
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6228–6236
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

6228

Minority Positive Sampling for Switching Points - an Anecdote for
the Code-Mixing Language Modeling

Arindam Chatterjee¹, Bodla Vineeth Guptha², Parul Chopra³, Amitava Das
Wipro AI Labs

Bangalore, India
{arindam.chatterjee4, bodla.guptha, parul.chopra1, amitava.das2}@wipro.com

Abstract
Code-Mixing (CM) or language mixing is a social norm in multilingual societies. CM is quite prevalent in social media
conversations in multilingual regions like - India, Europe, Canada and Mexico. In this paper, we explore the problem
of Language Modeling (LM) for code-mixed Hinglish (Hindi-English language pair) text. In recent times, there have
been several success stories with neural language modeling like Generative Pre-trained Transformer (GPT) (Radford et
al., 2019), Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) etc.. Hence, neural
language models have become the new holy grail of modern NLP, although LM for CM is an unexplored area altogether.
To better understand the problem of LM for CM, we initially experimented with several statistical language modeling
techniques and consequently experimented with contemporary neural language models. Analysis shows that switching
points (junctions in the text where the language switches) are the main challenge for the CM language model and the
reason for the performance drop, as compared to monolingual LMs. To handle this impediment, in this paper we introduce
the concept of minority positive sampling, to selectively induce more samples, to achieve better performance. The neural
language models for CM demand a huge corpus, still they exhibit improvement in performance, after the samples are
induced. Finally, we report a perplexity of 139 for Hinglish LM for CM using statistical bi-directional technique.
Keywords: code-mix, language modelling, Hinglish, switching point

1. Introduction
Mixing languages, also known as code-mixing, is a
norm in multilingual societies. Multilingual people,
who are non-native English speakers, tend to code-mix
using English-based phonetic typing and insertion of
anglicisms in their native language. In addition to mix-
ing languages at the sentence level, it is also fairly com-
mon to find code-mixing behavior at the word level.
This linguistic phenomenon poses a great challenge to
conventional NLP systems. The following phrase is an
example of code-mixing in Hinglish i.e., mixed between
Hindi and English. In the example only one English
word enjoy has been used, but more noticeably for the
Hindi words - instead of using the native Devanagari
script, English phonetic typing is a popular choice.

AyeHI aurHI enjoyEN kareHI
Eng. Trans.: come and enjoy

Naturally, code-mixing is more common in geograph-
ical regions with a high percentage of bi or multilin-
gual speakers, such as in Texas and California in the
US, Hong Kong and Macao in China, many European
and African countries, and the countries in South-East
Asia. Multi-linguality and code-mixing are also very
common in India.
Code-mixing has received a significant attention very
recently, mainly due to the availability of large-scale
code-mixed data in blogs, micro-blogs (e.g., Twitter),
WhatsApp, and chats (e.g., Facebook messages) etc.
On the other hand, in recent years, the application
of LM in natural language processing became an in-
teresting field which has attracted many researchers’
attention. There have been several success stories

1, 2, and 3 all the authors contributed equally.

with neural language modeling techniques like Genera-
tive Pre-trained Transformer - 2 (GPT-2) (Radford et
al., 2019), Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) etc. The
goal of language modelling is to estimate the probabil-
ity distribution of various linguistic units, e.g., words,
sentences etc. There are two different paradigms of
language modeling - count-based and continuous-space
language models.
LM for CM (LMCM) is an unexplored area altogether.
In this paper, we present a detailed study on language
modeling techniques for Hinglish text using both sta-
tistical and neural techniques. Training a language
model for Code-mixed (CM) language is known to be
a difficult problem for many reasons - words from two
languages mixed together, even grammar of two lan-
guages mixed together. There are only two recent sig-
nificant contributions in Hinglish LM, by (Pratapa et
al., 2018), and (Samanta et al., 2019). The reported
perplexities of LM for Hinglish code-mixing text in
the previous two papers are 772 and 2090.78 respec-
tively. Both the works relied on neural language mod-
els trained on synthetic data. In contrast, we have col-
lected sizeable naturally mixed data. Our experiments
yielded better performance than both the previously
existing techniques (Pratapa et al., 2018), (Samanta
et al., 2019) - achieved a perplexity of 655.32, 1701.49,
and 139.05 respectively using statistical, neural mod-
els, and bi-directional statistical models. Our analysis
shows that switching points are the main cause for the
LM performance drop, and hence, in this paper we in-
troduce the idea of minority positive sampling to selec-
tively collect more data to achieve better performance
and faster convergence. Neural models require a huge

6229

dataset. However, the proposed sampling techniques
also improve the performance for NLMs.
The rest of the paper is organized as follows. Sec-
tion 2. covers the benchmarks for code-mixing cor-
pora. Section 3. describes statistical language mod-
elling techniques we have explored, followed by section
4. where we present our work on code-mixed language
modelling using state-of-the-art neural network mod-
els. Section 5. discusses a bottle neck for code-mixed
language modelling viz., Switching Points (SPs). Sec-
tion 6. discusses novel sampling techniques called mi-
nority positive sampling, that we have used for gener-
ating better language models. In section 7. we discuss
how bi-directionality in statistical models can enhance
the LM performance and in section 8. we compare
language models generated from synthetically created
data, against naturally code-mixed data. Correspond-
ingly, we discuss our observations and analysis, and
conclude our paper in section 9.

