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Abstract

The lack of large-scale datasets has been a major hindrance to the development of NLP tasks such as spelling correction and grammatical
error correction (GEC). As a complementary new resource for these tasks, we present the GitHub Typo Corpus, a large-scale, multilingual
dataset of misspellings and grammatical errors along with their corrections harvested from GitHub, a large and popular platform for
hosting and sharing git repositories. The dataset, which we have made publicly available, contains more than 350k edits and 65M
characters in more than 15 languages, making it the largest dataset of misspellings to date. We also describe our process for filtering true
typo edits based on learned classifiers on a small annotated subset, and demonstrate that typo edits can be identified with F1 ∼ 0.9 using
a very simple classifier with only three features. The detailed analyses of the dataset show that existing spelling correctors merely achieve
an F-measure of approx. 0.5, suggesting that the dataset serves as a new, rich source of spelling errors that complement existing datasets.
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1. Introduction
Spelling correction (Islam and Inkpen, 2009; Zhou et al.,
2017; Etoori et al., 2018) and grammatical error correction
(GEC) (Leacock et al., 2010) are two fundamental tasks
that have important implications for downstream NLP tasks
and for education in general. In recent years, the use of
statistical machine translation (SMT) and neural sequence-
to-sequence (seq2seq) models has been becoming increas-
ingly popular for solving these tasks. Such modern NLP
models are usually data hungry and require a large amount
of parallel training data consisting of sentences before and
after the correction. However, only relatively small datasets
are available for these tasks, compared to other NLP tasks
such as machine translation. This is especially the case
for spelling correction, for which only a small number of
datasets consisting of individual misspelled words are avail-
able, including the Birkbeck spelling error corpus1 and a list
of typos collected from Twitter2.
Due to this lack of large-scale datasets, many research stud-
ies (Foster and Andersen, 2009; Etoori et al., 2018; Li et
al., 2018) resort to automatic generation of artificial errors
(also called pseudo-errors). Although such methods are ef-
ficient and have seen some success, they do not guarantee
that generated errors reflect the range and the distribution
of true errors made by humans (Zesch, 2012).
As one way to complement this lack of resources, Wikipedia
has been utilized as a rich source of textual edits, including
typos (Grundkiewicz and Junczys-Dowmunt, 2014; Boyd,
2018; Faruqui et al., 2018). However, the edits harvested
from Wikipedia are often very noisy and diverse in their
types, containing edits from typos to adding and modifying
information. To make the matters worse, Wikipedia suffers
from vandalism, where articles are edited in a malicious
manner, which requires extensive detection and filtering.

1 http://hdl.handle.net/20.500.12024/0643
2 http://luululu.com/tweet/

@@ -1,3 +1,9 @@
+This is an important
+notice! It should
+therefore be located at
+the beginning of this
+document!
+
 This part of the
 document has stayed the
 same from version to
@@ -8,13 +14,8 @@
 would not be helping to
 compress the size of the
 changes.

-This paragraph contains
-text that is outdated.
-It will be deleted in the
-near future.
-
 It is important to spell
-check this dokument. On
+check this document. On
 the other hand, a
 misspelled word isn't
 the end of the world.
@@ -22,3 +23,7 @@

edit

line

filerepository

Github Typo Corpus

commit

commit

...

line
...

line

src
tgt

line
...

document.txt

{
  "repo": "https://github.com/user/repository",
  "commit": "08d8049...",
  "message": "Edit document.txt; fix a typo",
  "edits": [
    {
      "src": {
        "text": "check this dokument. On",
        "path": "document.txt",
        "lang": "eng"
      },
      "tgt": {
        "text": "check this document. On",
        "path": "document.txt",
        "lang": "eng"
      },
      "is_typo": true,
      "prob_typo": 0.9
    }
  ]
}

Figure 1: Overview of the corpus and its related concepts.
Example taken from the Diff page on Wikipedia

