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Abstract
In this paper we present a multidialectal corpus approach for building a text-to-speech voice for a new dialect in a language with existing
resources, focusing on various Latin American dialects of Spanish. We first present public speech datasets for Argentinian, Chilean,
Colombian, Peruvian, Puerto Rican, and Venezuelan Spanish, specifically constructed with text-to-speech applications in mind using
crowdsourcing. We then compare monodialectal TTS voices built with minimal data to voices made with a multidialectal model built
by pooling all the resources from all dialects. Our results show that the multidialectal model outperforms the monodialectal baseline
models. We also experiment with a “zero-resource” dialect scenario where we build a multidialectal voice for a dialect while holding
out target dialect recordings from the training data.
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1. Introduction
Building a high-quality text-to-speech (TTS) voice is costly
and requires significant effort both in terms of collecting
nontrivial amounts of recorded speech in each language, as
well as building the corresponding linguistic resources. In
low-resource language scenarios several approaches have
been proposed to address the issue of data and resource
scarcity. These techniques range from utilizing general
speech data found online that was not necessarily recorded
for speech applications in mind (Baljekar, 2018; Cooper,
2019) to pooling the data from multilingual corpora (Li and
Zen, 2016). It has been shown that constructing the mod-
els from multiple speakers (Gutkin et al., 2016), as well as
using the data from related languages (i.e., languages from
close families or language areas (Emeneau, 1956)), consis-
tently improves the quality of the voice with minimal re-
sources (Baljekar et al., 2018; Wibawa et al., 2018; Demir-
sahin et al., 2018). We believe that this approach can also
be extended to constructing the models for new dialects of
a given language.
In this paper we explore different compositions of datasets
for building voices for Argentinian (AR), Chilean (CL), Pe-
ruvian (PE) and Venezuelan (VE) Spanish dialects using
multi-speaker data crowdsourced1 in each locale, combin-
ing it with the professional studio recordings of Peninsu-
lar (ES) and United States (US)2 Spanish dialects. Past
TTS research on Argentinian (Torres et al., 2012; Violante,
2012), Peruvian (Florentino, 2016), Venezuelan (Rodríguez
et al., 2006) and other Latin American Spanish dialects,
such as Colombian (Correa et al., 2010), focused mostly on
single-speaker nonparametric concatenative systems (Hunt
and Black, 1996). An arguably less brittle, parametric, ap-
proach to TTS (Zen et al., 2013; Zen et al., 2016), mediated

1As opposed to data recorded by professional voice actors.
2This refers to the dialect used in US media in Spanish (e.g.,

Univision, Telemundo).

by explicit acoustic models that we employ in this work, al-
lows us to better leverage the data from these dialects. We
approach the design of the phonemic inventory for each di-
alect in a principled way which, on the one hand, leverages
the heavy overlap between the sound systems and, on the
other, emphasizes the prominent dialectal differences estab-
lished in the literature (Canfield, 1981; Lipski, 1994; Penny
and Penny, 2004; Real Academia Española y Asociación de
Academias de la Lengua Española, 2011; Resnick, 2012),
some of which, like prosodic differences, are notoriously
hard to model (Ortiz-Lira, 1999; Colantoni and Gurlekian,
2004; Feldhausen et al., 2011; O’Rourke, 2012).
The main contributions of this paper are as follows:

• We introduce new open-source speech corpora for
six dialects of Latin American Spanish: Argentinian,
Chilean, Colombian, Peruvian, Puerto Rican and
Venezuelan. To the best of our knowledge these are
the first high-quality free (unencumbered by a restric-
tive license) multi-speaker datasets available for these
dialects. In addition to the approach described in
this paper, these datasets have many more potential
uses that include cross-lingual or cross-dialectal trans-
fer learning in text-to-speech (Chen et al., 2019) and
multi-dialectal acoustic modeling in automatic speech
recognition (Li et al., 2018). We hope these datasets
become a welcome addition to the growing body of
Latin American Spanish speech resources, such as the
single-speaker corpus of Argentinian Spanish recently
announced by Torres et al. (2019).

• We show that a joint multidialectal model constructed
by combining some of the dialect-specific datasets
described above with the large in-house corpora for
Peninsular (ES) and United States (US) Spanish out-
performs the low-resource dialect-specific baselines.