2. Qualitative and Quantitative
Benchmarks for Code-Mixing

Corpus
Performance of language models depends on the size of
the training corpus and ultimately on the size of the vo-
cabulary. The current State-of-the-art (SOTA) neural
language models, learn from at least a billion word cor-
pus, for monolingual language modeling. Apart from
the data scarcity, in case of code-mixing, there are ad-
ditional challenges: i) Words of both languages are
present, ii) Hindi is written in English phonetic typing,
therefore no standardization of spelling - which in ef-
fect creates more surface word forms, iii) Code-mixing
is a syntactic fusion, and netizens being creative about
their mixing, create several new word conjunction pat-
terns. Therefore, we started with several fundamental
questions before we set our data acquisition pipeline:

1. How much of social media content is actually
mixed?
Empirical conclusions: This is an essential
question. When we claim CM is prevalent in social
media, it is also necessary to ask how prevalent it
is. We found at least 50%+ tweets are code-mixed
on Indian twitter. Please see the Section 2..2 for
more discussions.

2. The performance of any NLP method is depen-
dant on the complexity of the data i.e., how much
mixed the data is.
Empirical measurement: Lets say we are
comparing two 4-word tweets Ti and Tj with 2
words each from the languages L1 and L2. Thus
the mixing ratio of both the tweets Ti and Tj

is (4 − 2)/4 = 0.50. But if Ti only contains
1 code alternation point (e.g., if the words are
wL1wL1wL2wL2), while Tj contains 3 switches
(e.g., wL1wL2wL1wL2), then Tj will most likely
be more difficult to process. Therefore, it is de-
sirable to have a measurement of the level of mix-
ing between languages when reporting LM perfor-
mances for CM. To measure such complexity we

use Code-Mixing-Index (CMI). We have discussed
CMI in details in Section 2..1.

3. Can we use any sampling method to collect more
data in a controlled way?
Empirical conclusions: We found that the
performance of LM is dropping at the junctions
of language switching points i.e. Hindi to English
or English to Hindi switching points. For example
situations like -

aurHI enjoyEN
Eng Trans. and enjoy

requestEN hainHI
Eng Trans. have a request

holidayEN hainHI
Eng Trans. is holiday.

Please see the Section 5. for the detailed dis-
cussion. Indeed, the straight forward solution to
the problem is to collect more data or generate
synthetic data, but we propose minority positive
sampling technique to collect additional curated
sample sets that can boost the overall performance
of LMCM. Please refer to the Section 6..

For our experiments, we have used twitter Hinglish
data i.e., the tweets that have English and the Hindi
language words and are written in English. For posi-
tive sampling based data augmentation, we have used
actual switching points as keywords to collect more
tweets, unlike the previous works, we have not used
any synthetic data.

2..1 Code-Mixing Index (CMI)
When comparing different language modeling tech-
niques on CM corpus it is essential to have a measure
to quantify how much mixed the data is, in particular,
since error rates for various language processing ap-
plications would be expected to increase, as the level
of code-mixing increases. To measure such complexity
in CM corpus an index called Code-mixing Index has
been introduced by (Gambäck and Das, 2016) as the
following:

Cu(x) = wmfm(x) + wpfp(x)

= wm
N(x)−maxLiϵL

(tLi)(x)

N(x) ∗ 100 + wp
P (x)
N(x) ∗ 100

= 100 ∗ wm((N(x)−maxLiϵL
(tLi)(x))+wpP (x)

N(x) (1)
As proposed by (Gambäck and Das, 2016) - there are
two main sources of information are utilized to fully
account for the code alternation at utterance level:
the ratio of tokens belonging to the matrix language
(wm((N(x) − maxLiϵL(tLi)(x))/N(x) as in Equation
1) and the number of code alternation points per to-
ken (wpP (x)/N(x), where P (x) is the number of code
alternation points; 0 ⩽ P (x) ⩽ N(x)).
(Gambäck and Das, 2016) did also note that the over-
all CMI is relatively higher for language pairs like
English-Hindi, and English-Nepali compared to lan-
guage pairs like English-Spanish, Dutch-Turkish, and
English-German.

6230

2..2 Data Acquisition Pipeline
We choose Twitter as the source for the CM data col-
lection. Twitter supports search functionality through
API, which makes easier to collect sizeable data. We
start with the ICON 2017 Hinglish sentiment analysis
dataset (Patra et al., 2018) . The corpus is marked
with word level language. A unique Hindi word-list is
needed in order to search in twitter, so that the tweets
we receive should be in Hinglish, but there when Hindi
is written in English phonetics, there are several lexi-
cal overlaps between English and Hindi. For example
- to, do could be confusing. The meaning of to is so,
and the meaning of do is two in Hindi. To avoid such
confusions we followed the following steps -

1. Step 1: Two vocabulary has been created - VHI

and VEN .
2. Step 2: As there are lexical overlap we made

an intersection among these two vocabularies I =
VHI

∩
VEN

3. Step 3: The common words now being removed
from the Hindi vocabulary VHI−UNIQ = VHI − I.
The VHI−UNIQ set is then sorted in descending
order based on the word frequency.

