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Abstract
One of the most resource-intensive problems in the educational testing industry relates to ensuring that newly-developed exam questions
can adequately distinguish between students of high and low ability. The current practice for obtaining this information is the costly
procedure of pretesting: new items are administered to test-takers and then the items that are too easy or too difficult are discarded. This
paper presents the first study towards automatic prediction of an item’s probability to “survive” pretesting (item survival), focusing on
human-produced MCQs for a medical exam. Survival is modeled through a number of linguistic features and embedding types, as well
as features inspired by information retrieval. The approach shows promising first results for this challenging new application and for
modeling the difficulty of expert-knowledge questions.
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1. Introduction
Large-scale testing relies on a pool of test questions, which
must be replenished, updated, and expanded over time1.
Writing high-quality test questions is challenging as they
must satisfy certain quality standards before they can be
used to score examinees. These standards are based on sta-
tistical criteria and ensure that: i) items are not too easy
or too difficult for the intended examinee population, and
ii) the probability of success on each item is positively re-
lated to overall examinee performance (Section 3.). While
the exact thresholds vary, most exam programs have such
a requirement. Even when item writers are well-trained
and adhere to industry best practices, it has generally not
been possible to identify which items will satisfy the vari-
ous statistical criteria without first obtaining examinee re-
sponses through pretesting. Pretesting involves embedding
new items within a standard live exam and, based on the
collected responses, a determination is made about whether
or not a given item satisfies conditions i) and ii). Items that
meet the criteria are considered to have “survived” pretest-
ing and can later be used to score examinees. The propor-
tion of surviving items varies across programs; however,
Brennan (2006) recommends pretesting at least twice the
number of items needed.
While necessary, the enterprise of pretesting is costly.
Scored items compete with pretest items for exam space,
the scarcity of which can create a bottleneck. As a result, it
is sometimes not possible to pretest as many new items as
needed and some exam programs may not be able to afford
pretesting at all. This problem is expected to grow with ad-
vances in automatic question generation (Gierl et al., 2018),
where a large amount of new questions are generated but
there is no criteria on how to evaluate their suitability for
live use. Conceivably, having advance knowledge of an
item’s probability to survive can allow using the available

1This constant need for new test questions arises as the popu-
lation of test-takers grows, new topics for exam content are iden-
tified, item exposure threatens exam security, etc.

pretesting slots for items that are more likely to pass the
thresholds. To address these issues, we present a method
for modeling item survival within a large-scale real-world
data set of multiple choice questions (MCQs) for a high-
stakes medical exam.
Contributions: i) The paper introduces a new practical ap-
plication area of NLP related to predicting item survival
for improving high-stakes exams. ii) The developed mod-
els outperform three baselines with a statistically signif-
icant difference, including a strong baseline of 113 lin-
guistic features. iii) Owing to the generic nature of the
features, the presented approach is generalizable to other
MCQ-based exams. iv) We make our code available2 at:
https://bit.ly/2EaTFNN.

2. Related Work
Predicting item survival from item text is a new application
area for NLP and, to the best of our knowledge, there is no
prior work investigating this specific issue. The problem
is, however, related to the limited available research on pre-
dicting question difficulty with the important difference that
predicting survival involves predicting an additional item
parameter that captures the relation between the probabil-
ity of success for the individual item and overall examinee
performance (Section 3.).
With regards to estimating question difficulty for humans,
the majority of studies focus on applying readability met-
rics to language comprehension tests, where the compre-
hension questions refer to a given piece of text and, there-
fore, there is a relationship between the difficulty of the
two (Huang et al., 2017; Loukina et al., 2016). For exam-
ple, Loukina et al. (2016) investigate the extent to which
the difficulty of listening items in an English language pro-
ficiency test can be predicted by the textual properties of
the prompt by using text complexity features (e.g. syn-
tactic complexity, cohesion, academic vocabulary, etc). In
another study, Beinborn et al. (2015) rank the suitability

2The questions cannot be released because of test security.

