieve the ran-
domness of randomly down-sampling and model initializa-
tion, for the ‘rand’ mode in Table 5 and 6, we firstly ran-
domly down-sample the training set (with the label distribu-
tion balanced) according to different λ for 5 times and get 5
randomly down-sampled training sets for each λ. Then for
each down-sampled training set, we run 3 independent ex-
periments with random model initialization under the same
experimental settings. So each score in the ‘rand’ mode of
Table 5 and 6 comes from 15 independent runs. The scores
in the ‘debias’ mode of Table 5 and 6 come from 5 inde-
pendent runs with random model initialization.

3.1.2. Discussions

From table 5 and 6, we observe that: 1) The NLI models
fit the bias patterns in the hypotheses very well even in the
small-scale randomly down-sampled training sets (I-1, D-1
and E1) which only accounts for 4.0% of the original train-
ing set (SNLI), as the performance gaps between easy and
hard subsets in these settings are still huge (>40% for SNLI
in Table 5).

2) Under the same λ, the proposed ‘debias’ down-sampling
not only outperforms its ‘rand’ counterpart in terms of hard
subsets, but also greatly reduce the performance gap on
easy and hard sets.

3) The gains on hard sets on MultiNLI are smaller than
those on SNLI as MultiNLI is less biased regarding the
pattern-label conditional probability (Table 1). Down-
sampling achieves larger gains on more biased datasets.
In SNLI, the ‘debias’ down-sampling even outperforms the
baseline models (I-8 vs I-9, D-8 vs D-9, E-8 vs E-9), which
is really impressive as the training size of I-8, I-8 and E-8
is only 67.5% of the baseline models.

(Gururangan et al., 2018) expressed concerns upon down-
sampling (DS) methods: 1) Will removing the artificial pat-
terns cause new artifacts? (e.g. removing the word ‘no’,
which is a strong indicator for contradiction may leave the
remaining dataset with this word mostly appearing in the
neutral or entailment classes thus create new artifact) and
2) Will DS methods prevent the models to learn specific in-
ference phenomena (e.g. ‘animal’ is a hypernym of ‘dog’)?
First of all, different from (Gururangan et al., 2018) which
only considered unigram patterns, our artificial patterns are
mostly multi-word patterns rather than unigram patterns as
the former usually has larger concurrent probability p(l|b)
as shown in Table 1. Our intention is to use the multi-word
patterns to capture the specific ways of expression (human
artifacts), rather than single words, of the human annota-
tors. For the first concern, instead of filtering the unigram
‘no’, we prefer removing multi-word patterns which con-
tain ‘no’, such as ‘There are no’ or ‘no # on’ for MultiNLI
as shown in Table 1. For the hypernym mentioned in the
second concern, as we prefer filtering multi-word patterns
like ‘The dogs are # on’, we would not deliberately filter the
unigram ‘dog’ unless adopting very aggressive DS strategy
(λ = 0.5) in both SNLI and MultiNLI.

Hypothesis
Encoder !"

Premise
Encoder !#

		%&

		%'

Discriminator

Classifier
Forward
Backward
Gradient Reverse

		(&

		('

Figure 1: The illustration of the sentence-level debiasing
framework, which is elaborated in Sec 3.2.1..

3.2. Adversarial Debiasing
Since the hypothesis-only bias comes solely from the hy-
pothesis sentence, we wonder if it is possible to get rid of
these biases via debiasing the hypothesis sentence vector.
More specifically, we focus on the ‘sentence vector-based
models’ 10 category as defined on SNLI’s web page11. No-
tably the idea of debiasing NLI via adversarial training has
been proposed before (Belinkov et al., 2019; Belinkov et
al., 2018). We hereby briefly introduce how we implement
our adversarial training and how we incorporate instance
reweighting method in this framework.
In the following experiments, we use the full training sets
without any down-sampling. We use the InferSent (Con-
neau et al., 2017) (biLSTM with max pooling) model as
the benchmark sentence encoder.

3.2.1. Adversarial Debiasing Framework
As shown in Fig 1, given the outputs sh = Eh(xh), sp =
Es(xs) of hypothesis and premise encoders Eh,Ep, we are
interested in predicting the NLI label y using a classifier C,
pC(y|sh = Eh(xh), sp = Es(xs)). In addition, we train
a hypothesis-only discriminator trying to predict the cor-
rect label y solely from the hypothesis sentence represen-
tation sh by modeling pD(y|sh = Eh(xh)). We formulate
the training process in the adversarial setting by a min-max
game. Specifically we train the discriminator D to predict
the label using only hypothesis sentence vector. Addition-
ally we train the sentence encoder Eh, Ep and the classi-
fier C to fool the discriminator D without hurting inference
ability. γ is a hyper-parameter which controls the degree of
debiasing.