4. Step 4: VHI−UNIQ set is then used to search
in Twitter using the search API. Twitter language
marking is not very accurate. Typically, if the
tweet has any Devnagri (unicode Hindi script),
then Twitter typically assumes it is Hindi, but if it
is a code-mixed tweet with English phonetics writ-
ten Hindi and English then Twitter marks them as
IN - stands for Indic. Although such IN marking
is not very accurate, but still we decide to stick to
that for our data collection - as we have used yet
another word-level language identifier later.

5. Step 5: A word level language identifier (Bar-
man et al., 2014) then being used on the collected
tweets and then CMI at the tweet level is being
calculated. The language identifier is 90%+ ac-
curate. Tweets with CMI = 0 are discarded. We
notice among collected tweets 50%+ are actually
mixed. We observed CMI > 50 is very very rare,
rather unnatural.

CMI No. of Tweets Percentage
0-10 96,842 39.37%
11-20 1,03,741 42.18%
21-30 35,904 14.60%
31-40 8503 3.45%
41-50 984 0.4%

avg. CMI = 14 total tweets 2,45,974

Table 1: Details of the collected corpus. The CMI
range distribution of the corpus is natural. The aver-
age CMI of the corpus is 14.
One can argue why didnt we collect a corpus where all
the CMI ranges were equally distributed. Our stand to
that question would be - we want to keep the normal
distribution intact in the collected corpus, so that the
resultant LMCM trained on this corpus would be able
to handle the real data.

We start our LM experiments with statistical language
models. The motive is to vividly understand where ex-
actly LMCM fails. Further analysis reveals switching-
points are the main bottlenecks for the LMCM. Indeed,
the straightforward solution to the problem is to collect
more data or generate synthetic data, but we propose
minority positive sampling technique to collect an ad-
ditional curated sample set that can boost the overall
performance of statistical language models and neural
language models. All the experiments of statistical and
neural models are reported from the following sections.

3. Statistical Language Modelling
Statistical language modeling technique tries to esti-
mate probability of a given word in a given sequence.
Lets say we are trying to predict what is the proba-
bility of w4 in a given a sequence of words w1, w2, w3.
The problem is formalized in the following way -

P (w1, ..., wn) =

m∏
i=1

P (wi|w1, ..., wi−1) (2)

The common practice is then to apply Markov assump-
tion - that the current sate is only dependant on the
previous state. The simplified version of the previous
formulation could be re-written then in the following
way -

PR(wi|wi−(n−1), ..., wi−1) =
count(wi−(n−1), ..., wi−1, w1)

count(wi−(n−1), ..., wi−1)
(3)

Statistical language models (SLM) are also know as n-
gram based model, or count based model. Size of n is
typically being decided empirically based on language
domain and various other factors. A simple n-gram
model would give zero probability to all of the combi-
nation that were not encountered in the training cor-
pus, therefore smoothing techniques are being used to
handle such data sparsity.

3..1 Smoothing, Backoff and Interpolation
Smoothing: Smoothing techniques are used to dis-
tribute the probability mass among the seen and un-
seen events. These techniques prevent the model from
assigning zero probability to the unseen data by shav-
ing off some probability mass from the seen data and
giving to the unseen data. If we take 2 consequen-
tial words, San Francisco and San Andreas. Since San
Francisco is a common name, it might be in the train-
ing set and so model assigns probability for the word.
But whereas the words San Andreas, which is not so
common word may not be present in the train but
the words individually may be present. The model re-
moves some probability from San Francisco and gives
some probability to San Andreas.
Backoff and Interpolation: There are situations
when the exact n-gram has not been seen in the train-
ing corpus, then it is wise to come down to lower-order
models with non-zero counts for the same sequence.
For example we are trying to predict the probability
of word be give a sequence of to be or not to, and lets
say exact hexagram never occurred in the training cor-
pus, then the practice is to come down to pentagram,

6231

quadgram, trigram, or bigram eventually whenever we
get the match. The idea of interpolation is a weighted
sum of unigram, bigram, trigram,..., n-gram probabil-
ities to have better confidence of the predictions. It
could be described using the following equation -

P (wn|wn−2wn−1) =

λ1P (wn|wn−2wn−1) + λ2P (wn|wn−1) + λ3P (wn)

(4)
Weights of λn are being learned either empirically or
experimentally.
However smoothing, backoff, and interpolation tech-
niques for LM is well studied subject, but we could
not find any such endeavor for CM text. We have used
Kyoto Language Model toolkit1 for our experiments.