https://bit.ly/2EaTFNN
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A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo
chemotherapy. Six days after treatment is started, she develops a temperature of 38C (100.4F).
Physical examination shows no other abnormalities. Laboratory studies show a leukocyte count of
100/mm3 (5% segmented neutrophils and 95% lymphocytes).
Which of the following is the most appropriate pharmacotherapy to increase this patient’s leukocyte
count?
(A) Darbepoetin (B) Dexamethasone
(C) Filgrastim (D) Interferon alfa
(E) Interleukin-2 (IL-2) (F) Leucovorin

Table 1: An example of a practice item

and complexity of individual words as candidates for a fill-
in-the-blanks test and this ranking is used to estimate the
difficulty of the particular example. A slightly different
approach to predicting test difficulty is presented in Padó
(2017), where each question is manually annotated and la-
belled with the cognitive activities and knowledge neces-
sary to answer it based on Bloom’s Taxonomy of Educa-
tional Objectives (Bloom and others, 1956). The results
indicate that questions that are low in Bloom’s hierarchy of
skills are easier to answer than ones high in the hierarchy.
Nadeem and Ostendorf (2017) approach the same problem
in an opposite way, where they aim to predict the skills re-
quired to solve assessment questions using a convolutional
neural network (CNN). The ultimate goal of their experi-
ments is to use annotated data with labels of such skills in
order to automatically populate a Q-matrix of skills used
in education to determine how questions should be graded
(e.g., more points should be awarded for solving questions
that require more skill).
Alsubait et al. (2013) show that the difficulty of newly gen-
erated questions can be manipulated by changing the simi-
larity between item components, e.g. the distractors and the
correct answer, the question and the distractors, the ques-
tion and the correct answer, etc. This assumption is later
on used by Ha and Yaneva (2018) in automatic distractor
generation for multiple choice questions, where the system
can rank distractors based on various similarity metrics.
In our prior work we predict MCQ difficulty and mean re-
sponse times using a large number of linguistic features,
in addition to embeddings (Ha et al., 2019; Baldwin et al.,
2020). The results presented in Ha et al. (2019) show that
the proposed approach predicts the difficulty of the ques-
tions with a statistically significant improvement over sev-
eral baselines. As will be seen in Section 4., we use the full
list of linguistic features to obtain a strong baseline pre-
diction for item survival. More details on the individual
features and their explanations can be found in Section 4..

3. Data
Data comprises 5,918 pretested MCQs from the Clinical
Knowledge component of the United States Medical Li-
censing Examination (USMLE R©). An example of a test
item is shown in Table 1. The part describing the case is
referred to as stem and the incorrect answer options are
known as distractors. All items tested medical knowl-
edge and were written by experienced item-writers follow-

ing a set of guidelines, stipulating adherence to a standard
structure. These guidelines required avoidance of “win-
dow dressing” (extraneous material not needed to answer
the item), “red herrings” (information designed to mislead
the test-taker), and grammatical cues (e.g., correct answers
that are longer or more specific than the other options).
Item writers had to ensure that the produced items did not
have flaws related to various aspects of validity. For exam-
ple, flaws related to irrelevant difficulty include: Stems or
options are overly long or complicated, Numeric data not
stated consistently and Language or structure of the options
is not homogeneous. Flaws related to “testwiseness” are:
Grammatical cues; The correct answer is longer, more spe-
cific, or more complete than the other options; and A word
or phrase is included both in the stem and in the correct
answer. The goal of standardizing items in this manner is
to produce items that vary in their difficulty and discrimi-
nating power due only to differences in the medical content
they assess.
The items were administered within a standard nine-hour
exam, and test-takers had no way of knowing that they
would not be scored on these items. Each nine-hour exam
contained approximately 40 pretest items and the data was
collected through embedding the items in different live
exam forms for four consecutive years (2012 - 2015). On
average, each item was answered by 328 examinees (SD =
67.17). Examinees were medical students from accredited3

US and Canadian medical schools taking the exam for the
first time as part of a multistep examination sequence re-
quired for medical licensure in the US.
To survive, items had to satisfy two criteria:

• A proportion of correct answers between .30 and .95,
i.e., the item had to be answered correctly by no fewer
than 30% and no more than 95% of test-takers. Within
the educational-testing literature, this proportion of
correct answers is commonly referred to as a P-value.
We adopt this convention here but care should be taken
not to confuse this usage with a p-value indicating sta-
tistical significance. The P-value is calculated in the
following way:

Pi =

∑N
n=1 Un

N
,

3Accredited by the Liaison Committee on Medical Education
(LCME).
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where Pi is the p-value for item i, Un is the 0-1 score
(correct-incorrect) on item i earned by examinee n ,
and N is the total number of examinees in the sample.