• Furthermore, we demonstrate that, given a linguistic
front-end (i.e., component for converting input text
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Words Duration
Dialect Code Locations ISLRN Gender Name Lines

Total Unique (hours)
Speakers

F arf 3,921 35,360 4,107 5.61 31
Argentinian AR Buenos Aires 395-001-133-368-2

M arm 1,818 16,914 3,343 2.42 13
F clf 1,738 16,591 3,279 2.84 13

Chilean CL Santiago 048-218-632-043-6
M clm 2,636 25,168 4,171 4.31 18
F cof 2,369 22,228 4,460 3.74 16

Colombian CO Bogota 169-985-498-793-0
M com 2,534 23,957 4,459 3.84 17
F pef 2,529 23,806 4,278 4.35 18

Peruvian PE Lima 923-742-092-167-6
M pem 2,918 27,547 4,268 4.87 20
F prf 617 6,092 1,738 1.00 5

Puerto Rican PR US 721-732-548-994-0
M – – – – – –
F vef 1,603 15,182 3,419 2.41 11

Venezuelan VE US and UK 697-927-390-879-1
M vem 1,754 16,613 3,612 2.40 12

Total: 24,437 229,458 5,783 37.79 174

Table 1: Latin American Spanish multi-speaker dataset details.

into phonemic representation of its corresponding pro-
nunciation), one can still build a satisfactory model of
a particular dialect with the acoustic data for this di-
alect omitted during the training process.

The rest of this paper is organized as follows: In the next
section we introduce the six new corpora for Latin Ameri-
can Spanish dialects. We then present phonological design
for the set of dialects selected for the experiments (Sec-
tion 3). This is followed by a series of experiments that
investigate different combinations of corpora for building
voices with or without acoustic data for the target dialect
during training (Section 4). Finally, in Section 5 we discuss
our results and set the roadmap for future experiments.

2. Latin American Spanish Corpora
We built the datasets for six dialects of Latin American
Spanish: Argentinian (Google, 2019a), Chilean (Google,
2019b), Colombian (Google, 2019c), Peruvian (Google,
2019d), Puerto Rican (Google, 2019e) and Venezue-
lan (Google, 2019f). The basic information about the re-
leased datasets is given in Table 1, where each of the six
datasets is shown along the corresponding BCP-47 region
code (Phillips and Davis, 2009), recording locations and
the International Standard Language Resource Numbers
(ISLRNs) (Mapelli et al., 2016).
The corpora contain the crowdsourced recordings from
both male and female speakers, along with accompanying
orthographic transcriptions. Each corpus consists of two
subsets corresponding to female and male speakers, respec-
tively. For each subset, its symbolic name, the total number
of recorded lines, the total and number of unique words,
the duration in hours and the number of distinct speakers
are shown in Table 1.
All recorded volunteers were native speakers of the corre-
sponding dialects. Argentinian, Chilean, Colombian and
Peruvian were recorded in the respective locations where
the dialect is used, whereas Puerto Rican and Venezuelan
were recorded in New York, San Francisco and London.

2.1. Recording Script Design
The original recording script was designed for a conversa-
tional system in Mexican Spanish. To adapt this data for

Example Phonetic variation

El caballo está
amarrado.

Possible deletion of intervocalic
consonants: [amara(ð̞)o]

Los corazones de pollo
son una delicia.

<z> as [θ, s], <ll> as [ʎ, ɟʝ, ʝ, j, ʃ, ʒ],
<ci> as [θi, si]

El viaje fue muy
divertido.

<je> as [xe, he, χe, çe]

Table 2: Some examples of sentences where strong dialec-
tal variation is attested.

our needs, we selected shorter phrases and removed any
Mexican Spanish-specific sentences. To increase the vari-
ety of the corpus we created additional sentences based on
templates, where we varied proper names while leaving the
rest of the sentences intact.
Only a small part of the recording script was localized by
native speakers of each dialect, however speakers being
recorded were allowed to improvise and read the phrases in
a way they felt more natural for their dialect, if necessary.
Any mismatches between the original transcriptions and the
recorded audio were fixed during a quality control process
by matching the transcriptions to the improvisations. The
transcriptions therefore reflect the spoken speech.
In addition, the recording script contains around 30 “canon-
ical” sentences that all the speakers of all the dialects were
required to read. These sentences were specially selected to
include salient phonological contrasts known to exist across
the dialects in question. Examples of such sentences are
provided in Table 2.
The total number of unique words in all the recording
scripts was relatively low (below 6,000). To increase word
coverage in the crowdsourced varieties, dialect-specific pro-
nunciation lexicons were enriched by adding lexical en-
tries from an existing lexicon for Peninsular (ES) or United
States (US) Spanish. When applicable, pronunciations were
adapted to the dialectal variants by using automated rules,
with exceptions being manually adjusted (e.g., loanwords).