3..1.1 Good Turing Smoothing
Good Turing Smoothing technique uses the frequen-
cies of the count of occurrence of N-Grams for calcu-
lating the maximum likelihood estimate. For exam-
ple, consider calculating the probability of a bigram
(chatter/cats) from the corpus given above. Note that
this bigram has never occurred in the corpus and thus,
probability without smoothing would turn out to be
zero. As per the Good-turing Smoothing, the proba-
bility will depend upon the following:
For the unknown N-grams, the following formula is
used to calculate the probability:

Punknown(
wi

wi−1
) =

N1

N
(5)

In above formula, N1 is count of N-grams which ap-
peared one time and N is count of total number of N-
grams. For the known N-grams, the following formula
is used to calculate the probability:

P (
wi

wi−1
) =

c∗
N

where c∗ = (c+ 1)× Ni+1

Nc
(6)

In the above formula, c represents the count of oc-
currence of n-gram, Nc+1 represents count of n-grams
which occured for c + 1 times, Nc represents count of
n-grams which occured for c times and N represents
total count of all n-grams.

3..1.2 Kneser-Ney Smoothing
In Good Turing smoothing, it is observed that the
count of n-grams is discounted by a constant/absolute
value. The same intuition is applied for Kneser-Ney
Smoothing where absolute discounting is applied to
the count of n-grams in addition to adding the prod-
uct of interpolation weight and probability of word to
appear as novel continuation.

PKneser−Ney(
wi

wi−1
) =

max(c(wi−1, wi–d, 0))
c(wi−1)

+λ(wi−1) ∗ Pcontinuation(wi)

(7)

where λ is a normalizing constant which represents
probability mass that have been discounted for higher
order. The following represents how λ is calculated:

λ(wi−1) =
d× |c(wi−1, wi)|

c(wi−1)
(8)

1http://www.phontron.com/kylm/

3..1.3 Modified Kneser-Ney Smoothing
Initially, Kneser-Ney smoothing uses backoff tech-
nique. Chen and Goodman modify it to use interpola-
tion technique and further modify it to have multiple
discounts. This is called modified Kneser-Ney smooth-
ing technique.

PMKN (wi|wi−1
i−n+1) =

C(wi
i−n+1)−D(C(wi−1

i−n+1))∑
wi

C(wi
i−n+1)

γn(w
i−1
i−n+1) =

∑3
wj=1

DjNj(w
i−1
i−n+1)∑

wi
C(wi

i−n+1)

(9)
D is discounting values which is applied to sen-
tences with nonzero probabilities. Nj(w

i−1
i−n+1) =

|{C(wi−1
i−n+1) = j}| is a number of words that appear

after the context wi−1
i−n+1 exactly j times. Modified

Kneser-Ney used 3 different discounting values D1, D2,
and D3+ which are discounting value for n-grams with
one, two, and three of more counts, respectively.

3..1.4 Written bell Smoothing
To get the γ value, Witten-Bell technique considers the
number of unique words following the history wi−1

i−n+1.
This number is formally defined as:

N1+(w
i−1
i−n+1) = |{wi : C(wi−1

i−n+1wi) > 0}| (10)

3..1.5 Absolute Smoothing
It is also known as absolute discounting smoothing.
The idea of the absolute discounting method is to lower
the probability of seen words by subtracting a constant
from their counts.

Pabsolute(w|d) =
max(c(w; d)− δ, 0)∑

w c(w; d)
+σP (w|C) (11)

where σϵ[0, 1] is a discount constant and σ = δ|d|u/|d|,
so that all probabilities sum to one. Here |d|u is the
number of unique terms in document d, and |d| is the
total count of words in the document, so that |d| =∑

w c(w; d).

3..2 SLMs for CM - Performance
The collected corpus is divided in a 70:30 ratio for the
training and testing purpose. Here in the the Table
2 we report perplexities of different smoothing tech-
niques on our data. However, we also tried right to
left and bi-directional SLM. For right to left set of ex-
periments we got similar results, so we are not report-
ing them here. For the bi-directional SLM please refer
to Section 7.. It is observed that GT is performing
best on the overall, but ABS is performing better on
switching points.

4. Neural Language Modelling
The journey of language modelling using neural net-
works was pioneered by (Bengio et al., 2003). NLP
research has come a long way from there to word em-
beddings to recent large transformer based pre-trained
language models like GPT-2 and BERT. Neural net-
work based approaches are achieving better results
than classical statistical models, both on standard lan-
guage modelling tasks as well as other challenging NLP