min
Eh,Ep,C

max
D

Exh,xp,y∼p(X,Y )[γ log pD(y|Eh(xh))−

log pC(y|Eh(xh),Ep(xp))]
(1)

We train the encoders, discriminator and classifier in Eq 1
together with a gradient reversal layer (Ganin et al., 2016)
as shown in Fig 1. We negate the gradients from the dis-
criminator D (red arrow in Fig 1) to push the hypothesis
encoder Eh to the opposite direction while update its pa-
rameters. The usage of gradient reversal layer makes it eas-
ier to optimize the min-max game in Eq 1 (Xie et al., 2017;

10It would be more challenging to manipulate the gradients in
the non-sentence vector-based models, e.g. models which contain
interactions between hypothesis and premise sentence encoders
like (Chen et al., 2017a). We leave this to the future work.

11https://nlp.stanford.edu/projects/snli/
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Chen et al., 2018) than training the two adversarial compo-
nents alternately like Generative Adversarial Nets (GANs)
(Goodfellow et al., 2014). We update the model parameters
θ by gradient descending (m is the batch size):

θnewD = θoldD − 1

m

m∑
i=1

∇θD [log pD(yi|Eh(xih))] (2)

θnewC = θoldC − 1

m

m∑
i=1

∇θC [log pC(yi|Eh(xih),Ep(x
i
p))] (3)

θnewEh
= θoldEh

− 1

m

m∑
i=1

∇θEh
[log pC(yi|Eh(xih),Ep(x

i
p))]

+
γ

m

m∑
i=1

∇θEh
[log pD(yi|Eh(xih))]︸ ︷︷ ︸

gradient reverse

(4)

3.2.2. Guidance from Artificial Patterns
The artificial patterns turns out to be useful guidances for
both the discriminator D and the classifier C as they indi-
cate whether an instance is biased or not. We thus reweight
the training instances in the training set based on the divi-
sion of ‘biased’ and ‘unbiased’ training subsets.
Guidance for Discriminator: During the adversarial pro-
cess, we optimize the discriminator D by maximizing the
log likelihood loss like Eq 2. We find increasing the weights
of the biased instances in the training set is of great help
to the adversarial debiasing model. Because in this way,
the discriminator can learn more from the biased instances
to better fit the hypothesis-only bias. The whole adversar-
ial debiasing training process could benefit from a stronger
hypothesis-only discriminator. Formally, we replace neg-
ative log likelihood loss function in Eq 2 with a weighted
loss function:

1

m

m∑
i=1

[1{(xi, yi) ∈ Dunbias} log pD(yi|Eh(xih))+

α1 ∗ 1{(xi, yi) ∈ Dbias} log pD(yi|Eh(xih))]

(5)

, where D = Dunbias ∪ Dbias denotes the whole train-
ing corpus. The division of biased and unbiased training
subsets depends on the debiasing threshold λ (just like the
down-sampling threhold in Table 5 and 6). α1 ≥ 1 is a
hyper-parameter which reflects the attention on biased in-
stances for the hypothesis-only discriminator.
Guidance for Classifier: Similar to the re-weighting
method in Eq 5, we also apply the re-weighting strategy on
the parameter learning for the inference classifier in Eq 3.
We hope the classifier can capture the concrete semantics
in NLI instead of over-fitting the artificial patterns in the
hypotheses. Thus we increase the weights of the unbiased
training subset in the loss function of Eq 3.

1

m

m∑
i=1

[1{(xi, yi) ∈ Dbias} log pC(yi|Eh(xih),Eh(xip))+

α2 ∗ 1{(xi, yi) ∈ Dunbias} log pC(yi|Eh(xih),Eh(xip))]

(6)

, where α2 ≥ 1 is a threshold to control the attention the
models pay on the unbiased instances.

3.2.3. Training Details
Apart from the weighted loss functions guided by the arti-
ficial patterns, we also investigate the following two tech-
niques in the adversarial training process.
Multiple discriminators: The min-max game in Eq 1
could benefit from stronger discriminators. So we try
k ∈ {1, 2, 3} discriminators to enhance its ability to do
hypothesis-only classifications. In our experiments, we find
that k = 2 is the best configuration for the discriminator.
Dynamic reweighting: For hyper-parameter α (α1 and α2

in Eq 5 and Eq 6 respectively), we find it useful to adjust α
dynamically in the training process. α0 and αt represents
the initial values we set before training and its value after
t training iterations respectively. Additionally we set up a
hyper-parameter φ to control the gap of model accuracies δ
on the easy and hard subsets in the dev set.