2.2. Audio Recording Details
Speakers recorded themselves in a quiet room, using hard-
ware and custom built software provided by an experi-
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Figure 1: Layout of the Peruvian Spanish corpus.

menter. While the experimenter was initially present to
demonstrate how to properly use the materials, speakers
were left alone in the room during the recording session,
in order to ensure speech naturalness. Each speaker read
150 sentences presented on-screen in a self-paced manner.
At each sentence, they were asked to listen and validate the
recording. The utterances were re-recorded if noticeable
background noise was detected by the recording software,
if there were pronunciation problems (e.g., stuttering dur-
ing reading, laughing), or if speakers found their prosody to
be unnatural. Recordings were done using an ASUS Zen-
book UX305CA fanless laptop, a Neumann KM 184 micro-
phone and a Blue Icicle XLR-USB A/D converter. The au-
dio was recorded as 48 kHz single-channel and is provided
in 16 bit linear PCM RIFF format.
Apart from the Argentinian Spanish data, which was
recorded in an office recreational music room, the data for
all other crowdsourced dialects were recorded in a portable
acoustic vocal booth, which provides an alternative to the
commercial studio. Acoustic vocal booths are designed to
reduce echo and reverberations and the affordable versions
typically reduce the noise levels by about 10–13 dB.
With the exception of Puerto Rican Spanish, over ten speak-
ers were recorded for each dialect. Also, as can be seen
from Table 1, no male speakers were recorded for Puerto
Rican Spanish. Utterances with wrong pronunciations or
recordings artifacts (such as significant background noise,
mouth clicks, heavy breathing and so on) were filtered out
during the post-recording quality control (QC).

2.3. Distribution and Licensing
The corpora are open-sourced under “Creative Commons
Attribution-ShareAlike” (CC BY-SA 4.0) license (Creative
Commons, 2019) and hosted on Open Speech and Lan-
guage Resources (OpenSLR) repository (Povey, 2019).
The corpora structure follows the same lines for each di-
alect, similar to Figure 1, which shows the structure for Pe-

Crowdsourced Professional
Dialect AR CL PE VE ES US

UTT 998 1,021 1,044 1,017 1,014 758
WRD 9,633 9,857 10,079 9,738 9,842 9,844
SPK 7 7 7 7 1 1

Table 3: Training set: Number of utterances (UTT), words
(WRD), and speakers (SPK) per dialect.

ruvian Spanish. Collections of audio and the corresponding
transcriptions are stored in a separate compressed archive
for each gender. Transcriptions are stored in a line index
file, which contains a tab-separated list of pairs consisting
of the audio file names and the corresponding transcrip-
tions. The transcriptions have not been text normalized and
may contain non-standard word (NSW) tokens (Sproat et
al., 2001), such as abbreviations and cardinal numbers. The
name of each utterance consists of three parts: symbolic
dataset name (e.g., Peruvian male is denoted pem), the five-
digit speaker ID and the 11-digit hash.
It is important to note that the amount of data we are re-
leasing is rather small (24,437 utterances in total for all the
dialects): it may not be enough to build a reasonable mod-
ern single-dialect single-gender model using a traditional
approach to text-to-speech. On the other hand, the purpose
of the data collection was to assemble high quality –rather
than high volume– data that can be used in applications that
involve combining multiple datasets together (as it is done
in this paper) or using the datasets as adaptation data.

3. Dialect Selection and Phonological Design
3.1. Corpus Selection
For the purpose of experimenting with various dialects of
Latin American Spanish, the training set for our models
combines the open-source datasets for Argentinian (AR),
Chilean (CL), Peruvian (PE) and Venezuelan (VE) Spanish
(described in Section 2) with existing proprietary single-
speaker corpora for Peninsular (ES) and United States (US)
Spanish recorded by the voice actors in professional stu-
dios3. We restricted the training data to recordings by fe-
male speakers only.
In order to ensure an equal representation of all dialects
in the multidialectal TTS system, we selected subsets of
recorded speakers to be included in the training dataset. For
crowdsourced datasets (AR, CL, PE and VE), we selected
the seven speakers with the lowest number of utterances
discarded during the quality control process (for VE this
represented all seven speakers available at the time of the
experiments). For professionally recorded data (ES and US),
an algorithm randomly selected utterances so that the result-
ing number of words approximated the average number of
words in the recordings from the crowdsourced locales. The
details of the resulting training set are shown in Table 3.

3Data collection and experiments described here were per-
formed in parallel. As such, the corpora for Colombian (CO) and
Puerto Rican (PR) Spanish were not available when the experi-
ments were being designed. Similarly, only a subset of the other
crowdsourced locales (AR, CL, PE, VE) had been recorded at the
time.
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IPA ES US AR CL PE VE

m m m m m m m
n n n n n n/ŋ n/ŋ
ɲ ɲ ɲ ɲ ɲ ɲ ɲ
p p p p p p p
t t t t t t t
tʃ tʃ tʃ tʃ tʃ/ttʃ/ts tʃ tʃ

c k k k k k k k
o b b b b b b b
n d d d d d d d
s ɡ ɡ ɡ ɡ ɡ ɡ ɡ
o ʝ ɟʝ/ʝ ɟʝ/ʝ ʝ ɟʝ/ʝ ɟʝ/ʝ ɟʝ
n f f f f f f f
a θ θ θ - - - -
n s s̺ s s s s s
t ʃ - ʃ ʃ - ʃ -

x x/χ x x x/ç x h
l l l l l l l
ʎ ʎ - - - - -
ɾ ɾ ɾ ɾ ɾ ɾ ɾ
r r r r r r r

v a a a a a a a
o e e e e e e e
w i i i i i i i
e o o o o o o o
l u u u u u u u

semi- j j j j j j j
vowel w w w w w w w

Table 4: Multidialectal phonemic inventory.