• The correlation (referred to as Rb) between exami-
nees’ responses on the given item and examinees’ total
test score had to be greater than zero. In other words,
examinees who perform better on the test overall, must
be more likely to succeed on the item than those ex-
aminees who performed worse. This ensures that the
item, if used for scoring, will improve the quality of
the total test score.

In our sample, half of the items (2,959) are from the surviv-
ing class, while the other 2,959 are from the non-surviving
class. This distribution is in line with the observation by
Brennan (2006) that the pretested items should be at least
twice the number of items needed. From the non-surviving
items, only 22% violated the Rb criterion, while 78% vio-
lated the P-value criterion.

4. Features
To model item survival (through P and Rb), we are con-
cerned with several types of item characteristics. First, fol-
lowing (Ha et al., 2019), we extract 113 linguistic features
accounting for several levels of linguistic complexity in or-
der to understand the extent to which item survival can be
attributed simply to the way the items are written. Such an
understanding is useful in two main ways. First, it repre-
sents a strong baseline that other models can be compared
to and second, it allows examining whether the item writers
successfully minimize text complexity variation (the latter
has a high practical value for test development). As a step
beyond linguistic complexity, we explore a deeper-level se-
mantic characteristics of the items by generating two types
of embeddings presented below.
While these two approaches (linguistic features and embed-
dings) are widely used in various NLP applications, they do
not account for the type of difficulty that is related to MCQs
in particular, e.g., the relationship between item compo-
nents. For this reason we develop a set of features inspired
by automatic question answering (Ha and Yaneva, 2019),
the aim of which is to quantify the difficulty of solving an
MCQ for an automatic system. The subsections below de-
scribe each type of feature group, together with its individ-
ual features. Additional details can be found in the available
code.

4.1. Linguistic features (baseline)
This class of features is inspired by readability research
and its application to estimating question difficulty, form-
ing a strong baseline for comparison to other approaches
(Dubay, 2004; McNamara et al., 2014; Yaneva and Evans,
2015; Yaneva et al., 2019). It includes the following sub-
categories.
Lexical Features, such as counts, incidence scores and ra-
tios for ContentWord, Noun, Verb, Adjective, and Adverb;
Numeral Count; Type-Token Ratio; Average Word Length
In Syllables; and Complex Word Count (> 3 syllables).
Syntactic Features: These were implemented using in-
formation from the Stanford NLP Parser (Manning et al.,