In order to create a high-quality, large-scale dataset of mis-
spelling and grammatical errors (collectively called typos in

http://hdl.handle.net/20.500.12024/0643
http://luululu.com/tweet/
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this paper), we leverage the data from GitHub3, the largest
platform for hosting and sharing repositories maintained by
git, a popular version control system commonly used for
software development. Changes made to git repositories
(called commits, see Section 3 for the definition) are usually
tagged with commit messages, making detection of typos a
trivial task. Also, GitHub suffers less from vandalism, since
commits in many repositories are code reviewed, a process
where every change is manually reviewed by other team
members before merged into the repository. This guarantees
that the edits indeed fix existing spelling and/or grammatical
issues.
This paper describes our process for building the GitHub
Typo Corpus, a large-scale, multilingual dataset of mis-
spellings and grammatical errors, along with their correc-
tions. The process for building the dataset can be summa-
rized as follows:

• Extract eligible repositories and typo commits from
GitHub based on the meta data of the repository and
the commit message

• Filter out edits that are not written in human language

• Identify true typo edits (vs semantic edits) by using
learned classifiers on a small annotated dataset

We demonstrate that a very simple logistic regression model
with only three features can classify typos and non-typo edits
correctly with F1 ∼ 0.9. This resulted in a dataset contain-
ing more than 350k edits and 64M characters in more than 15
languages. To the best of our knowledge, this is the largest
multilingual dataset of misspellings to date. We made
the dataset publicly available (https://github.com/
mhagiwara/github-typo-corpus) along with the
automatically assigned typo labels as well as the source
code to extract typos. We also provide the detailed analyses
of the dataset, where we demonstrate that the F measure
of existing spell checkers merely reaches ∼ 0.5, arguing
that the GitHub Typo Corpus provides a new, rich source
of naturally-occurring misspellings and grammatical errors
that complement existing datasets.

2. Related Work
As mentioned above, a closely related line of work is the
use of Wikipedia edits for various tasks, including GEC.
Grundkiewicz and Junczys-Dowmunt (2014) constructed
the WikiEd Error Corpus, a dataset consisting of error edits
harvested from the Wikipedia edit history and demonstrated
that the newly-built resource was effective for improving
the performance of GEC systems. Boyd (2018) built a
German GEC system leveraging the WikiEd Error Corpus
and showed that the use of the Wikipedia edit data led to
improved performance. In both cases, the dataset required
extensive filtering based on a set of heuristic rules or heavy
linguistic analysis.
Spelling correction is itself an important sub-problem of
grammatical error correction (GEC). Many GEC and essay
scoring systems (Sakaguchi et al., 2017; Junczys-Dowmunt
et al., 2018; Vajjala and Rama, 2018) assume that spelling

3 https://github.com/

errors in the input text are fixed before it is fed to the main
model, by pre-processing them using open-source tools such
as Enchant4 and LanguageTool5. In many GEC corpora,
spelling errors account for approximately 10% of total errors
(Table 1), meaning that improving the accuracy of spelling
correction can have a non-negligible impact on the perfor-
mance of GEC.

Corpus Misspellings (%)

CLC-FCE (Yannakoudakis et al., 2011) 9.69
JFLEG (Napoles et al., 2017) 12.56
KJ (Nagata et al., 2011) 9.41

Table 1: Percentage of spelling errors in GEC corpora

Datasets of real-world typos have applications in building
models robust to spelling errors (Piktus et al., 2019). We
note that Mizumoto and Nagata (2017) argue against the ne-
cessity of spell checking on learner English, which has little
effect on the performance of PoS (part-of-speech) tagging
and chunking.

3. Definitions
First, we define and clarify the terminology that we use
throughout this paper. See Figure 1 for an illustration of the
concepts and how they relate to each other.

• Repository ... in git terms, a repository is a database of
files whose versions are controlled under git. A single
repository may contain multiple files and directories
just like a computer file system.

• Commit ... a commit is a collection of one or more
changes made to a git repository at a time. Changes
in a single commit can span over multiple files and
multiple parts of a file.

• Edit ... in this paper, an edit is a pair of lines to which
changes are made in a commit (note the special usage
here). The line before the change is called the source
and the line after is the target. In other words, an edit
is a pair of the source and the target. Note that a single
edit may contain changes to multiple parts of the source
(for example, multiple words that are not contiguous).