αt+1 =

{
max(αt + ε, α0), δ ≥ φ
max(αt − ε, α0), δ < φ

(7)

where ε is a hyper-parameter set as 0.5 for models trained
on both datasets. Besides, we set φ as 0.15 and 0.10 for
SNLI and MultiNLI respectively. Notably although we up-
date the hyper-parameters α1 and α2 dynamically in differ-
ent iterations based on φ, we still select the model which
has the best performance on the dev sets as the best model
in each run.
Parameter settings: We use grid search to find the
best hyper-parameter settings: α1, α2 ∈ {1, 3, 5, 10},
γ ∈ {0.5, 1, 3, 5} in Eq 5, 6 and Eq 1. We also try
λ ∈ {0.5, 0.6, 0.7, 0.8} as the threshold to split Dbias

and Dunbias in Eq 5 and 6. Specifically, we treat the in-
stances which contain the artificial patterns in H(3,3,λ) (Sec
2.1., Footnote 2) as Dbias, and the remaining instances as
Dunbias. For the results in Table 7, we set γ = 3 and γ = 1
for SNLI and MultiNLI respectively. For both datasets, we
set α1 = 5, α2 = 5 as well as λ = 0.7 as the threshold for
separating the biased and unbiased subsets in Eq 5 and 6.
For a fair comparison, we do not tune any hyper-parameter
in the InferSent encoder, the learning rate and the optimizer
setting. The results of ‘dInferSent’ and its variations in Ta-
ble 7 comes from 5 independent runs with random initial-
ization.

3.2.4. Discussions
From Table 7, we observe that although the performance
gap between the easy and hard subsets is reduced to some
extent by the vanilla dInferSent models in both SNLI and
MultiNLI. The model still does not reach our expectation
to lower the gap between hard and easy sets. We assume
this is because the denoising discriminator in Fig 1 some-
what impedes the inference ability of the NLI models as
it may disturb the hypothesis sentence encoder especially
when the sentences do not contain hypothesis-only bias.
The explicit guidance (‘+Guidance’) from the artificial pat-
terns alleviates this issue in both datasets as in this way the
discriminator pays more attention on the potentially biased
instances thus has smaller influence on the hard instances
in the training procedure. These models achieve higher ac-
curacies on the hard subset than the baseline models in both
datasets. The ‘reweight’ trick in Sec 3.2.3. greatly reduces
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Model Full Easy Hard ∆Hard
Easy (↓)

InferSent 84.5 97.2 58.9 38.3
InferSent+DS(λ=0.8) 82.9 90.4 60.0 30.4
InferSent+Guidance 84.1 95.5 61.7 33.8
dInferSent 81.6 92.5 59.9 32.6
+Guidance 82.2 86.9 63.3 23.6
+Guidance+Reweight 80.9 78.2 67.3 10.9

(a) InferSent trained on SNLI
Model Full Easy Hard ∆Hard

Easy (↓)
InferSent 70.4 92.7 54.4 38.3
InferSent+DS(λ=0.8) 69.9 91.4 53.6 37.8
InferSent+Guidance 70.1 92.1 54.9 37.2
dInferSent 68.8 91.1 54.7 36.4
+Guidance 68.0 87.9 55.3 32.6
+Guidance+Reweight 66.5 79.4 58.8 20.6

(b) InferSent trained on MultiNLI

Table 7: The comparison of InferSent (baseline), In-
ferSent+DS (downsampling) and dInferSent (adversarial
debiasing) on SNLI test set and MultiNLI mismatched
dev set respectively. We choose the down-sampling (DS)
method with λ = 0.8 because it performs best on the hard
subsets. The ‘Guidance’ and ‘Reweight’ methods are elab-
orated in Sec 3.2.2. and Sec 3.2.3. respectively.

the performance gap between the easy and hard sets as it
dynamically adjusts the debiasing strategies (i.e. the weight
of training instances in Eq 5 and 6).

4. Related Work
The bias in the data annotation exists in many tasks, e.g.
lexical inference (Levy et al., 2015), visual question an-
swering (Goyal et al., 2017), ROC story cloze (Cai et al.,
2017) etc. The NLI models are shown to be sensitive to the
compositional features in premises and hypotheses (Nie et
al., 2019a), data permutations (Schluter and Varab, 2018;
Wang et al., 2018) and vulnerable to adversarial examples
(Iyyer et al., 2018; Minervini and Riedel, 2018; Glockner
et al., 2018) and crafted stress test (Geiger et al., 2018;
Naik et al., 2018). (Rudinger et al., 2017) showed hy-
pothesis in SNLI has the evidence of gender, racial and
religious stereotypes, etc. (Sanchez et al., 2018) analysed
the behaviour of NLI models and the factors to be more
robust. (Feng et al., 2019) discussed how to use partial-
input baseline (hypothesis-only classifier in NLI) in future
dataset creation. (Clark et al., 2019) uses an ensemble-
based method to mitigate known bias. The InferSent model,
which served as an important baseline in this paper, are
found to achieve superb performance on SNLI by word-
level heuristics (Dasgupta et al., 2018).
(MacCartney and Manning, 2009) first revealed the difficul-
ties of natural language inference model with bag-of-words
models. Different from the artificial patterns we used in this
paper, other artifact evidence includes sentence occurrence
(Zhang et al., 2019), syntactic heuristics between hypothe-
ses and premises (McCoy et al., 2019) and black-box clues
derived from neural models (Gururangan et al., 2018; Po-
liak et al., 2018; He et al., 2019).
The adversarial debiasing training proposed in this paper
is inspired by the success of Generative Adversarial Net-