2014): Average Sentence Length (words); Average Depth
Of Tree; Negation Count; Negation In Stem; Negation In
the Lead-In Question; NP Count; NP Count With Embed-
ding (the number of noun phrases derived by counting all
the noun phrases present in an item, including embedded
NPs); Average NP Length; PP and VP Count; Proportion
Passive VPs; Agentless Passive Count; Average Number of
Words Before Main Verb; Relative Clauses and Conditional
Clauses Count.
Semantic Ambiguity Features: This subcategory con-
cerns the semantic ambiguity of word concepts according
to WordNet (WN), as well as medical concepts according
to the UMLS (Unified Medical Language System) Meta-
thesaurus (Schuyler et al., 1993). The features include Pol-
ysemic Word Index; Average Number of Senses of: Content
Words, Nouns, Verbs, Adjectives, Adverbs; Average Dis-
tance To WN Root for: Nouns, Verbs, Nouns and Verbs;
Total No Of UMLS Concepts; Average No Of UMLS Con-
cepts; Average No Of Competing Concepts Per Term (aver-
age number of UMLS concepts that each medical term can
refer to).
Readability Formulae: Flesch Reading Ease (Flesch,
1948); Flesch Kincaid Grade Level (Kincaid et al., 1975);
Automated Readability Index (ARI) (Senter and Smith,
1967); Gunning Fog index (Gunning, 1952); Coleman-Liau
(Coleman, 1965); and SMOG index (McLaughlin, 1969).
Cognitively-motivated Features: These are calculated
based on information from the MRC Psycholinguistic
Database (Coltheart, 1981), which contains cognitive mea-
sures based on human ratings for a total of 98,538 words.
These features include Imagability, indicating the ease to
construct a mental image of that word; Familiarity, or how
familiar the word seems to an adult; Concreteness; Age
Of Acquisition; and finally Meaningfulness Ratio Colorado
and Meaningfulness Ratio Paivio. The meaningfulness rat-
ing assigned to a word indicates how associated the word is
to other words.
Word Frequency Features: These include Average Word
Frequency, as well as threshold frequencies such as words
not included in the most frequent words on the BNC fre-
quency list (Not In First 2000/ 3000/ 4000 or 5000 Count).
Text Cohesion Features: These include counts of All Con-
nectives, as well as Additive; Temporal; and Causal Con-
nectives, and Referential Pronoun Count.

4.2. Embeddings
We experiment with two types of embeddings: Word2Vec
(300 dimensions) (Mikolov et al., 2013) and ELMo (1,024
dimensions) (Peters et al., 2018). The results presented
in this paper refer to embeddings generated using approxi-
mately 22,000,000 MEDLINE abstracts,which were found
to outperform other versions of the embeddings extracted
from generic corpora (Google News Corpus4 for Word2Vec
and 1B Word (Chelba et al., 2013) for ELMo). The embed-
dings were aggregated at item level using mean pooling,
where an average item embedding is generated from the
embeddings of all words.

4https://news.google.com
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4.3. Information Retrieval (IR) features
This group of features measures how difficult it is for an
automatic question-answering (QA) system to answer the
items correctly. The hypothesis behind the design of these
features is that MCQs which are more difficult to answer
automatically would also be more difficult for humans (Ha
and Yaneva, 2019). This idea stems from observations such
as the fact that both humans and machines need to retrieve
a given information in order to answer the questions, where
humans use their subject knowledge, while machines query
a database. Another parallel between the two processes is
the need to reason over facts, where humans still have a
great advantage. In spite of the limitations of current QA
systems, it is conceivable that since humans and machines
need to perform similar processes in order to answer a ques-
tion, these processes might be challenged by the same types
of questions. Even if such parallels are not found, test-
ing this working hypothesis is a useful by-product of the
current research, as it may inform better strategies for ap-
proaching automatic QA tasks. To test the hypothesis, we
develop and train a full automatic question-answering sys-
tem following approaches presented in Clark et al. (2018).
After that, we use the scores obtained by the system to ex-
tract the following features, as explained below.
First, we index the abstracts of medical articles contained
in the MEDLINE5 database using Lucene6 with its default
options. Then we query the database as follows. For each
test item we build several queries, where each query con-
tains the stem and one answer option. We use three differ-
ent settings: i) All words, ii) Nouns only, and iii) Nouns,
Verbs, and Adjectives (NVA). We then get the top 5 MED-
LINE documents returned by Lucene as a result of each
query and calculate the sum of the retrieval scores. These
scores represent the content of the IR features (Stem Only,
Stem + Correct Answer, and Stem + Options, where for
each of these configurations we have a different feature for
All words, Nouns only and NVA.). The scores reflect how
difficult it is for a QA system to choose the correct answer.
Specifically, if the IR scores of Stem + Correct Answer are
much higher than those of Stem + Options, then it is easy
for the QA system to answer that item correctly by picking
the option that has the highest scores. This information can
thus be used to predict item difficulty.

5. Experiments
We explore and compare two approaches to predicting item
survival, namely: i) modeling P-value and Rb individually
and applying a function to select which items to retain, and
ii) modeling survival as a binary classification between sur-
viving and non-surviving items. Both these approaches are
compared to three baseline models.