http://www.phontron.com/kylm/

6232

applications such as machine translation, speech recog-
nition etc. While exploring neural language modelling
for code-mixing, we have investigated the following ap-
proaches.4..1 Transformer based models
When transformer was not introduced, RNN and
LSTM based models were the popular choices for LMs.
Despite advancements like LSTMs etc., long term de-
pendencies still remain a challenge for such models.
Also, since these models are sequential, there is no
scope for parallelization of these models, which results
in increased time for training such models.
The transformer architecture (Vaswani et al., 2017),
which is a very recent development by Google Brain,
takes care of the above impediments faced by RNN
based models, primarily by using a strategy called
multi head attention. We have explored the trans-
former based LM as well as a few transformer based
architectures. The transformer based architectures we
have used for our code-mixed language modelling prob-
lem is described below.
4..1.1 GPT-2 based model
In 2019 OpenAI came out with a novel transformer
based language model called GPT-2 or Generative Pre-
trained Transformer - 2, (Radford et al., 2019). It is a
large scale unsupervised transformer based language
model, which provides SOTA accuracy on language
model benchmarks as well as for various NLP tasks like
machine translation, text summarization etc. GPT-2
is an upgradation over the initial GPT (Radford, 2018)
model, with over 10 times the data and over 1.5 billion
training parameters
We have deployed the GPT-2 based transformer model
on our code-mixed data. The results and inferences for
the same have been discussed in section 4..2.
4..1.2 BERT
BERT or Bidirectional Encoder Representations in
a transformers based multi-layer bi-directional trans-
former based model, proposed by Google in 2018 (De-
vlin et al., 2018). We have trained RoBERTa model
(Liu et al., 2019),later on released by Facebook on our
code-mixed data. The training perplexity came out to
be 981, performance on the test data has been reported
in the section 4..2
4..2 NLMs - Performance
Among all the neural LMs, GPT-2 (Radford et al.,
2019) stands out to be the best performing one. Re-
sults of all the models are reported in Table 3. It can
be observed that NLMs are significantly performing
better on SPs in comparison to SLMs, but the over-
all performances are not significant. The main reason
could be that we need more data to learn CM pat-
terns for the NLMs. For BERT, we are still working
on intermediate results on SPs.

5. Switching Points - The Bottleneck
for the Language Modeling

It is obvious that LMs fail in switching points. If we
consider SPs as normal bigrams then it is easier to infer

particular kinds of SP bigrams are relatively rare in a
given corpus. Therefore such minor occurrences made
any LMs difficult to learn their probabilities. Detailed
report on how SLMs and NLMs are performing on SPs
is reported in Table 2, and Table 3 respectively.
NLMs are better performing than SLMs in terms of
SPs, but to perform better overall NLMs need more
data to train on.

6. Minority Positive Sampling
In order to obtain better perplexity for our language
models, we explored several sampling techniques. Sim-
ple sampling methods like probabilistic sampling or
cluster sampling (Thompson, 2012) did not aid to our
cause. Instead we followed a more guided and care-
ful class of sampling philosophy called purposeful sam-
pling (Webb and Wang, 2013). We take our motiva-
tion from yet another sampling strategy called strat-
ified sampling (Thompson, 2012), where the dataset
is partitioned into groups or strata and samples are
chosen intelligently from each strata. In our case the
switching points, constitutes the strata, and we sam-
ple our data based on the frequency of these switching
points. The presence of switching points in the corpus
plays a critical role in pushing the perplexity scores to-
wards low. This is because, the training algorithm has
not seen a lot of switching points earlier in the corpus.
Hence, we came up with better sampling strategies
based on switching points. The paradigm of sampling
technique we use here is called minority positive sam-
pling, wherein, we selectively increase the counts of mi-
nority switching points i.e., more samples of minority
switching points are sampled and added to the train-
ing data. This strategy takes care of the bias-variance
trade off as it increases the amount of unseen or less
observed switching points for the training algorithm
(variance), and consequently improves the perplexity
of the model (bias). The sampling though, is done
in a controlled setting so as to not disrupt the ex-
isting performance of the model by introducing fur-
ther noise in the corpus. For example, lets say, the
following is an example of minority HI-EN switching
point. Then we have to selectively (till a threshold, de-
cided by sampling strategies) increase more samples of
this particular switching points in the corpus. For the
same, we collected more tweets having this particular
SP present.

seHI requestEN
Eng.Trans. request to you

6..1 Sampling Approaches
While sampling minority switching points it was im-
portant to understand, to what extent we can over-
sample minority data points. We asked a few very
basic questions to start with:

1. Does the word distribution in our CM corpus ad-
here to Zipf’s law?

2. Whether even n-grams (where n > 1) in the CM
corpus also follow the same power law?

6233

CMI
Range

KN WB ABS GT MKN
Overall HI-EN EN-HI Overall HI-EN EN-HI Overall HI-EN EN-HI Overall HI-EN EN-HI Overall HI-EN EN-HI

0-10 722.16 24471.27 20885.86 714.36 19804.33 18483.72 695.21 19594.61 18199.90 616.04 26812.25 22060.71 710.71 23422.82 20585.26
11-20 801.31 24327.14 21619.41 778.51 19659.54 19182.33 764.06 19445.16 18963.57 658.39 26782.54 22978.06 783.64 23243.65 21242.87
21-30 825.50 23075.08 21002.10 789.86 18575.33 18609.05 782.30 18416.33 18446.20 655.74 25255.42 22436.76 803.50 22095.94 20585.61
31-40 697.04 19274.39 17336.59 631.35 15462.28 15286.73 636.55 15511.13 15216.28 506.72 21050.12 18343.27 672.00 18526.18 17053.62
41-50 1381.35 17744.37 14052.32 1135.18 15075.44 12686.40 1182.93 15075.56 12617.55 839.72 17653.04 14054.70 1291.49 17379.48 13815.22
avg. 885.47 21778.45 18979.25 809.85 17715.38 16849.64 812.21 17608.56 16688.70 655.32 23510.67 19974.70 852.27 20933.61 18656.52

Table 2: Performances of various smoothing techniques on the CM data. Overall refers to the perplexity of all
the bi-grams in the tweet, whereas HI-EN and EN-HI refers to the perplexity of bi-grams changing language
from hindi to english and english to hindi respectively. These experiments are for left-right sequence prediction.
However, we experimented with several n-size. Although PPL for CMI > 40 should be comparatively higher, but
in the corpus such samples are less prevalent.