• Typo ... finally, in this paper a typo refers to an edit
where the target fixes some mechanical, spelling and/or
grammatical errors in the source, while preserving the
meaning between the two.

Our goal is to collect typos from GitHub and build a dataset
that is high in both quantity and quality.

4. Data Collection
This section describes the process for collecting a large
amount of typos from GitHub, which consists two steps: 1)
collecting target repositories that meet some criteria and 2)
collecting commits and edits from them. See Figure 2 for
the overview of the typo-collecting process.

4 https://github.com/AbiWord/enchant
5 https://languagetool.org/

https://github.com/mhagiwara/github-typo-corpus
https://github.com/mhagiwara/github-typo-corpus
https://github.com/
https://github.com/AbiWord/enchant
https://languagetool.org/
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Collect repositories
(Section 4.1)

Collect edits
(Section 4.2)

Filter by language
(Section 5.1)

Typo classification
(Section 5.4)

Eligible repositories

Candidate edits

Edits

Annotated edits
(Section 5.2)

Typo classifiers

Github Typo Corpus

Github Typo Corpus
with annotated typos

(abc, def)
(abc, def)

(0101, 1001)

(abc, def)

(abc, def)
(abc, def)

(abc, def)

(0101, 1001)

Figure 2: Data collection and filtering process

4.1. Collecting Repositories
The first step for collecting typos is to collect as many eli-
gible GitHub repositories as possible from which commits
and edits are extracted. A repository must meet some cri-
teria in order to be included in the corpus, such as size (it
needs to be big enough to contain at least some amount of
typo edits), license (it has to be distributed under a permis-
sive license to allow derived work), and quality (it has to
demonstrate some signs of quality, such as the number of
stars).
Although GitHub provides a set of APIs (application pro-
gramming interfaces) that allow end-users to access its data
in a programmatic manner, it doesn’t allow flexible querying
on the repository meta data necessary for our data collec-
tion purposes. Therefore, we turn to GH Archive6, which
collects all the GitHub event data and make them accessi-
ble through flexible APIs. Specifically, we collected every
repository from GH Archive that:

• Has at least one pull request or pull request review
comment event between November 2017 and Septem-
ber 2019,

• Has 50 or more stars,

• Has a size between 1MB and 1GB, and

• Has a permissive license.

Note the “and” in the list above—a repository needs to
meet all the conditions mentioned above to be eligible.
The first two criteria (pull request events and the num-
ber of starts) are a sign of a quality repository. As
for the license, we allowed apache-2.0 (Apache Li-
cense 2.0), mit (MIT License), bsd-3-clause (BSD

6 https://www.gharchive.org/

3-Clause License), bsd-2-clause (BSD 2-Clause Li-
cense), cc0-1.0 (Creative Commons Zero v1.0 Uni-
versal), unlicense (Unlicense), cc-by-4.0 (Creative
Commons Attribution 4.0), and bsl-1.0 (Boost Software
License 1.0 (BSL-1.0). A repository’s number of stars,
size, and license are determined as of the event in the first
condition.
This resulted in a total of 43,462 eligible repositories.

4.2. Collecting Commits and Edits
The second step for collecting typos is to extract commits
and edits from the eligible repositories. This step is more
straightforward—for each eligible repository, we cloned it
using the GitPython library and enumerated all the commits
in the master branch7. A commit is considered eligible if the
commit message contains the string typo in it. For each
eligible commit, we then take the diff between the commit
and its parent, scan the result sequentially, and collect all
the pairs of a deletion line and a subsequent insertion line
as an edit, unless the commit contains more than 10 edits,
which is a sign of a non-typo commit. See the first box in
Figure 1 for an illustration. As a result, we collected a total
of 335,488 commits and 685,377 edits. The final dataset
(see the second box in Figure 1 for a sample) is formatted
in JSONL (JSON per line), where each line corresponds to
a single commit with its metadata (its repository, commit
hash, commit message, as well as a list of edits) in JSON, a
format easily parsable by any programming language.