3.2. Phonemic Inventory
Based on the phonetic and phonological descriptions of the
relevant dialects (Lipski, 1994; Penny and Penny, 2004;
Real Academia Española y Asociación de Academias de
la Lengua Española, 2011), we established a multidialec-
tal phonemic inventory. We used the International Pho-
netic Alphabet (IPA) (International Phonetic Association,
1999) as the underlying representation. Table 4 shows the
list of phonemes in the unified inventory and IPA, and the
mapping of the phonetic realisations in each individual di-
alect in the corresponding columns. In order to keep the
salient differences across dialects while making the most of
the similarities in a limited resources scenario, this inven-
tory differs from traditional phonological inventories estab-
lished for Spanish.
In some cases, one phoneme in a dialect was mapped into
two salient variants. For instance, the phoneme /ʝ/ (with
spellings <ll> and <y>), was mapped to a separate /ʃ/ cat-
egory in the case of AR, as it is realized as [ʃ ~ʒ] in Rio
Platense (Buenos Aires) Spanish (e.g. muelle, yo, lluvia).
However, the same phoneme in the same dialect is realized
as [ʝ] in words like Youtube, and in these cases it was tran-
scribed as /ʝ/.
In other cases, a traditionally acknowledged phone in one
dialect was kept within its corresponding phoneme in spite
of salient cross-dialectic phonetic differences. For example,
the VE phoneme /x/ is phonetically produced as [h], but it
was not assigned to a separate /h/ phoneme since it does
not raise a linguistic contrast with /x/ phonemes within or
across dialects.
Finally, the diphthongs are represented as vowel-glide se-
quences. This allows us to represent all possible vowel-

glide combinations by adding only two glide symbols
(marked as semivowel in the last two rows of Table 4). The
validity of the inventory was assessed by cross-referencing
with our recordings.

4. Experiments
In this section we describe and evaluate the voices built us-
ing different subsets of the multidialectal corpus, as well
as investigate choosing different speaker identities (speaker
ID) as an input feature to guide the acoustic model during
synthesis (i.e., perform dialect selection)4.

4.1. Phoneme Alignments
In order to build the voices, phoneme boundaries are re-
quired for all the corpora used in the experiments. The
speech data was downsampled to 16 kHz and then pa-
rameterized into HTK-style Mel Frequency Cepstral Co-
efficients (MFCC) (Ganchev et al., 2005) using a 10 ms
frame shift, a 25 ms Hamming window and a first order
pre-emphasis filter with a coefficient of 0.97. The dimen-
sion of the MFCC parameters is 39 (13 static + ∆ + ∆∆
coefficients). To determine the phoneme time boundaries,
the acoustic parameter sequences were then force-aligned
with the corresponding transcriptions (Young et al., 2006).
Each dataset was force-aligned individually.

4.2. Model Architecture Details
We used long short term memory recurrent neural network
(LSTM-RNN) acoustic model configuration, as described
by Gutkin (2017) and originally proposed by Zen and Sak
(2015), to build a set of experimental voices. LSTM-RNNs
are designed to model temporal sequences and long-term
dependencies within them (Hochreiter and Schmidhuber,
1997).
Two unidirectional LSTM-RNNs for duration and acous-
tic parameter prediction are used in tandem in a stream-
ing fashion. Given the input features, the goal of the du-
ration LSTM-RNN is to predict the duration (in frames) of
the phoneme in question. This prediction, together with
the input features, is then provided to the acoustic model
which predicts smooth acoustic vocoder parameter trajec-
tories. The smoothing of transitions between consecutive
acoustic frames is achieved in the acoustic model by using
recurrent units in the output layer.
The input features used by both the duration and the acous-
tic models consisted of one-hot linguistic features that de-
scribe the utterance including the phonemes, stress, syllable
counts and distinctive phonological features (such as place
and manner of articulation). An additional important fea-
ture that we use is a one-hot speaker identity feature. When
using a model trained on multiple dialects, this feature is in-
strumental in forcing the consistent speaker characteristics
on the output of the model. In other words, it forces the
voice to sound like the requested speaker.

