
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6586–6592
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

6586

Preparation of Bangla Speech Corpus from Publicly Available Audio & Text

Shafayat Ahmed∗†, Nafis Sadeq∗†, Sudipta Saha Shubha∗†, Md. Nahidul Islam∗
Muhammad Abdullah Adnan∗, Mohammad Zuberul Islam‡

∗Bangladesh University of Engineering and Technology (BUET)
shafayat, nafis, sudipta, nahid.rimon@ra.cse.buet.ac.bd, adnan@cse.buet.ac.bd

‡Samsung R & D Institute Bangladesh
m.zuberul@samsung.com

Abstract
Automatic speech recognition systems require large annotated speech corpus. Manual annotation of a large corpus is very difficult.
In this paper, we focus on automatic preparation of a speech corpus for Bangladeshi Bangla. We have used publicly available Bangla
audiobooks and TV news recordings as audio sources. We designed and implemented an iterative algorithm that takes as input a speech
corpus and a huge amount of raw audio (without transcription) and outputs a much larger speech corpus with reasonable confidence. We
have leveraged speaker diarization, gender detection, etc. to prepare the annotated corpus. We also have prepared a synthetic speech
corpus for handling out-of-vocabulary word problem in Bangla language. Our corpus is suitable for training with Kaldi. Experimental
results show that use of our corpus in addition to Google Speech corpus (229 hours) significantly improves the performance of the ASR
system.

Keywords: Speech recognition, Speech corpus generation

1. Introduction
Automatic Speech Recognition (ASR) systems require an
annotated speech corpus for training. Speech corpus refers
to a collection of audio files with corresponding text tran-
scriptions. The duration of each speech segment is kept
under 35 seconds (Panayotov et al., 2015). The speech
corpus also contains some additional information such as
the gender of speakers, recording environment, etc. For
achieving WER of less than 15% for speech recognition, we
need a huge annotated speech corpus, more than 1000 hours
according to (Moore, 2003). Very few publicly available
speech datasets are available for Bangladeshi Bangla. The
largest publicly available corpus is the 229 hours speech
corpus released by Google (Kjartansson et al., 2018).
Different approaches for speech corpus development have
been explored by the researchers. A basic approach is to
manually transcribe existing audio files. This is a very
time consuming, monotonous, and error-prone task. Tran-
scription of one-hour recording can take 3 to 5 hours or
more (Hazen, 2006). A comparatively faster approach is
to develop an interactive mobile application that prompts
the user to read a particular text (Hughes et al., 2010).
The user will have to start recording manually, read the
prompted text, and end recording manually. In our expe-
rience, preparing one hour’s worth of transcribed speech
takes around 2 hours in this approach. But this approach
still requires some manual labor. A large number of speak-
ers need to be motivated to use this application. It is
not cost-effective to offer an attractive incentive for every
speaker participating in this process. Some works such as
(Panayotov et al., 2015) used forced alignment techniques
to produce speech corpus from public domain audiobooks
and corresponding text. This approach does not apply to
Bangla because for most Bangla audiobooks, correspond-
ing digital text cannot be found. Hence, these existing ap-
proaches are not practical and scalable to develop a large

† authors contributed equally

speech corpus in the context of Bangla language.
To provide a scalable solution towards developing a large
speech corpus, we provide a novel approach considering
the limited resources of Bangla language. We provide an
iterative algorithm to automatically generate transcription
from existing audio sources. Many famous Bangla books
are available as audiobooks. Recently, a lot of Bangladeshi
TV channels are providing their TV news videos in the
public domain such as YouTube. In this work, we have
used these audio resources and prepared 510 hours of an-
notated speech corpus from around 1500 hours of raw au-
dio files. Our algorithm considers output from two dif-
ferent not-so-well-performing speech recognition systems
for Bangla language: one is Google Speech API (Google,
2019) and another is developed by us. By considering the
difference in output from these two systems, we system-
atically improve the performance of the speech recogni-
tion system developed by us. In each iteration, we cal-
culate the similarity in output from both the systems and
add only those audio and text segments in the train set that
both the systems agree in transcription. Thus we gradu-
ally develop our speech corpus with high confidence audio
and text data. Moreover, we have prepared a Bangla word
list from publicly available text sources. We have prepared
450 hours of synthetic audio for around out-of-vocabulary
Bangla words. Overall, the total size of the speech corpus
is around 960 hours.
Our major contributions are as follows:

• We have developed a 960 hours annotated speech cor-
pus automatically from publicly available audio and
text data.