5. Data Filtering
Not all the edits collected in the process described so far
are related to typos in natural language text. First, edits
may also be made to parts of a repository that are written
in programming language versus human language. Second,
not every edit in a commit described “typo” is necessarily
a typo edit, because a developer may make a single commit
comprised of multiple edits, some of which may not be
typo-related.
We remove the first type of edits by using language detec-
tion, and detect (not remove) the second type of edits by
building a supervised classifier. The following subsections
detail the process. See Figure 2 (right) for an overview of
the typo filtering process.

5.1. Language Detection
Due to its nature, repositories on GitHub contain a large
amount of code (in programming language) as well as natu-
ral language texts. We used NanigoNet8, a language detector
based on GCNNs (Gated Convolutional Neural Networks)
(Dauphin et al., 2017) that supports human languages as
well as programming languages. Specifically, we ran the
language detector against both the source and the target and
discarded all the edits where either is determined as written
in a non-human language. We also discarded an edit if the
detected language doesn’t match between the source and

7 For those who are not familiar with git, a branch is analogous
to a “version” of a repository that you can create off of its main
version, which is called the “master” branch.

8 https://github.com/mhagiwara/nanigonet

https://www.gharchive.org/
https://github.com/mhagiwara/nanigonet
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the target. This left us with a total of 203,270 commits and
353,055 edits, which are all included in the final dataset.

5.2. Annotation of Edits
In this second phase of filtering, we identify all non-typo
edits that are not intended to fix mechanical, spelling, or
grammatical errors, but to modify the intended meaning
between the source and the target.
In order to investigate the characteristics of such edits em-
pirically, we first extracted 200 edits for each one of the
three largest languages in the GitHub Typo Corpus: English
(eng), Simplified Chinese (cmn-hans), and Japanese
(jpn). We then had fluent speakers of each language go
over the list and annotate each edit with the following four
edit categories:

• Mechanical ... a mechanical edit fixes errors in punc-
tuation and capitalization.

• Spell ... a spell edit fixes misspellings in words. This
also includes conversion errors in non-Latin languages
(e.g., Chinese and Japanese).

• Grammatical ... a grammatical edit fixes grammatical
errors in the source.

• Semantic ... a semantic edit changes the intended
meaning between the source and the target.

See Figure 3 for some examples of different edit types on
each language. If one edit contains more than one type
of changes, the least superficial category is assigned. For
example, if there are both spell and grammatical changes
in a single edit, the “grammatical” category is assigned to
the edit. We note that the first three (mechanical, spell, and
grammatical edits, also called typos) are within the scope
of the dataset we build, while the last one (semantic edits)
is not. Thus, our goal is to identify the last type of edits as
accurately as possible in a scalable manner. We will show
the statistics of the annotated data in Section 6.
We note that the distinction between different categories,
especially between spell and grammatical, is not always ob-
vious. For example, even if one mistypes a word “what” to
“want” resulting in an ungrammatical sentence, we wouldn’t
consider this as a grammatical edit but as a spell edit. We
clarify the difference by focusing on the process where the
error is introduced in the first place. Conceptually, if one
assumes that the source is generated by introducing errors
to the target through a noisy channel model (Kernighan et
al., 1990; Brill and Moore, 2000), a spell edit is some-
thing where noise is introduced to some implicit character-
generating process, while a grammatical edit is the one
which corrupts some implicit grammatical process (for ex-
ample, production rules of a context-free grammar).

5.3. Statistics of Annotated Edits
Finally, after annotating a small amount of samples for the
three languages, we computed some basic statistics about
each edit that may help in classifying typo edits from non-
typo ones. Specifically, we computed three statistics:

1. Ratio of the target perplexity over the source calculated
by a language model

Language Precision Recall F1

English 0.874 0.969 0.917
Chinese 0.872 0.930 0.896
Japanese 0.900 0.968 0.933

Table 2: The cross validation result of typo edit classifiers

2. Normalized edit distance between the source and the
target

3. Binary variable indicating whether the edit purely con-
sists of changes in numbers

The rationale behind the third feature is that we observed
that purely numerical changes always end up being tagged
as semantic edits.
The perplexity of a text x = x1x2, ..., xL is defined by:

PP (x) = 2−H(x),H(x) =
∑
i

p(xi) log p(xi), (1)

where p(x) is determined by a trained language model. We
hypothesize that perplexity captures the “fluency” of the
input text to some degree, and by taking the ratio between
the source and the target, the feature can represent the degree
to which the fluency is improved before and after the edit.
As for the language model, we trained a character level Long
Short Term Memory (LSTM) language model developed
in (Merity et al., 2018) per language, which consists of a
trainable embedding layer, three layers of a stacked recurrent
neural network, and a softmax classifier. The LSTM hidden
state and word embedding sizes are set to be 1000 and 200,
respectively. We used 100,000 sentences from the W2C
Web Corpus (Majlis and Zabokrtský, 2012) for training
(except for Chinese, where we used 28,000 sentences) and
1,000 sentences for validation for all the languages.
The normalized edit distance between the source x =
x1x2, ..., xLx and the target y = y1y2, ..., yLy is defined
by:

d̃(x,y) =
d(x,y)

max(Lx, Ly)
, (2)

where d(x,y) is the (unnormalized) edit distance between
x and y. This feature can capture the amount of the change
made between the source and the target, based on our hy-
pothesis that many typo edits only involve a small amount
of changes.
See Figure 4 for an overview of the distributions of these
computed statistics per category for English. We ob-
served similar trends for other two languages (Chinese and
Japanese), except for a slightly larger number of spell edits,
mainly due to the non-Latin character conversion errors. We
also confirmed that the difference of perplexities between
the source and the target for typo edits (i.e., mechanical,
spell, and grammatical edits) was statistically significant for
all three languages (two-tailed t-test, p < .01). This means
that these edits, on average, turn the source text into a more
fluent text in the target.
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The simplest form of health-checking, is just process level health checking.
Mechanical

English

Language Category Text

Chinese
(Simplified)

Japanese

Spell

Grammatical

Semantic

The simplest form of health-checking is just process level health checking.

// Complain if any thread trys to lock in a different order.

// Complain if any thread tries to lock in a different order.

... we should be ready to compile it's functions.

#,- gb18030: the table structure file must use the GB-18030 code

The default for module definition code is private, but you can choose to add …

Implement from beginning to end, run some data, adjust some parameters, 
then you can say you fully understood.

Then we can use the output of the previous time as the input of the next time

... moved to gem. In order to use this function, to Gemfile ...

... for example, the header and the footer of the blog are fixed, and change ...

... a tool that can develop cross-platform mobile apps  ...

Validating by deploying to a staging site every time the function is updated ...

... we should be ready to compile its functions.

You also need to delete the public/index.html.erb file ...

You also need to delete the +public/index.html+ file ...

#,- gb18030: 表结构文件必须使用 GB-18030 编码

#,- gb18030：表结构文件必须使用 GB-18030 编码

... 模块定义的代码默认时私有的，不过可以选择增加 ...

... 模块定义的代码默认是私有的，不过可以选择增加 ...

... 从头到尾实现一篇，跑上几个数据，调些参数，才能心安的觉得懂了。

... 从头到尾实现一篇，跑上几个数据，调些参数，才能心安地觉得懂了。

... 然后我们每次将上一个时间的输入作为下一个时间的输入。

... 然后我们每次将上一个时间的输出作为下一个时间的输入。

Mechanical

Spell

Grammatical

Semantic

Mechanical

Spell

Grammatical

Semantic

... gemに移動されましたこの機能を使用したい場合は、Gemfileに ...

... gemに移動されました。この機能を使用したい場合は、Gemfileに ...

... 例えばブログのヘッダと降ったが固定で、変更があるのは ...

... 例えばブログのヘッダとフッタが固定で、変更があるのは ...

... クロスプラットフォームなモバイルアプリ開発できるツール ...

... クロスプラットフォームなモバイルアプリを開発できるツール ...

機能ごとにステージングサイトにあげて検証というのは ...
機能を更新するたびステージングサイトにあげて検証というのは ...