4Here speaker ID and dialect are conflated in the speaker ID
feature. Therefore, selecting a speaker ID during synthesis deter-
mines the dialect used by the voice. Ideally, future models could
have an independent dialect feature, allowing to separate speaker-
dependent acoustic idiosyncrasies from dialect-specific character-
istics.
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The original speech data was downsampled to 22.05 kHz.
Then mel-cepstral coefficients (Fukada et al., 1992), log-
arithmic fundamental frequency (logF0) values (interpo-
lated in the unvoiced regions), voiced/unvoiced decision
(boolean value) (Yu and Young, 2011), and 7-band ape-
riodicities were extracted every 5 ms, similar to previous
work (Zen et al., 2016). These values form the output
features for the acoustic LSTM-RNN and serve as input
vocoder parameters (Agiomyrgiannakis, 2015). The output
features for the duration LSTM-RNN are phoneme dura-
tions (in seconds). The input features for both the duration
and the acoustic LSTM-RNN are linguistic features. The
acoustic model supports multi-frame inference (Zen et al.,
2016) by predicting four frames at a time, hence the train-
ing data for the model is augmented by frame shifting up to
four frames. Both the input and output features were nor-
malized to zero mean and unit variance. At synthesis time,
the acoustic parameters were synthesized using the Vocaine
vocoding algorithm (Agiomyrgiannakis, 2015).
The architecture of the acoustic LSTM-RNN consists of
2 × 512 ReLU layers (Zeiler et al., 2013) followed by
3×512-cell LSTM with recurrent projection (LSTMP) lay-
ers (Sak et al., 2014) with 256 recurrent projection units
and a linear recurrent output layer (Zen and Sak, 2015).
The architecture of the duration LSTM-RNN consists of
1×512 ReLU layer followed by a single 512-cell LSTMP
layer with a feed-forward output layer with linear activation.
For both types of models the input and forget gates in each
memory cell are coupled since distributions of gate activa-
tions for input and forget gates were previously reported as
being correlated (Miao et al., 2016). The duration LSTM-
RNN was trained using an ε-contaminated Gaussian loss
function (Zen et al., 2016), whereas for acoustic LSTM-
RNN the L2 loss function was used as per Gutkin (2017).

4.3. Configurations
Here we provide an overview of the combinations that
were experimented on across dialects using the datasets de-
scribed in Section 3.1.

Monodialectal Baseline For each crowdsourced dialect
(i.e., AR, CL, PE and VE), we trained a single monodialec-
tal multi-speaker baseline model using only that dialect’s
dataset (i.e., 7 speakers per dialect). We then synthesized
five sentences using each of the 7 speaker IDs available.
For each dialect, a native speaker of the dialect selected the
(subjective) best speaker ID for that dialect in terms of both
naturalness and nativeness based on these five sentences.

Multidialectal Baseline We trained a single multidialec-
tal multi-speaker model using all the available datasets
(i.e., 7 speakers per crowdsourced dialect, 1 speaker per
professionally-recorded dialect, with matched amount of
words for all dialects, as described in Section 3.1). From
it we built the multidialectal baseline voice of each dialect,
using the same speaker IDs used for the corresponding
monodialectal models.

Multidialectal Holdout Lastly, we built multidialectal
voices for the new dialects holding out all or most of the
acoustic data for the target dialect during training. The hold-
out voice for a given target dialect uses all of the training

Dialect Monodialectal Multidialectal Holdout

AR 3.43 ± 0.14 3.91 ± 0.11 4.17 ± 0.11
CL 3.52 ± 0.10 3.79 ± 0.09 -
PE 3.73 ± 0.13 3.98 ± 0.09 3.69 ± 0.08
VE 4.13 ± 0.09 3.71 ± 0.08 4.70 ± 0.06

Table 5: Mean-Opinion Scores (MOS). Raters evaluated
voice naturalness using a scale from 5 (‘Excellent’) to 1
(‘Bad’).

data except for that of the target locale. The speaker ID
was then selected from one of the other crowdsourced lo-
cales by a native speaker of the target dialect. For example,
the training data for the VE holdout voice includes record-
ings from all locales except VE (i.e., 7 speakers for AR, CL,
and PE, plus 1 speaker for ES and US, respectively), with a
PE speaker having been selected by a VE native speaker as
the most natural and least non-native sounding for the VE
holdout voice.