CMI
Range Transformer GPT2 BERT

Overall HI-EN EN-HI Overall HI-EN EN-HI Overall
0-10 1018.54 3712.01 3461.43 823.71 3535.08 3172.42 666.48
11-20 1210.11 3801.11 3588.16 967.01 3404.73 3208.72 782.19
21-30 1401.37 3921.19 3689.15 1334.72 3621.11 3416.21 1007.34
31-40 2688.00 4011.10 3855.90 2334.73 3918.94 3671.70 1714.42
41-50 4421.22 5833.00 5100.22 3905.87 5648.26 4723.80 4337.02
avg. 2147.848 4255.68 3938.97 1873.20 4025.62 3638.57 1701.49

Table 3: Performance of Neural LMs based on CMI range. Among all the neural LMs GPT2 stand out to be the
best performing. Overall, NLMs are performing better on SPs, but the overall performances are not significant.
For BERT we are still working on to assess its performances on SPs.

3. Finally, do the switching points’ frequency distri-
bution too follow Zipf’s law?

We devised the following sampling strategies.

6..1.1 Zipf’s Law Fit based Sampling (ZLFS)

Figure 1: Switching Points frequency distribution in
the corpus. It could be seen that the distribution does
not follow Zipf’s pattern.
Zipf’s law states that the frequency of words in a cor-
pus, decays linearly as their rank increases, on a double
logarithmic scale. If f(r) denotes the frequency of a
word, r represents the rank of the word, and α is a
constant, the so-called exponent of the law (typically),
Zipf’s can be depicted by equation f(r) = r

−α . Zipf’s
law was initially conceived to unravel how languages
function (Zipf, 1949). Several researchers have discov-
ered other implications of Zipf’s law as well (Li, 1992)
(Jayaram and Vidya, 2008). The X axis of the curve is
no.of SPs and the Y axis is frequency. It is observable
that only a tiny portion of SPs repeat and the overall
curve does not fit the Zipf’s law, but majority of them
occur only a few times. Clearly its sparse distribution
- therefore it is difficult learn any pattern out of them.
We observed that the distribution of switching points
by rank, in our code-mixed corpus was not following
the Zipf’s law as can be seen in Figure 1. In order to get

a Zipf’s distribution of switching points, which are also
bi-grams in other terms (which typically follow Zipf’s
law in any natural language corpus), we decided to
fit the switching points distributions to emulate Zipf’s
law. This formed the basis for our first sampling strat-
egy, where we constructed an ideal Zipf’s law curve
based on the lowest ranked switching point frequency
and moved upwards. We thus sampled each switch-
ing point to fit its Zipf’s law frequency, based on the
rank of the switching point. We sampled 4, 69, 630 En-
glish to Hindi switching points and 4, 06, 060 Hindi to
English switching points. The results for SLM on our
code-mix data on the sampled datasets are exhibited
in Figure 2.

6..1.2 Non-switching Point based Sampling
(NPS)

Sampling based on Zipf’s law curve fitting samples
a higher number of frequently occurring switching
points, rather than the minority switching points,
which actually disrupt the perplexity of our statisti-
cal model. Alternatively, a switching point can also be
considered as a bi-gram. In an ideal code-mix scenario,
the distribution of switching points should be commen-
surate with non switching point bi-grams. This formed
the strategy for our second sampling method. In this
case, we sampled the less frequent switching points
based on the average frequency of top 20% non switch-
ing point bi-grams in the Hinglish corpus, following
the Pareto Principle (Grosfeld-Nir et al., 2007). The
Pareto principle is a 80:20 ratio of cause-to-effect. The
principle predicts that 80% of effects come from 20%
of causes. In a supervised environment, we sampled
around 4, 50, 440 English to Hindi switching points
and around 4, 06, 060 Hindi to English switching points
based on the bi-gram average frequency of top 20%
data. This can be observed in figure 2.

6234

6..1.3 Switching Point based Sampling (SPS)
We have already observed in the Sections 5. and 3..2
that switching points are one of the key deciding pa-
rameters for the perplexity of LMCM. Keeping this in
mind, we devised our third and final sampling strategy.
In the NPS technique discussed in section 6..1.2, the
sampling of switching points was based on the average
frequency of bi-grams. Hence, this was not relative to
the most frequent switching points. In this sampling
strategy, we decided to sample based on the top 20%
switching points and not bi-grams using the Pareto
Principle as discussed in section 6..1.2. We calculated
the average frequency of switching points in the top
20% of our corpus and boosted the frequency of less
frequent (minority) switching points to this average
frequency value, through controlled tweet collection
around such switching points and further added them
in the training corpus. We sampled around 1, 68, 940
English to Hindi switching points and around 1, 42, 562
Hindi to English switching points. This technique cap-
tures more number of effective switching points i.e., it
boosts the frequencies of minority samples much bet-
ter than the other sampling strategies, hence even for
less number of samples it provides better results. The
results are illustrated in figure 2.