Figure 3: Examples of different types of edits in top three languages

5.4. Classification of Typo Edits

We then built a logistic regression classifier (with no regu-
larization) per language using the annotated edits and their
labels. The classifier has only three features mentioned
above plus a bias term. We confirmed that, for every lan-
guage, all the features are contributing to the prediction of
typo edits controlling for other features in a statistically sig-
nificant way (p < .05). Table 2 shows the performance of
the trained classifier based on 10-fold cross validation on
the annotated data. The results show that for all the lan-
guages mentioned here, the classifier successfully classifies
typo edits with an F1-value of approx. 0.9. This means that
the harvested edits are fairly clean in the first place (only
one third is semantic edits versus others) and it is straight-
forward to distinguish the two using a simple classifier. In
the GitHub Typo Corpus, we annotate every edit in those
three languages with the predicted “typo-ness” score (the
prediction probability produced from the logistic regres-
sion classifier) as well as a binary label indicating whether
the edit is predicted as a typo, which may help the users of
the dataset determine which edits to use for their purposes.

6. Analyses
In this section, we provide detailed quantitative and quali-
tative analyses of the GitHub Typo Corpus.

6.1. Statistics of the Dataset
Table 3 shows the statistics of the GitHub Typo Corpus,
broken down per language9. The distribution of languages
is heavily skewed towards English, although we observe the
dataset includes a diverse set of other languages. There are
15 languages that have 100 or more edits in the dataset.
In addition to an obvious fact that a large fraction of the
code on GitHub is written in English, one reason of the bias
towards English may be due to our commit collection pro-
cess, where we used an English keyword “typo” to harvest
eligible commits. Although it is a norm on GitHub (and in
software development in general) to write commit messages
in English no matter what language you are working in, we
may be able to collect a more diverse set of commits if we

9 Note that a commit is considered to be of a language if it contains
at least one edit in that language; the commit numbers do not add
up to the total.
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Language # commits # typo edits # all edits # chars

English 197,019 255,056 339,430 59,817,613
Chinese (smpl.) 2,369 3,153 3,991 885,336
Japanese 1,015 1,507 1,716 344,778
Russian 837 — 1,600 509,887
French 533 — 1,130 335,755
German 419 — 700 215,948
Portuguese 315 — 640 208,694
Spanish 301 — 578 169,218
Korean 206 — 442 89,852
Hindi 158 — 197 34,277
Others 1,760 — 2,631 571,068

Total 203,270 259,716 353,055 63,182,426

Table 3: Statistics of the dataset (top 10 languages)
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Figure 4: Distribution of counts, perplexity ratio, and nor-
malized edit distance per category

build models to filter through commit messages written in
other languages, which is future work.

6.2. Distribution of Atomic Edits
In order to provide a more qualitative look into the dataset,
we analyzed all the edits in the top three languages and ex-
tracted atomic edits. An atomic edit is defined as a sequence
of contiguous characters that are inserted, deleted, or sub-

English Chinese
(Simplified) Japanese

(∅, s)
(∅, e)
(s, ∅)
(e, ∅)
(∅, r)
(∅, t)
(_, ∅)
(∅, i)
(∅, n)
(∅, _)

(∅, _)
(_, ∅)
(∅, `)
(的 de, ∅)
(∅, e)
(∅, s)
(的 de, 地 de)
(∅, t)
(∅, 的 de)
(∅, DOM)

(_, ∅)
(∅, _)
(∅, e)
(∅, を wo)
(e, ∅)
(s, ∅)
(、, ∅)
(∅, の no)
(∅, に ni)
(∅, `)

Figure 5: Most frequent atomic edits per language. Un-
derscore _ corresponds to a whitespace and ϕ is an empty
string.

stituted between the source and the target. We extracted
these atomic edits by aligning the characters between the
source and the target by minimizing the edit distance, then
by extracting contiguous edits that are insertion, deletion,
or substitution.
As one can see from Figure 5, simple spelling edits such
as inserting “s” and deleting “e” dominate the lists. In
fact, many of the frequent atomic edits even in Chinese
and Japanese are made against English words (see Figure 3
for examples—you notice many English words such as “GB-
18030” and “Gemfile” in non-English text). You also notice
a number of grammatical edits in Chinese (e.g., confusion
between the possessive particle de and the adjectival particle
de) and Japanese (e.g., omissions of case particles such as
wo, no, and ni). This demonstrates that the dataset can
serve as a rich source of not only spelling but also naturally-
occurring grammatical errors.