• We present an approach that requires minimal man-
ual verification after the transcription process is com-
pleted.

• We have prepared synthetic utterances for around 1.6



6587

million unique Bangla words, which reduces ASR er-
ror induced by the out-of-vocabulary problem.

• Experimental results show that the use of our speech
corpus in addition to the Google speech corpus signif-
icantly improves the accuracy of the ASR system.

The organization of this paper is as follows. Related works
are discussed in section 2, system and system components
in section 3, corpus description in section 4, experimental
results in section 5, and conclusion and future works in sec-
tion 6.

2. Related Work
In various languages, researchers have explored different
methods for developing speech corpus. Jang and Haupt-
mann (Jang and Hauptmann, 1999) develop a speech cor-
pus from captioned multimedia speech. Lakomkin et al.
(Lakomkin et al., 2019) develop a tool to automatically con-
struct data set for speech recognition from YouTube videos
containing transcriptions. Panayotov et al. (Panayotov et
al., 2015) present 1000 hours of speech corpus for En-
glish by aligning texts and audio files of audiobooks. Man-
sikkaniemi et al. (Mansikkaniemi et al., 2017) and Hel-
gadóttir et al. (Helgadóttir et al., 2017) use similar align-
ment techniques to develop speech corpus from recordings
and transcriptions from parliamentary speech. Patel et al.
(Patel et al., 2018) build a data collection tool and collect
around 100 hours of reading speech data in Manipuri Lan-
guage.
Compared to other languages, research works on develop-
ing speech corpus for Bangla language are quite limited.
Nahid et al. (Nahid et al., 2018) discuss the development
of Bangla real number audio corpus. The recordings were
completed in a supervised environment and volunteers were
given scripts to read. Khan and Sobhan (Khan and Sobhan,
2018a) develop a speech corpus containing only isolated
words for Bangla. All recordings were done in a laboratory.
In another work of them, Khan and Sobhan (Khan and Sob-
han, 2018b) develop a speech corpus of connected words
for Bangla. Researchers from Google (Kjartansson et al.,
2018) prepare speech corpora for Bangla and four other
languages using interactive mobile application (Hughes et
al., 2010). They develop 229 hours of speech corpus for
Bangla. Our work differs from these works as none of these
works deals with automatic preparation of speech corpus in
Bangla language using existing audio and text data.

3. Our System
3.1. Overview of Corpus Preparation
Figure 1 shows an overview of our system. We use pub-
licly available audiobooks and TV news recordings col-
lected from YouTube as an audio source in our system. All
our audio files are converted to a 16 kHz mono channel
WAV file. All the audio files are equal to or less than 30
minutes of length. We then remove the background noise of
the audio files. After that, we perform speaker diarization
on the audio files to group the audio portions of the same
speaker together. We perform automatic gender detection
on the audio files to identify the gender of the speaker. We

Audio Source

Background Noise 
Removal

Speaker Diarization
(Speaker wise audio 

folder)
Gender Detection

Silence Segment 
(Limit audio 

duration to 35s)

Automatic 
Transcription 

Speech 
Corpus

Text Source

OOV Word List 
Preparation

Speech Synthesis

Figure 1: Overview of Corpus Preparation

segment each of the audio files on silence intervals and en-
sure that all the audio segments are less than or equal to 35
seconds. Finally, we automatically generate transcriptions
for the audio files as we do not have corresponding text for
the audio files. For generating the transcriptions with rea-
sonable confidence, we have designed and implemented an
iterative algorithm (Algorithm 1). Details of each of the
system components are described in section 3.2.