Figure 2: Effectiveness of sampling strategies on SLM
performance. We can observe that the SPS strategy
works best, even for less number of samples

7. What happens if We Empower
SLMs with Bi-Directionality?

Neural language models like Generative Pre-trained
Transformer 2 (GPT-2) (Radford et al., 2019), Bidi-
rectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) get trained from bi-
directional contexts, whereas statistical models we dis-
cussed so far are uni-directional; and it’s not fair to
compare uni-directional LMs with bi-directional mod-
els. We thus decided to add bi-directionality to the
statistical models. Essentially we consider both the
left and right sequences for a word, for the statistical
language models as well.
Now, say PL is the probability of a word occurring
in the the left sequence and PR is the probability of
a word occurring in the right sequence. In order to
have a bi-directional language model we have to com-
bine the probability values PL and PR. (Genest and
McConway, 1990) show that there are several ways to
merge two (or several) information sources, in particu-
lar if they are independent. In our case, we use linear

opinion poll - giving equal weights (0.5) to both the
contexts. Equation 14 shows the mathematical repre-
sentation of the linear opinion poll. With a window
size of n, there are n − 1 tokens in both the left and
right sequences. Since, we are using a bigram model,
we take a window of size n = 2 around our target
word. So, essentially there are 1(= n− 1) words in the
left sequence as well as the right sequence. To explain,
if the target word is wi, the left bigram sequence is
(wj , wi), the right bigram sequence is (wi, wk). If the
left and right sequences have been seen in the train-
ing dataset, then we use the probabilities of the ob-
served sequences. However, if (wj , wi) or (wi, wk) have
not occurred, we then replace the probabilities of the
words with (< unk >,wi) or (wi, < unk >). Also, if
wi itself is not observed in the training data, we as-
sign the probability as 0.000000001. The heatmap for
the next word generation task for all models i.e SLMs,
NLMs and bi-directional are illustrated in the Figure
3. The results for bi-directional statistical model are
mentioned in Table 4.

PL(wi|wi−(n−1), ..., wi−1) =
count(wi−(n−1), ..., wi−1, wi)

count(wi−(n−1), ..., wi−1)
(12)

PR(wi|wi+1, ..., wi+(n−1)) =
count(wi, wi+1, ..., wi+(n−1))

count(wi+1, ..., wi+(n−1))
(13)

Pbi = 0.5 ∗ PL + 0.5 ∗ PR (14)
CMI PPL.
0-10 137.03
11-20 142.63
21-30 139.12
31-40 134.52
41-50 330.23
avg. 139.60

Table 4: Results of Bi-Directional SLM. Due to bidi-
rectionally, there is a significant improvement in per-
formance.

Figure 3: Attention Heat Map - How different Lan-
guage Models learn to emphasize on switching points
after and before positive sampling. Here darker blue
shade depicts higher probability and more reddish
shade depicts lower probability. It is observable that
switching points like ka fan, chor jail, station k etc.
got higher learnt probabilities after positive sampling.

8. Synthetic vs. Naturally Mixed Data
There are only two research efforts (Pratapa et al.,
2018), (Samanta et al., 2019) could be found in the
literature on Hinglish language modeling. Both the

6235

papers relied on synthetic data creation and reported
perplexities of 772 and 2090.78 respectively.
(Pratapa et al., 2018) proposed an Equivalence Con-
straint based (Poplack, 1980); (Poplack, 2001) syn-
thetic data generation method. The basic assumptions
were 1) syntactic structure of a given monolingual sen-
tence and the generated CM sentence is identical, 2)
CM sentence does not at any point, deviate from both
monolingual grammars, 3) Following the Equivalence
Constraint rules authors presumed only those word
units are replaceable that follow the same grammat-
ical constraints.
Here, we argue (Poplack, 2001) constraint based model
has limitations. For example (Joshi, 1982) claimed
functions words could not be mixed or switched. This
assumption also supports (Poplack, 2001) equivalence
constrained model. But, for many cases when code
mixing happens between two very distinct language
families - for example English and Hindi function word
mixing is a common phenomena. We have seen many
such examples in our corpus.