6.3. Evaluating Existing Spell Checker
We conclude the analysis section by providing a compre-
hensive analysis on the types of spelling and grammatical
edits, as well as the performance of existing spell checkers
on the GitHub Typo Corpus. The first three columns of Ta-
ble 4 show a breakdown of edit types in the aforementioned
set of annotated typo edits in English (Section 5.2.) ana-
lyzed by ERRANT (Bryant et al., 2017; Felice et al., 2016).
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Edit type breakdown Aspell Enchant

Type # edits % total Precision Recall F0.5 Precision Recall F0.5

CONJ 1 0.7 1.000 0.000 0.000 1.000 0.000 0.000
DET 5 3.5 1.000 0.000 0.000 1.000 0.000 0.000
MORPH 3 2.1 0.000 0.000 0.000 0.000 0.000 0.000
NOUN 10 7.0 0.000 0.000 0.000 0.091 0.100 0.093
NOUN:INFL 2 1.4 0.000 0.000 0.000 0.000 0.000 0.000
NOUN:NUM 1 0.7 1.000 0.000 0.000 1.000 0.000 0.000
ORTH 15 10.5 0.118 0.133 0.121 0.067 0.133 0.074
OTHER 16 11.2 0.000 0.000 0.000 0.000 0.000 0.000
PREP 6 4.2 1.000 0.000 0.000 1.000 0.000 0.000
PUNCT 16 11.2 1.000 0.000 0.000 0.000 0.000 0.000
SPELL 56 39.4 0.563 0.643 0.577 0.500 0.625 0.521
VERB 3 2.1 0.000 0.000 0.000 0.500 0.333 0.455
VERB:FORM 3 2.1 1.000 0.000 0.000 1.000 0.000 0.000
VERB:INFL 1 0.7 1.000 1.000 1.000 1.000 0.000 0.000
VERB:SVA 2 1.4 1.000 0.000 0.000 1.000 0.000 0.000
VERB:TENSE 2 1.4 1.000 0.000 0.000 1.000 0.000 0.000

Table 4: Distribution of edit types and the performance of spell checkers on the GitHub Typo Corpus

This shows that the dataset contains diverse types of edits,
including orthographic, punctuation, and spelling errors.
We then applied Aspell 10 and Enchant, two commonly used
spell checking libraries, and measured their performance
against each one of the edit types. The results show that the
performance of the spell checkers is fairly low (F0.5 ≈ 0.5)
even for its main target category (SPELL), which suggests
that the GitHub Typo Corpus contains many challenging
typo edits that existing spell checkers may have a hard time
dealing with, and the dataset may provide a rich, comple-
mentary source of spelling errors for developing better spell
checkers and grammatical error correctors.

7. Conclusion
This paper describes the process where we built the GitHub
Typo Corpus, a large-scale multilingual dataset of mis-
spellings and grammatical errors along with their correc-
tions harvested from GitHub, the largest platform for pub-
lishing and sharing git repositories. The dataset contains
more than 350k edits and 64M characters in more than 15
languages, making it the largest dataset of misspellings to
date. We automatically identified typo edits (be it mechani-
cal, spell, or grammatical) versus semantic ones by building
a simple logistic regression classifier with only three fea-
tures which achieved 0.9 F1-measure. We provided detailed
qualitative and quantitative analyses of the datasets, demon-
strating that the dataset serves as a rich source of spelling
and grammatical errors, and existing spell checkers can only
achieve an F-measure of ∼ 0.5.
We are planning on keep publishing new, extended versions
of this dataset as new repositories and commits become
available on GitHub. As mentioned before, collection of
a more linguistically diverse set of commits and edits is
also future work. We also note that the edits collected
from GitHub are biased toward the software domains and
it remains to be solved how the dataset can be unbiased
and applied to the generic domain. We genuinely hope that
this work can contribute to the development of the next

10http://aspell.net/

generation of even more powerful spelling correction and
grammatical error correction systems.
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