3.2. Corpus Preparation from Raw Audio
3.2.1. Background Noise Removal
It is important that we remove the background noise from
the audio files for proper speech transcription. We follow
(Dev and Bansal, 2010) and (Ravindran et al., 2006). We
study the MFCC features of the audio files for noise identi-
fication. In the beginning, the auto-correlation coefficients
of relatively higher order are extracted. Then we use FFT
on the magnitude spectrum of the resultant speech signal
and it is differentiated with respect to frequency. Finally,
the differentiated magnitude spectrum is transformed into
MFCC-like coefficients.

3.2.2. Speaker Diarization
Speaker diarization refers to the task of grouping speech
segments in an audio stream containing multiple speakers
in a way that speech segments from the same speaker form
a cluster. We follow (Patino et al., 2018a) for speaker di-
arization. This speaker diarization system (Patino et al.,
2016),(Patino et al., 2018b), (SAIVT-BNEWS, 2019) is
based on the binary key speaker modelling (Ng et al., 2002).
Binary key speaker modelling provides a compact and ef-
ficient representation of speech segments or clusters in the
form of a vector. The vector captures speaker-specific fea-
tures. The classification task is carried out by computing
the similarity measures between binary keys. The proposed
system obtained a Diarization Error Rate (DER) of 11.93%.
In this system, ICMC (Q transform Mel-frequency cepstral
coefficients) were used in place of baseline MFCC acous-
tic features. For clustering, an affinity matrix is calculated.
The eigenvectors corresponding to the top eigenvalues esti-
mated from that derives the similarities between data points
being clustered. So after refinement, which smooths and



6588

denoises the data, we perform Eigenvalue decomposition
and sort the eigenvalues in descending order. Then we se-
lect the number of clusters according to the value which
maximizes the eigengap. The spectral clustering algorithm
often results in the estimation of a single speaker, therefore
the system is configured to force the return of two or more
clusters. Then the system performs pre-clustered thresh-
olding of the eigengap between the two largest eigenvalues
which completes the processing.

3.2.3. Gender Detection
We use (Blog, 2017) as a guideline for gender detection.
We extract Mel Frequency Cepstrum Coefficients (MFCCs)
features from the audio files. A lot of acoustic features
like peak frequency (the frequency with the highest en-
ergy), meanfun (average of fundamental frequency mea-
sured across acoustic signal), minfun (minimum fundamen-
tal frequency measured across acoustic signal), etc. are
included in MFCC features. We use a Gaussian Mixture
Model to build the gender detection system from these ex-
tracted features. The training dataset consists of Mozilla
common voice data set (Voice, 2019). We had almost
58,000 male voice clips and 17,000 female voice clips in
the train set. After training, a test data set consisting of
manually tagged Bangla audio clips are used for evaluation.
The test set had 826 male and 590 female audio clips. Even
though the training set and test set had completely different
languages, we achieved a recognition rate of 85% and 98%
for male and female clips respectively.

3.2.4. Silence Segment
We segment each of the audio files on silence intervals and
ensure that all the audio segments are less than or equal
to 35 seconds. We use PyAudioAnalysis (Giannakopoulos,
2015) for this task. We take 0.4 seconds as minimum si-
lence length (the minimum length of the silence at which
a split may occur) and 0.0001 as silence threshold (the en-
ergy level (between 0.0 and 1.0) below which the signal is
regarded as silent).

3.2.5. Automatic Transcription Generation
As we did not have any reference text of any of the audio
files, we had to automatically generate the transcriptions.
We designed and implemented an iterative algorithm for
this task (Algorithm 1).
This algorithm uses two speech recognition systems: one
is Google Speech API (Google, 2019) and another is our
speech recognition system that has been trained on publicly
available 226 hours of speech data from Google (out of the
remaining 3 hours, 2 hours for the test set, 1 hour for val-
idation set). We use a hybrid CTC-Attention based end to
end system for training (Watanabe et al., 2017). The details
of our hyper-parameter choices are given in section 5.2 and
the flowchart of automatic transcription process is given on
2
We observe that none of the two systems provide good
enough performance and Google API provides better per-
formance than our system. To generate transcription with
reasonable confidence, we decide to generate transcriptions
using the outputs from both the models. Our intuition is
that, for each of the audio files, if we take the longest com-