5.1. Baselines
The results of various models are compared to the following
baselines.

• Random: Since the surviving and non-surviving
classes are of the same size, the random baseline is

5https://www.nlm.nih.gov/bsd/medline.html
6https://lucene.apache.org/

P-value Rb
r RMSE r RMSE

NN 3 dense layers 0.23 27.8 0.15 19.83
SVM (regr.) 0.22 33.13 0.08 24.31
Gaussian Processes 0.22 29.71 0.11 19.98
Linear regression 0.18 36.86 0.05 25.83
Random Forests 0.31 26.82 0.13 18.19

Table 2: Evaluation of five algorithms (among others) for
predicting P-value and Rb (NN parameters include: 3 dense
layers of size 100, activation function: RELU, loss func-
tion: MSE, weight initialization Xavier and learning rate =
0.001. Trained for 500 epochs with early stopping after 10
epochs with no improvement.)

F1 = 0.5. For predicting P-value and Rb individually,
the model performance is first compared to the output
of the ZeroR rule (assigning the mean of the distri-
bution as a predicted value to each instance), the cut-
off function is applied to classify the items based on
the predicted values and then classification accuracy
is measured and compared to the random baseline.

• Item length in words: This baseline is applied to rule
out the possibility that item survival is simply a func-
tion of item length (e.g., that longer items may be more
difficult). Using item length in words as a single vari-
able in an Random Forests model (algorithm chosen
for comparability, see below) in a 10-fold cross vali-
dation set up results in F1 = 0.51.

• Linguistic features: This rich baseline consists of the
full set of linguistic features as input to a Random
Forests classifier (see below) (10-fold CV) and the re-
sult is an F1 score of 0.54. This result significantly
outperforms both the random baseline (p < 0.0001)
and the item length one (p < 0.001), making the Lin-
guistic feature model the strongest of our baselines.

5.2. Algorithm selection
First, we assign the items to a training (60%), validation
(20%), and test (20%) sets. We then evaluate various neural
and non-neural models on the validation set. As shown in
Table 2, the neural approaches consistently performed bet-
ter than most non-neural ones in predicting P and Rb, but
were convincingly outperformed by the Random Forests
(RF) algorithm (Breiman, 2001). For example, the RF al-
gorithm outperformed a neural network with three dense
layers by reducing RMSE for P-value with approximately
one point (Table 2). For the classification task, non-neural
approaches proved consistently more suitable than neural
ones, with RF again peforming best (F1 = 55.8). The rest
of the results on algorithm selection for the classification
task are presented in Table 3. Subsequent experiments in-
volved testing various feature combinations.

5.3. Modeling P an Rb
This subsection presents results for item survival obtained
by modeling P and Rb individually. Of all feature combina-
tions, best performance was achieved using all features. P
is predicted with r = 0.31 for the validation and 0.26 for the
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F1
NN with 3 dense layers 47.2
LSTM (3 layers) 47.5
BayesNet 55.1
SVM 54.3
RF 55.8

Table 3: Evaluation of five algorithms (among others) for
predicting item survival in a classification task (NN param-
eters include: 3 dense or LSTM layers of size 100, acti-
vation function: RELU, weight initialization Xavier and
learning rate = 0.001. Trained for 500 epochs with early
stopping after 10 epochs with no improvement.)

P-value RMSE Rb RMSE
Valid. Test Valid. Test

ZeroR 28.18 29.1 17.48 18.47
RF 26.82 28.08 17.28 18.21
P (sign). < 0.0001 < 0.001 0.341 0.027
CI -1.7; -.68 -.1, -.03 -.36, .13 -.43, -.02

Table 4: Root Mean Squared Error (RMSE) for P-value and
Rb (full feature set) with bootstrapped significance

test sets, while the correlation is much lower for Rb (0.16
and 0.17). As shown in Table 4, the reduction in RMSE rep-
resents a significant improvement over the ZeroR baseline
for P, but not for Rb. While some of these improvements
are statistically significant, their practical significance for
predicting survival is low. Based on the predicted values,
almost all items would be classified as surviving (F1 = 50).
As a next step, we model item survival as a classification
task.