works (GANs) (Goodfellow et al., 2014). Several works on
learning encoders which are invariant to certain properties
of text and image (Chen et al., 2018; Zhang et al., 2017;
Xie et al., 2017; Moyer et al., 2018; Jaiswal et al., 2018) in
the adversarial settings.

5. Conclusion
In this study, we show that the hypothesis-only bias in
trained NLI models mainly comes from unevenly dis-
tributed surface patterns, which could be used to identify
hard and easy instances for more convincing re-evaluation
on currently overestimated NLI models. The attempts to
mitigate the bias are meaningful as such bias not only
makes NLI models fragile to adversarial examples. We try
to mitigate this bias by removing those artificial patterns in
the training sets, with experiments showing that it is a fea-
sible way to alleviate the bias under proper down-sampling
methods. We also show that adversarial debiasing with the
guidance from the harvested artificial patterns is a feasi-
ble way to mitigate the hypothesis-only bias for sentence
vector-based NLI models.
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Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J.
(2016). A decomposable attention model for natural lan-
guage inference. In EMNLP, pages 2249–2255.

Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., and
Durme, B. V. (2018). Hypothesis only baselines in nat-
ural language inference. In *SEM@NAACL-HLT, pages
180–191.

Rudinger, R., May, C., and Durme, B. V. (2017). So-
cial bias in elicited natural language inferences. In
EthNLP@EACL, pages 74–79.

Sanchez, I., Mitchell, J., and Riedel, S. (2018). Behav-
ior analysis of nli models: Uncovering the influence of
three factors on robustness. In EMNLP, volume 1, pages
1975–1985.

Schluter, N. and Varab, D. (2018). When data permuta-
tions are pathological: the case of neural natural lan-
guage inference. In EMNLP, pages 4935–4939.

Tsuchiya, M. (2018). Performance impact caused by hid-
den bias of training data for recognizing textual entail-
ment. In LREC.

Wang, H., Sun, D., and Xing, E. P. (2018). What if we
simply swap the two text fragments? a straightforward
yet effective way to test the robustness of methods to
confounding signals in nature language inference tasks.
arXiv preprint arXiv:1809.02719.

Wu, W., Wang, H., Liu, T., and Ma, S. (2018). Phrase-
level self-attention networks for universal sentence en-
coding. In Proceedings of the 2018 Conference on Em-



6860

pirical Methods in Natural Language Processing, pages
3729–3738.

Xie, Q., Dai, Z., Du, Y., Hovy, E., and Neubig, G.
(2017). Controllable invariance through adversarial fea-
ture learning. In NIPS.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy,
E. (2016). Hierarchical attention networks for document
classification. In NAACL 2016, pages 1480–1489.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. (2019). Xlnet: Generalized autore-
gressive pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

Zellers, R., Bisk, Y., Schwartz, R., and Choi, Y.
(2018). Swag: A large-scale adversarial dataset
for grounded commonsense inference. arXiv preprint
arXiv:1808.05326.

Zhang, Y., Barzilay, R., and Jaakkola, T. (2017). Aspect-
augmented adversarial networks for domain adaptation.
TACL, 5:515–528.

Zhang, G., Bai, B., Liang, J., Bai, K., Chang, S., Yu, M.,
Zhu, C., and Zhao, T. (2019). Selection bias explo-
rations and debias methods for natural language sentence
matching datasets. arXiv preprint arXiv:1905.06221.

7. Language Resource References
Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.

(2015). A large annotated corpus for learning natural
language inference. In EMNLP. Association for Com-
putational Linguistics.

Williams, A., Nangia, N., and Bowman, S. (2018). A
broad-coverage challenge corpus for sentence under-
standing through inference. In NAACL, pages 1112–
1122. Association for Computational Linguistics.


	Introduction
	Datasets
	Artificial Pattern Collection
	Analysis of Hypothesis-only Bias
	Hard and Easy Subsets
	Baselines

	Exploring Debiasing Methods
	Down-sampling Baselines
	Downsampling Details
	Discussions

	Adversarial Debiasing
	Adversarial Debiasing Framework
	Guidance from Artificial Patterns
	Training Details
	Discussions


	Related Work
	Conclusion
	Bibliographical References
	Language Resource References