mon sequence of consecutive words between the outputs
of both the systems and take only the audio and transcrip-
tion for that matched portion, we can be confident enough
about the accuracy of the transcription. However, we can-
not do only 1 iteration as our speech recognition system
was performing quite poorly initially. So, we follow an it-
erative strategy. At each iteration, we increase the number
of training data to get a better model in the next iteration.
Note that, we only try to increase the performance of our
speech recognition system. At each iteration, we generate
the transcriptions of the audio files from both of the sys-
tems. We consider the longest common sequence of con-
secutive words from both of the transcriptions. We take
the percentage of the length of this matched portion with
respect to the length of transcription from Google API. If
this percentage value is greater than a threshold (50%), we
take only the audio and transcription for that matched por-
tion. After doing these for all the audio files, we add the
segmented audio portions and their corresponding texts in
the train set for the next iteration. From each initial au-
dio file, we take only one such segmented audio portion
and transcription. We stop iterating when the number of
newly added training samples does not increase much com-
pared to the previous iteration. At the start of each iteration,
we delete the training samples added at the last iteration.
Without the deletion of those samples, we observed repet-
itive data in the training set. Finally, for each of the audio
files, we take the longest common sequence of consecutive
words between the outputs of the final version of our speech
recognition system and Google Speech API. We take only
the audio and transcription for that matched portion to be
included in our final speech corpus. The performance of
the algorithm is discussed in section 5.1. We only consider
exact matching within our threshold. The matching thresh-
old of 50% is intuitive. It may be possible to improve the
algorithm by tuning this threshold. But we avoid doing that
due to the computational complexity of the iterative corpus
generation algorithm.
We refer to the corpus generated from Automatic transcrip-
tion as ’Transcribed corpus’. The size of the Transcribed
corpus is around 510 hours.

3.3. Corpus Preparation for OOV words
In this section, we describe our approach for synthetic cor-
pus generation for out-of-vocabulary Bangla words.

3.3.1. Out-of-Vocabulary Word List
We first prepare a large Bangla text corpus. It is described
in section 4. Our text corpus has 10 million Bangla sen-
tences containing 1.7 million unique words. Among these
words, 56000 words occur at least once in the speech
corpus. The rest of the words are considered out-of-
vocabulary.

3.3.2. TTS Model
We prepare our text-to-speech system using ESPnet-TTS
(Hayashi et al., 2019). Specifically, we use the Tacotron
2 (Shen et al., 2018) implementation of ESPnet-TTS.
Tacotron 2 is a Recurrent Neural Network (RNN) based
sequence-to-sequence network. It has a bi-directional
LSTM based (BLSTM) encoder and a unidirectional



6589

Our ASR Google Speech API

Processed Audio 
Segments

Transcription from 
Our ASR

Transcription from 
Speech API

If LCSCW Between 
the Transcriptions 

> 50% 

Add the current 
speech segments

Delete the Previously 
Added Speech Segments

LCSCW of the 
Transcriptions

Speech 

Corpus 

Duration of Added 
Audio files of Current 
Iteration of > Previous 

Iteration

Google speech 

corpus (229 Hr.) 
Combined 

Corpus 

Our 

Corpus 

Yes

Yes

No

No

Figure 2: Overview of Automatic Transcription

Algorithm 1 Iterative Algorithm for Transcription
1: ot← Our ASR transcription
2: gt← Google API transcription
3: lcscw ← Longest common sequence of consecutive

words
4: gc← Google speech corpus
5: oc← Our speech corpus
6: dc← Duration of train data at current step
7: dp← Duration of train data at previous step
8: dδ ← Change in duration of speech corpus
9: al← List of audio files