5.4. Classification
Approaching survival as a classification task, we use the RF
algorithm with various feature combinations as input. The
evaluation is based on 10-fold cross-validation. The results
for various combinations are presented in Table 6.
As can be seen from the table, all feature combinations led
to a statistically significant improvement over both the Ran-
dom baseline and the Item length baseline, with the excep-
tion of the IR features, which outperform only the Random
baseline (p = 0.0047, 95% CI: 0.79, 4.39). The strongest
baseline, the Linguistic feature model (F1 = 54), is outper-
formed by the full feature set with an F1 of 55.8 (p = 0.04,
95% CI: 0.0072, 3.5912). The Area Under ROC Curve for
this result is 57.8. Notably, ELMo achieved a result that
was very close to the best result (55.6) but it did not outper-
form the Linguistic feature baseline. Nevertheless, ELMo
emerged as the strongest predictor among all features. The
fact that the best result is achieved using all feature types in-
dicates that they complement rather than overlap each other.

5.5. Error analysis
Analysis of the errors for the full feature set reveals that
the model results in more false positives than false nega-
tives, where 40% of the false positives occur due to failure
to recognize negative Rb values as non-surviving. The set
of false negatives indicates that items with higher P-values
tend to be mistakenly classified as non-surviving (µ = .73,

F1
Random 50
Item length 51
Linguistic 54

Table 5: Baselines

F1
IR 52.6
Ling + W2V + ELMo 54.5*
W2V 54.6*
W2V + ELMo 54.8*
IR + W2V 55.2*
Ling + ELMo 55.2*
IR + Ling + W2V 55.3*
IR + ELMo 55.4*
IR + W2V + ELMo 55.4*
IR + Ling + ELMo 55.5*
ELMo 55.6*
All 55.8**

Table 6: Ranking of the results from various feature com-
binations for classification experiments. All combinations
outperform the random baseline with a statistically signif-
icant difference. Values marked with * signify statistically
significant improvement over the Item length baseline (F1 =
51) and ** signifies a statistically significant improvement
over the Linguistic features baseline (F1 = 54).

min = .31, max = .95). Roughly 45% of the items with neg-
ative Rb values are mistakenly classified as surviving and
these are mostly instances with P-values within the surviv-
ing range.

To understand the behaviour of the different feature classes
better, we analyse the model output of each feature class
(Linguistic, IR, Word2Vec and ELMo). The linguistic fea-
tures perform more or less comparable to the other types in
terms of identifying true positives but have the lowest rate
of true negatives, especially in predicting the Rb compo-
nent. Conversely, ELMo do best among all feature types
in recognizing that negative Rb values should be labeled
as non-surviving but has the highest rate of false positives
above the .95 threshold. No specific pattern emerged for
the IR features and Word2Vec.

5.6. Feature importance

As can be seen from Table 6, ELMo performs best among
all feature types, followed by Word2Vec, the linguistic fea-
tures and the IR features at the last place. A more detailed
analysis of the linguistic and IR features is presented in Ta-
ble 7 which shows the top five highest correlated features
from each set.

Individual features are very weakly correlated with the
class labels, indicating that no single feature has the pre-
dictive power to dominate the models. This result was cor-
roborated with a backward feature elimination study for the
IR set, where the removal of individual IR features did not
lead to notable improvement in the performance of the set
but instead reduced the accuracy.
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Top IR features r Top Linguistic features r
Stem NVA max .041 Content Word inc. .078
Stem Noun max .04 Noun inc. .067
Stem Noun sum .04 Av. Sense Content W. .057
Stem NVA sum .039 NP inc .056
St. + Correct NVA .038 Av. NP length .056

Table 7: Top 5 features with highest correlation with class
labels (NVA = nouns, verbs and adjectives, sum = sum of
similarities, max = maximum similarity, inc = incidence)