4.4. Evaluation
The overall naturalness of the voices was evaluated by
Mean Opinion Scores (MOS) (Streijl et al., 2016), as pre-
sented in Table 5. For each dialect, we compiled a set of
100 sentences that were neither in the training data, nor
in the five-sentence set used for best speaker ID selection.
Each sentence was rated by 3 different native speakers from
the locale using a 5-point scale, as follows: 5 = ‘Excellent
- Completely natural speech’, 4 = ‘Good - Mostly natural
speech’, 3 = ‘Fair - Equally natural and unnatural speech’,
2 = ‘Poor - Mostly unnatural speech’, 1 = ‘Bad - Com-
pletely unnatural speech’. This resulted in 300 datapoints
per model evaluation; however, each rater did not necessar-
ily evaluate all 100 sentences. In MOS tests, all multidialec-
tal voices were rated fair-to-good5.
Furthermore, we conducted pairwise comparisons between
different voice configurations for the same locale, using the
same evaluation set as the MOS tests. The raters listened
to a sentence, synthesized with both voices A and B, and
were asked to select which voice sounded better as a virtual
assistant of their dialect (e.g., “a Chilean virtual assistant”)
using a 7-point scale. The A/B pair for each sentence in
the set was evaluated by 3 different raters, resulting in 300
datapoints per model comparison. As for MOS evaluations,
each rater did not necessarily evaluate all 100 sentence com-
parisons. In the following sections, we present the experi-
mental setups and the results of the pairwise evaluations.

4.5. Multidialectal Bootstrapping
In this section we evaluate the effectiveness of building
voices for new dialects with a single multidialectal base-
line model, as opposed to training individual monodialectal
baseline models for each dialect separately. We investigate

5MOS might not be directly comparable across voices (e.g.,
different raters for a same sentence across models, effects of or-
der of presentation, range-equalization bias); we provide them as
a general idea of voice quality (i.e., naturalness only) but base our-
selves on more reliable A/B testing for model comparison.
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A B Winner Score

Multi(AR) Mono(AR) Multi −1.570±0.146
Multi(CL) Mono(CL) Multi −0.540±0.176
Multi(PE) Mono(PE) Multi −0.487±0.158
Multi(VE) Mono(VE) Multi −0.487±0.146

Table 6: Monodialectal vs. multidialectal baselines. Neg-
ative A/B scores denote preference for voice A over voice
B as a virtual assistant of the raters’ native locales (e.g. ‘a
Peruvian virtual assistant’). A winner is determined when
the preference is statistically significant.

if the voices built with a single multidialectal model outper-
form their monolingual baseline counterparts. On the one
hand, the multidialectal model is trained using more data
than the baseline models. On the other hand, the multidi-
alectal data is also more acoustically varied, whether it is
at the level of phonemes or prosody, which may counter
the data quantity advantage. Indeed, the perceived quality
of the resulting voices depends not only on them sounding
human-like (i.e., naturalness), but also on them being able
to properly display the dialect of interest (i.e., nativeness).
For the A/B tests, every sentence in the evaluation set was
read by the monodialectal baseline voice on one side and
the multidialectal baseline voice of the target dialect on the
other. Both voices were built using the same speaker ID,
meaning that they only differed in the data used for training
the models. Native listeners of AR, CL, PE, and VE Spanish
compared each sentence read by the two voices side by side,
in their respective native dialects only.
As seen in Table 6, for all dialects, the multidialectal voices
were preferred over the respective monodialectal voices. In
this low-resource setting, adding data from closely-related
dialects consistently enhanced the perceived quality across
all dialects. Based on these findings on low-resource set-
tings, the next step is to transfer the methodology to the
zero-resource setting.

4.6. Dialect-Specific Zero-Resource TTS
Collecting data for a target dialect is costly both in terms of
time and money, and might be logistically infeasible even
through crowdsourcing. Is it possible to bootstrap an extant
multidialectal corpus to build a satisfying voice in a dialect
that is not present in the corpus?
In this experiment we set our target dialect to VE Spanish6.
We compared the perceived quality of the VE monolingual
baseline voice to what we refer to as a VE multidialectal
holdout voice, Hold(VE). Namely, this corresponds to a
multidialectal TTS model trained with data from all Span-
ish varieties except VE Spanish (i.e., AR, CL, PE, ES, US).
Since this model does not include data from the chosen
VE speaker ID, a speaker ID was selected from the pool
of crowdsourced speakers by a native speaker of VE Span-
ish. The criteria for choosing the voice was an optimisation
of both voice naturalness and nativeness (here: which voice
subjectively sounds least foreign). As a result, a PE speaker

6Due to VE being the corpus with the least amount of data, at
the time of the experiments.

A B Winner Score

Hold(VE) Mono(VE) Hold(VE) −0.600±0.166
Hold(VE) Multi(VE) Hold(VE) −0.633±0.148
Multi(VE) Multi(PE) Multi(PE) 0.580±0.128
Hold(VE) Multi(PE) Multi(PE) 0.423±0.182

Table 7: A/B test results involving the VE multidialectal
holdout voices. Negative scores denote preference for voice
A over voice B as a Venezuelan virtual assistant, and vice
versa for positive scores. A winner is determined when the
preference is statistically significant.