10: while dδ 6= 0 do
11: Train ASR on (gc+ oc)
12: oc← {}
13: dc← 0
14: for each audio in al do
15: generate ot
16: generate gt
17: lcscw ← lcscw(ot, gt)

18: percentage← len(lcscw)∗100
len(gt)

19: if lcscw percentage > 50% then
20: dc← dc+ audio duration
21: oc← oc+matched audio segments

22: dδ ← dc− dp
23: dp← dc

24: return oc

LSTM-based decoder. Additionally, it uses a location-
sensitive attention mechanism. In our implementation,
the encoder network has 1 layer with 512 BLSTM units.
The decoder network has 2 layers with 1024 unidirectional
LSTM units in each layer.

3.3.3. Speech Synthesis
Speech synthesis is done in the following manner. First,
our TTS model takes an input text sequence and generates
log Mel filter bank feature sequence. Then log Mel filter
bank feature sequence is converted to a linear spectrogram.
Finally, the Griffin-Lim algorithm (Perraudin et al., 2013)
is applied to the spectrogram to generate audio.
We use out-of-vocabulary words as input for our text-to-
speech system. We refer to the corpus generated from
Speech synthesis as ’Synthesized Corpus’. The size of the
Synthesized corpus is around 450 hours.

4. Corpus Description

4.1. Speech Corpus
Our final corpus has about 297065 transcribed audio files.
The overall duration of the corpus is 960 hours, the average
duration of audio files is about 7.14 seconds. There are 519
speakers in the corpus. Among them, 268 speakers as male
and 251 speakers as female. We split the corpus into three
portions: train, validation, and test. 1000 audio files were
selected as the validation set and 13000 audio files were
selected as a test set. The test set was manually corrected
and verified. The duration of validation and test set were 1
hour and 13 hours respectively.

4.2. Text Corpus
We crawl around 42 Bangla websites and apply text clean-
ing to remove non-Bangla text, punctuation, alphanumeric
characters, duplicate text from the collected raw text. Then
we apply text normalization. We convert numbers to text,
expand abbreviations, normalize percentage symbol and
decimal point, consider the date, contact numbers, etc. Af-
ter preprocessing, we have 10 million Bangla sentences
containing 1.7 million unique words.



6590

5. Evaluation

5.1. Evaluation of Iterative Algorithm

Figure 3 shows the histogram of the percentage of the
longest common sequence of consecutive words (LCSCW).
We calculate it in the following way. We calculate the LC-
SCW between the transcription provided by our ASR and
Google Speech API. We calculate the percentage of LC-
SCW with respect to the transcription length provided by
the Google Speech API. We plot the histogram of these
percentages within 10 ranges: 0-10%, 10-20%, etc. Each
color in the graph represents a particular iteration. We can
see from figure 3 that in the earlier iterations, most of the
LCSCW percentages are in shorter regions. Iteration 1 has
the highest frequency in the lower percentage area. As we
add more data to the training corpus, the performance of
our ASR increases. It starts recognizing more words ac-
curately, resulting in a longer common consecutive word
sequence length. We can see that in iteration 6 and 7, there
are more sentences with higher LCSCW percentages. Fig-
ure 3 shows the rightward shift of the histogram during dif-
ferent iterations of algorithm 1. While analyzing Figure 3,
we need to keep in mind that Google Speech API does not
provide perfect transcription. It may be the case that the
LCSCW between two transcriptions for audio can decrease
at a later iteration - this does not necessarily imply that our
ASR is getting worse at that iteration.

Table 1 shows the evaluation of the corpus generated at each
iteration of our algorithm. The second column shows how
many transcribed speech data were generated at that partic-
ular iteration. We train a hybrid CTC-Attention based end
to end system using each corpus and evaluate the perfor-
mance of that system. We use our generated corpus at each
step in addition to the Google speech dataset for evaluation.
We can also see in table 1 that the amount of transcribed
corpus generated at each iteration and corresponding WER
reaches saturation after only 6-7 iterations. One possible
reason is the limited ability of the system to add variance
to the existing training corpus. The size of the corpus af-
ter the system reaches saturation is around 510 hours. The
drawback of this system is that it fails to utilize all collected
audio files. But there are two key benefits. It allowed us to
transcribe 510 hours of speech data very quickly. Also, this
system is very useful in cases where forced alignment tech-
nique cannot be used (i.e., no reference text available).