6. Discussion
The classification models achieved modest, but statistically
significant better results compared to three baselines: ran-
dom assignment, item length and a strong baseline of 113
linguistic features. The fact that adding the IR features and
embeddings achieved significant improvement over the lin-
guistic features is an encouraging evidence that the models
captured difficulty beyond the linguistic complexity repre-
sented by this baseline. In terms of task definition, the re-
sults from the classification approach were better than those
from modeling P-value and Rb individually, suggesting that
there may be value in learning the two parameters simulta-
neously.
While the IR features alone performed worse than the lin-
guistic ones, there are two interesting observations that can
be made regarding their role. First, they significantly out-
performed the random assignment baseline, which shows
that they did provide some signal. Second, they were in-
cluded in the best performing model, as well as the major-
ity of the better models, which shows that the signal they
provided did not overlap with that of the embeddings or
linguistic features. This is an evidence that there is value
in approaches to question difficulty estimation that rely on
input from automatic question-answering systems and that
there are some similarities between questions that are dif-
ficult for machines and those that are difficult for humans.
The exact extent to which this is the case is the subject of a
separate investigation.
The most challenging part for the models was the correct
classification of items with a negative Rb component which
had P-values within the range of surviving items. This is ex-
plained by the ability of the models to predict the P-value
with higher accuracy than the Rb component, as shown by
modeling the two parameters individually. As revealed by
the error analysis, the great advantage of ELMo compared
to other feature types is the comparatively higher accuracy
at predicting Rb. Nevertheless, ELMo did worse at iden-
tifying non-surviving items at the high end of the P-value
spectrum. It is these differences in the predictive power of
the different feature sets that make them complement each
other rather than overlap. In terms of feature importance,
ELMo performed best, followed by Word2Vec, the linguis-
tic features and the IR features. As shown in the feature
analysis section, no individual features from the linguistic
or IR sets had a significantly higher correlation with class
labels than the rest.
One of the more serious limitations of this study is the rel-
atively low overall accuracy achieved by the models com-
pared to other classification tasks. This is largely explained

by the difficulty of the problem, since predicting item sur-
vival for highly-specialised questions with no varying read-
ing levels requires going beyond the measurement of lin-
guistic complexity. While this limitation remains true, pre-
dicting item survival represents low-risk and high-benefit
strategy, as even small improvements in accuracy can lead
to saving substantial resources from pretesting. This can be
achieved if items are first filtered automatically and pretest-
ing slots are then assigned to items that are more likely to
pass the thresholds. For example, the best result of 55.8
translates to having 3,304 correctly classified items, which
is 345 more than the random assignment baseline. In prac-
tice, one standard nine-hour exam can only afford to have
one block of pretesting items, which is 40 items (the bot-
tleneck problem referred to in the introduction section) and
each item is seen by an average of 328 examinees. This
illustrates the suitability of NLP to help with this practi-
cal task by reducing its cost without introducing any major
risks, especially in the context of evaluating automatically
generated questions.
One of the strengths of the proposed approach is its generic
nature, which means that it could be applicable to other ex-
ams. While such data sets are typically not freely available
because of test security (exam questions become unusable
if there is a chance that examinees might have seen them
in advance), they exist in most high-stakes exams that test
subject knowledge using the multiple-choice format. It is
therefore conceivable that the proposed approach could be
used in other exams.
These results are a first step towards the challenging but
highly beneficial application of predicting item survival.
Future work includes the exploration of multi-task learning
for predicting P and Rb simultaneously, as well as search-
ing for better predictors for the Rb component.

7. Conclusion
This paper presented a new practical application for NLP,
namely predicting item survival from item text. The task
involves differentiating between good quality exam ques-
tions and ones that are too easy or too difficult, as well
as ones that do not improve the quality of the overall test
score. Four feature types were extracted, consisting of 113
linguistic features (baseline), Word2Vec and ELMo embed-
dings, as well as features related to the difficulty a QA sys-
tem would have with answering the questions. Results indi-
cated statistically significant improvement over the linguis-
tic model, a random assignment baseline and an item length
baseline, by using all feature types in a binary classification
task. ELMo had the highest predictive power, followed by
Word2Vec, the linguistic features and the IR features. The
proposed approach is generic and has the potential to gener-
alize over other high-stakes exams that test subject knowl-
edge through multilple-choice questions.
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