was chosen as the speaker ID for the VE multidialectal hold-
out voice7.
As seen in Table 7, A/B tests revealed that native VE raters
preferred the VE multidialectal holdout voice (thus, with
a PE speaker ID) over the VE monodialectal baseline. As
such, a non-native-sounding voice was preferred.
Results from Section 4.5 show that multidialectal baseline
models outperformed their monodialectal counterparts, pos-
sibly due to having more data for training the acoustic mod-
els. So it is possible that the VE multidialectal holdout per-
forms better than the VE monodialectal voice due to differ-
ences in training corpus size. In order to investigate this,
we compared the VE multidialectal holdout voice to the VE
multidialectal baseline, which was previously shown to be
preferred to the VE monodialectal baseline. As seen in Ta-
ble 7, the VE multidialectal holdout voice was once again
preferred over the VE multidialectal baseline voice. In fact,
only one rater showed the opposite preference (Figure 2).
Note that the multidialectal baseline voices are trained with
more data than the multidialectal holdout voices, suggest-
ing that the preference for the holdout voice with the PE
speaker ID is not simply due to difference in training cor-
pus size.
Furthermore, we confirmed this tendency to prefer a PE
voice by our VE raters when comparing the PE multidialec-
tal baseline to the VE multidialectal baseline. As seen in
Table 7, the former, non-native voice was preferred to the
latter on average.
As a result, we find that it is possible to build a voice for
a target dialect that is not present in a multidialectal cor-
pus8. In addition, we found that the PE-sounding holdout
voice was rated to be more appropriate as a Venezuelan vir-
tual assistant than the mono- and multidialectal VE voices
by Venezuelan raters. Therefore, if a suitable speaker ID
is available (e.g., from a dialect with relatively neutral
prosody), it may be possible to skip costly data collec-
tion and build a non-native voice that outperforms native
voices. However, depending on the differences across di-
alects and locales, a suitable speaker might not be available,
or a region-neutral voice may not be preferred. In these
cases, is it possible to enhance a holdout voice and make

7Coincidentally, the same speaker ID as all non-holdout PE

voices.
8Since speaker ID and dialect are conflated in our models, we

do not claim to have been able to successfully build a voice in the
target dialect, but a voice deemed acceptable by speakers of the
target dialect.
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Figure 2: Distribution of scores in the A/B task comparing multidialectal holdout (PE speaker ID) and baseline (VE speaker
ID) voices for VE, as rated by native VE listeners A to F (one line per rater). Negative and positive scores show a preference
for the holdout and baseline voices, respectively. The further away from zero, the stronger the preference.

it sound more native with minimal additions to the multidi-
alectal training corpus?

4.7. Low-Resource Dialect Tuning
As pointed out in Section 3.2, in addition to the differ-
ences at the level of prosody, lexicons, grammar, or syntax,
dialects often differ in their phonemic inventories and/or
in the phonetic realizations of common phonemes. Some
of these phonetic and phonemic peculiarities may be per-
ceived as quintessential characteristics of a target dialect.
For instance, the pronunciation of graphemes <ll> and <y>
as [ʃ∼ʒ] by (Rio Platense) Argentinian speakers is a distinct
characteristic of this dialect (Lipski, 1994; Real Academia
Española y Asociación de Academias de la Lengua Es-
pañola, 2011). We examined the possibility of enhanc-
ing an AR multidialectal holdout voice by maximizing the
amount of [ʃ] tokens in the training corpus. We first built
an AR multidialectal holdout voice, containing data from
CL, PE, VE, ES, and US Spanish varieties. This train-
ing corpus (i.e., the corpus described in Section 4.3.2, but
without AR data) contained randomly selected US utter-
ances, resulting in the presence of only 16 [ʃ] tokens (8
from US, 8 from other locales). By actively biasing the
US utterance selection as to maximize the ratio of utter-
ances containing the phoneme, we obtained a corpus with
724 [ʃ] tokens (the total number of words was kept con-
stant). We call the resulting voice the AR multidialectal
phoneme-selection holdout voice, differing from the AR
multidialectal holdout in the percentage of [ʃ] tokens. Ar-
gentinian raters compared these two voice in an A/B test
with 12 sentences containing the target phone [ʃ]. Results
show that sentences from the phoneme-selection holdout
were significantly preferred over those by the non-biased
holdout (mean = −1.389). Note that despite this phoneme-
level enhancement, the phoneme-selection holdout voice
was not rated significantly better than the non-biased hold-
out on the A/B testing with 100 sentences (A/B score:
−0.080±0.135).
Following these results, we investigated the possibility of
adding minimal target dialect data to an extant training cor-

pus as an alternative to needing to compile an entire target
corpus. This was done by adding only the data for the VE
speaker used as speaker ID to the corpus used to train the
multidialectal holdout model for VE. The resulting model,
referred to as the VE multidialectal semi-holdout, was com-
pared to the VE monodialectal baseline. The multidialec-
tal semi-holdout voice was preferred over the monodialec-
tal baseline voice (0.330± 0.122), but the VE multidialec-
tal baseline still outperforms the VE multidialectal semi-
holdout (0.360± 0.148). These results show that if a mul-
tidialectal corpus already exists, it might be preferable to
record one speaker of the new target dialect and bootstrap
from the rest of the existing data than compiling a full tar-
get corpus. On the other hand, if resources allow, the more
target data available, the better.