Table 1: Evaluation of Corpus by Iteration

Iteration Size of Corpus (Hours) WER (%)

1 207 25.98
2 379 24.25
3 426 23.64
4 464 23.46
5 492 23.22
6 509 23.08
7 512 23.00

Table 2: Evaluation of ASR performance

Train Set Model WER (%)

Google HMM-GMM 30.95
CTC-Attention 26.0

Google HMM-GMM 27.20
+Transcribed CTC-Attention 23.0

Google HMM-GMM 31.40
+Synthesized CTC-Attention 26.6

Google+ HMM-GMM 24.38
Transcribed+Synthesized CTC-Attention 20.2

5.2. Evaluation of ASR Performance
In this section, we evaluate the ASR systems trained on our
speech corpus in addition to the Google speech corpus. We
prepare a standard test set. We include sentences from the
various domain in our test set and add out-of-vocabulary
words such as named entities. The test set contains 13000
transcribed audio files. We manually verified all the tran-
scriptions in the test set. Our test set has 35 speakers, 26
males, and 9 females.
To maintain fairness, all the experiments mentioned below
use the same text corpus for language model training. The
text corpus is described in section 4. We prefer using this
additional text corpus instead of the audio transcriptions for
the training language model. As our system uses automat-
ically transcribed data from corresponding clipped audio
segments, the transcriptions may contain a lot of incom-
plete sentences and may not be the best text source for lan-
guage model training.
We use two different models for evaluating each speech cor-
pus. As our first model, we use traditional HMM-GMM
based recipe from Kaldi (Povey et al., 2011). HMM-GMM
based system requires a lexicon that contains the phonetic
transcriptions for all words in the vocabulary. The same
lexicon was used for evaluating both speech corpora. We
use our previously developed lexicon (Shubha et al., 2019).
The lexicon contains 95000 transcribed Bangla words. We
use most frequently used 65000 words in all of our cur-
rent experiments. An N-gram based language model is used
with HMM-GMM based model.
As our second model, we use a deep learning-based end
to end speech recognition system that uses a hybrid of
CTC and Attention mechanism. We follow the approach
of (Watanabe et al., 2017). We use four BLSTM layers in
the encoder network. The number of BLSTM cells in each
layer is 320. Each BLSTM layer is connected to a linear
projection layer with 320 units. The decoder network has
1 layer with 300 unidirectional LSTM units. We use a Re-
current Neural Network-based language model in shallow
fusion with the CTC-Attention network. We use character
level RNN. The RNN has 2 layers with 650 LSTM units in
each layer. We get the best performance when using CTC
weight 0.3 with the language model weight 0.5.
All training is done on a desktop with a Core i7 proces-
sor, 16 GB RAM, and Nvidia RTX 2070 GPU. When train-
ing with our 1189 hours speech corpus (229 hours from
Google, 510 hours Transcribed, 450 hours Synthesized),



6591

Figure 3: Histogram for percentage of longest common consecutive word sequence length between two transcriptions with
respect to transcription from Google Speech API

the HMM-GMM based recipe took about 40 hours and a
deep learning-based system took around 100 hours in the
above configuration.
Table 2 shows the performance of the ASR system for dif-
ferent combination of training datasets and models. Best
performance is achieved when we use both transcribed and
synthesized corpus along with Google’s dataset. For ex-
ample, when using CTC-Attention network, the combined
corpus achieves WER of 20.2%. This system outperforms
the same model trained on Google’s dataset only, which
shows WER of 26.0%. When we use Google+Transcribed
corpus the WER is 23.0%. This shows the effectiveness
of our iterative corpus generation approach. When use
Google+Synthesized corpus, the system actually performs
even worse than the system trained on Google corpus alone.
Possibly, it happens because the size of synthesized corpus
is larger than Google corpus. The overwhelming size of the
synthesized corpus leads to over-fitting. But presence of
synthesized corpus improves the ASR performance when
we use all three corpus combined(see table 2).

6. Conclusion and Future Works
In this paper, we present a novel approach for preparing an
annotated speech corpus automatically from public domain
audio and text resources. Following this approach, we were
able to develop a speech corpus relatively quickly com-
pared to other conventional approaches. We use speaker di-
arization, gender detection, and existing low-performance
ASR to annotate the public domain audio automatically.
We also use a text-to-speech system for synthesizing au-
dio for all public domain Bangla words. This method of
corpus development can be used in addition to more su-
pervised methods of speech corpus development to build
large speech corpus efficiently. In our current approach, we
only consider the audio portions that lead to good quality
transcriptions. We have set the threshold to 50% for the

percentage of the longest common sequence of consecu-
tive words (between the 2 speech recognition outputs) in-
tuitively as we felt taking below than this threshold will
negatively impact the accuracy. In future, we will extend
this work and see how this threshold percentage change
behaves with overall accuracy. Moreover, we want to in-
corporate the approach like (Karita et al., 2018) that would
allow us to utilize the unpaired audio and text dataset more
efficiently.

7. Acknowledgements
This research work is funded by Samsung R & D Institute
Bangladesh.

8. Bibliographical References
Dev, A. and Bansal, P. (2010). Robust features for noisy

speech recognition using mfcc computation from mag-
nitude spectrum of higher order autocorrelation coeffi-
cients. International Journal of Computer Applications,
10(8):36–38.

Giannakopoulos, T. (2015). pyaudioanalysis: An open-
source python library for audio signal analysis. PloS one,
10(12).

Hayashi, T., Yamamoto, R., Inoue, K., Yoshimura, T.,
Watanabe, S., Toda, T., Takeda, K., Zhang, Y., and Tan,
X. (2019). Espnet-tts: Unified, reproducible, and inte-
gratable open source end-to-end text-to-speech toolkit.
arXiv preprint arXiv:1910.10909.

Hazen, T. J. (2006). Automatic alignment and error cor-
rection of human generated transcripts for long speech
recordings. In Ninth International Conference on Spo-
ken Language Processing.

Helgadóttir, I. R., Kjaran, R., Nikulásdóttir, A. B., and
Gud́hnason, J. (2017). Building an asr corpus using
althingi’s parliamentary speeches. In INTERSPEECH,
pages 2163–2167.



6592

Hughes, T., Nakajima, K., Ha, L., Vasu, A., Moreno, P. J.,
and LeBeau, M. (2010). Building transcribed speech
corpora quickly and cheaply for many languages. In
Eleventh Annual Conference of the International Speech
Communication Association.

Jang, P. J. and Hauptmann, A. G. (1999). Improving acous-
tic models with captioned multimedia speech. In Pro-
ceedings IEEE International Conference on Multime-
dia Computing and Systems, volume 2, pages 767–771.
IEEE.

Karita, S., Watanabe, S., Iwata, T., Ogawa, A., and Del-
croix, M. (2018). Semi-supervised end-to-end speech
recognition. In Proc. Interspeech, pages 2–6.

Khan, M. F. and Sobhan, M. A. (2018a). Construction
of large scale isolated word speech corpus in bangla.
Global Journal of Computer Science and Technology.

Khan, M. F. and Sobhan, M. A. (2018b). Creation of con-
nected word speech corpus for bangla speech recogni-
tion systems. Asian Journal of Research in Computer
Science, pages 1–6.

Kjartansson, O., Sarin, S., Pipatsrisawat, K., Jansche, M.,
and Ha, L. (2018). Crowd-sourced speech corpora for
javanese, sundanese, sinhala, nepali, and bangladeshi
bengali.

Lakomkin, E., Magg, S., Weber, C., and Wermter, S.
(2019). Kt-speech-crawler: Automatic dataset construc-
tion for speech recognition from youtube videos. arXiv
preprint arXiv:1903.00216.