5. Discussion and Conclusions
5.1. Summary
In this work we presented a crowdsourced multidialectal
corpus of various dialects of Latin American Spanish. In
total, we recorded 44 Argentinian, 31 Chilean, 33 Colom-
bian, 38 Peruvian, 5 Puerto Rican, and 23 Venezuelan na-
tive speakers. In total, almost 40 hours of speech were
recorded. We believe that this corpus can prove to be a
valuable resource for developing speech technologies such
as TTS and automatic speech recognition (ASR) in these
dialects. We also hope that this corpus will assist the practi-
tioners in the field of Latin Americal Spanish dialectology.
In parallel to data collection, we explored using a multidi-
alectal corpus (subset of all the data collected) in order to
build TTS voices for various low-resource dialects, as well
as dialects not present in the training corpus. We found that
voices built from a multidialectal model were preferred as
the voice of a native virtual assistant over the corresponding
voices built from monodialectal corpora. The multidialec-
tal model appears as a more parsimonious option, as only
one shared model is trained instead of one per dialect.
We also showed that it is possible to use a multidialectal
model to build a satisfactory voice for a dialect not present
in the training corpus, given that there is a suitable replace-
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ment dialect available in the training corpus. In cases such
as these, it might be worth evaluating the need to build a
new dialect-specific voice before committing to costly data
collection. However, if nativeness of the resulting voice is
of paramount importance, our results show that it is possi-
ble to obtain a native voice from the multidialectal corpus
with minimal data collection (here, by merely adding 150
utterances from one native speaker to the training corpus).
It is also possible to selectively enhance a specific phonetic
realization (as seen with the AR phoneme /ʃ/) by manip-
ulating the amount of exemplars available in the training
dataset, but the overall impact may be limited.

5.2. Future Work
A logical segue from our last result is that the multidi-
alectal model presented here may benefit from becoming
a multidialectal-multilingual model. Namely, adding data
from related languages (e.g., Catalan, Italian, Portuguese)
in order to increase the number of instances for each
phoneme. It might even be interesting to add seemingly
unrelated languages to the mix, if the phonetics are similar.
For instance, adding Japanese to the Latin American multi-
dialectal model would allow [h], the VE phonetic realisation
of /x/, to be separated from the ES Spanish phoneme /x/, and
similarly for CL phones [ts] and [ç] (instead of /tʃ/, and /x/ in
certain environments, respectively). Going even further, the
ultimate goal would be to establish a universal phonemic in-
ventory in order to bootstrap existing data to build voices in
various languages, even low- or zero-resource ones.
It was unexpected for the VE multidialectal holdout voice
(i.e. with a PE speaker ID) to be rated higher than not only
the VE monodialectal baseline, but also the VE multidialec-
tal voices, as it means that VE raters preferred a voice fol-
lowing a dialect with different prosody. Investigating the
reason for this preference was out of the scope of these
experiments. Some possible variables that could be con-
trolled for in future studies include recording quality (VE
data were collected in multiple locations, while PE data
were collected in a single venue), the perceived neutrality
of the accent (raters might be biased towards a more region-
neutral accent as a virtual assistant voice because of market
expectations, media exposure, or other sociolinguistic con-
straints) and the subjective pleasantness of the speaker ID.
Ideally, future models should allow the decorrelation of di-
alect and speaker ID.
Concerning TTS evaluation methods, we observed some
discrepancy between MOS and A/B test results. Specifi-
cally, the baseline monolingual VE voice was rated numer-
ically higher than the multidialectal VE voice, which had
outperformed the monolingual voice in A/B tests. It should
be noted that the MOS task asked raters to evaluate voices’
naturalness, while the A/B task required them to identify
the best voice for a virtual assistant in their locale, a task
where not only naturalness, but also nativeness was to be
considered in the comparison. Additionally, even though
the raters come from the same rater pool, due to the blind
rating nature of the tests we could not investigate more con-
trolled scenarios. For example, we could not ensure that
the same rater evaluated the same sentences with different
voices across MOS tests of different voices, or the MOS

and the A/B tests. Different evaluation setups can provide
more insight into the relation between A/B tests and MOS
tests (e.g. effect of doing separate, explicit evaluations of
voice naturalness and nativeness; effect of various types of
MOS calibration on MOS-A/B score correlations; effect of
varying the number of raters). Given the limited number
of available raters in the context of low-resource languages
and dialects, such as some presented in this work, it be-
comes critical to do a more thorough examination of the
popular, yet subjective, MOS evaluation method in the near
future.
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