Mansikkaniemi, A., Smit, P., Kurimo, M., et al. (2017).
Automatic construction of the finnish parliament speech
corpus. In INTERSPEECH, pages 3762–3766.

Moore, R. K. (2003). A comparison of the data re-
quirements of automatic speech recognition systems and
human listeners. In Eighth European Conference on
Speech Communication and Technology.

Nahid, M. M. H., Islam, M., Purkaystha, B., Islam, M. S.,
et al. (2018). Comprehending real numbers: Devel-
opment of bengali real number speech corpus. arXiv
preprint arXiv:1803.10136.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. In Advances in
neural information processing systems, pages 849–856.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
(2015). Librispeech: an asr corpus based on public do-
main audio books. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5206–5210. IEEE.

Patel, T., Krishna, D., Fathima, N., Shah, N., Mahima,
C., Kumar, D., and Iyengar, A. (2018). An auto-
matic speech transcription system for manipuri language.
Show and Tell Session in INTERSPEECH, Hyderabad.

Patino, J., Delgado, H., Evans, N., and Anguera, X. (2016).
Eurecom submission to the albayzin 2016 speaker di-
arization evaluation. Proc. IberSPEECH.

Patino, J., Delgado, H., and Evans, N. (2018a). The eu-
recom submission to the first dihard challenge. In Proc.
INTERSPEECH, volume 2018, pages 2813–2817.

Patino, J., Delgado, H., Yin, R., Bredin, H., Barras, C., and
Evans, N. W. (2018b). Odessa at albayzin speaker di-
arization challenge 2018. In IberSPEECH, pages 211–
215.

Perraudin, N., Balazs, P., and Søndergaard, P. L. (2013).
A fast griffin-lim algorithm. In 2013 IEEE Workshop on
Applications of Signal Processing to Audio and Acous-
tics, pages 1–4. IEEE.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glem-
bek, O., Goel, N., Hannemann, M., Motlicek, P., Qian,
Y., Schwarz, P., et al. (2011). The kaldi speech recog-
nition toolkit. Technical report, IEEE Signal Processing
Society.

Ravindran, S., Anderson, D. V., and Slaney, M. (2006).
Improving the noise-robustness of mel-frequency cep-
stral coefficients for speech processing. Reconstruction,
12:14.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N.,
Yang, Z., Chen, Z., Zhang, Y., Wang, Y., Skerrv-Ryan,
R., et al. (2018). Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In 2018 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 4779–4783. IEEE.

Shubha, S. S., Sadeq, N., Ahmed, S., Islam, M. N., Adnan,
M. A., Khan, M. Y. A., and Islam, M. Z. (2019). Cus-
tomizing grapheme-to-phoneme system for non-trivial
transcription problems in bangla language. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3191–3200.

Watanabe, S., Hori, T., Kim, S., Hershey, J. R., and
Hayashi, T. (2017). Hybrid ctc/attention architecture for
end-to-end speech recognition. IEEE Journal of Selected
Topics in Signal Processing, 11(8):1240–1253.

9. Language Resource References

Applied Machine Learning Blog. (2017). Voice Gender
Detection using GMMs : A Python Primer.

Google. (2019). Cloud Speech API.
SAIVT-BNEWS. (2019). SAIVT News Dataset.
Mozilla Common Voice. (2019). Common Voice by

Mozilla.


	Introduction
	Related Work
	Our System
	Overview of Corpus Preparation
	Corpus Preparation from Raw Audio
	Background Noise Removal
	Speaker Diarization
	Gender Detection
	Silence Segment
	Automatic Transcription Generation

	Corpus Preparation for OOV words
	Out-of-Vocabulary Word List
	TTS Model
	Speech Synthesis


	Corpus Description
	Speech Corpus
	Text Corpus

	Evaluation
	Evaluation of Iterative Algorithm
	Evaluation of ASR Performance

	Conclusion and Future Works
	Acknowledgements
	Bibliographical References
	Language Resource References