leaderEN kiHI searchEN
Eng. Trans.: search for leader

Indeed, above cited constraint free word distribution
makes LMCM a very hard problem. Moreover, authors
(Pratapa et al., 2018) also mentioned that the equiv-
alence constrained based synthetic generation tech-
niques worked well for the language pairs with good
structural correspondence like English-Spanish, but
the performance degrades with weaker correspondence
like English-Hindi.
(Samanta et al., 2019) introduced the idea of varia-
tional autoencoders for code-switching (VACS) based
synthetic data generation technique. VACS generates
code-mixed sentences from a noise distribution instead
of any learned latent embedding space. However, word
embedding for code-mixed text is yet another unsolved
problem and the authors did not clearly mention what
kind of word embeddings they did use for their ex-
periments. According to their report, they got only
1K data to train their VACS model, but we wonder
how much unique switching points and their repeti-
tions would be available in such a tiny dataset. How-
ever, authors shared their synthetically generated data
with us and we found their data is abnormally mixed.
By quoting abnormal we mean tweets in (Samanta
et al., 2019) corpus have English words, Hindi words
written in English alphabets, and a significant portion
(40%+) of the corpus has Devnagri Hindi like the fol-
lowing example. Here we argue that different forms
of Hindi word mixing i.e. Hindi words written in En-
glish alphabets, and Devnagri Hindi is not a common
practice. Therefore, we are not sure how realistic the
synthetically generated data is, whereas in compari-
son our collected data is mixed between English words
and Hindi words written in English alphabets - the
common practice.

pakNE औरDEV-HI नDEV-HI wrongEN excitedEN
indiaNE koHI iplNE

Eng. Trans.: pak and nine wrong about
India IPL

Now to further test whether such abnormal modali-
ties of mixing makes it difficult for language models to
learn word sequences - we applied statistical models on
their dataset and surprisingly we achieved a perplex-
ity of 354 using Good-Turing smoothing technique. To
compare, authors (Samanta et al., 2019) reported a
perplexity of 2090.78 using VACS. Moreover, we have
tried their VACS system on our data and it achieved
a perplexity of 1144.

CMI
Range KN WB ABS GT MKN Transf. GPT-2

0-10 538.64 608.50 534.07 459.41 539.45 503.84 383.02
11-20 461.55 489.62 434.50 373.17 455.79 350.33 275.42
21-30 439.79 455.32 405.60 344.26 435.80 333.68 267.39
31-40 421.75 433.48 384.36 321.60 413.92 311.00 248.43
41-50 359.71 357.01 321.02 272.20 342.64 265.34 210.05
avg. 444.29 468.79 415.91 354.13 437.52 328.71 260.52

Table 5: Performance of SLMs on VACS (Samanta et
al., 2019) generated synthetic data. GT achieves the
best performance.

9. Conclusion & Takeaways
In this paper we report a detailed language modeling
experiments for code-mixed Hinglish text. Take away
points from this research could be summarized as fol-
lowing:

1. CMI distribution in the CM corpus is an impor-
tant point to give thrust on.

2. Switching points are the main bottlenecks for the
language modeling of code-mixed data. Our anal-
ysis shows performances of various LMs are bet-
ter for HI-EN cases in comparison to EN-HI cases.
Analysis reveals, in most of the cases, Hindi is the
matrix language (Myers-Scotton, 1993) and En-
glish gets mixed, whereas the reverse is not largely
true. This leads to the next question, whether we
can make better models with this understanding.

3. We introduce the idea of minority positive sam-
pling for switching points. Empirically, sampling
switching points based on Pareto Principle turns
out to be the best sampling technique. Minor-
ity positive sampling effectively improved the per-
formance on the unidirectional statistical model.
But, there was not much significant improvement
in the bi-directional statistical model.

4. It is evident from the results that neural language
models in the current form are not effective to cap-
ture contextuality for code-mixed data - at least
for the given corpus size. It is indeed a well known
fact that deep learning models are data hungry.

5. As there are only two research efforts on Hinglish
language modeling - we purposefully avoided writ-
ing a dedicated section on related works, rather we
discussed on the same in the Section 8..

6. Classic n-gram models of language cope with rare
and unseen sequences by using smoothing meth-
ods. Neural network models however, have no no-
tion of discrete counts, and instead use distributed
representations to combat the curse of dimension-
ality (Bengio et al., 2003). We are working to-
wards introducing controlled smoothing in neural
language modeling.

6236

References
Barman, U., Das, A., Wagner, J., and Foster, J.
(2014). Code mixing: A challenge for language iden-
tification in the language of social media. In Pro-
ceedings of the First Workshop on Computational
Approaches to Code Switching, pages 13–23, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin,
C. (2003). A neural probabilistic language model. J.
Mach. Learn. Res., 3:1137–1155, March.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Gambäck, B. and Das, A. (2016). Comparing the
level of code-switching in corpora. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 1850–
1855, Portorož, Slovenia, May. European Language
Resources Association (ELRA).

Genest, C. and McConway, K. (1990). Allocating the
weights in the linear opinion pool. Journal of Fore-
casting, 9(1):53–73, January. Article first published
online: 23 SEP 2006.

Grosfeld-Nir, A., Ronen, B., and Kozlovsky, N.
(2007). The pareto managerial principle: when does
it apply? International Journal of Production Re-
search, 45(10):2317–2325.

Jayaram, B. D. and Vidya, M. N. (2008). Zipf’s law
for indian languages. Journal of Quantitative Lin-
guistics, 15(4):293–317.

Joshi, A. K. (1982). Processing of sentences with
intra-sentential code-switching. In Coling 1982: Pro-
ceedings of the Ninth International Conference on
Computational Linguistics.

Li, W. (1992). Random texts exhibit zipf’s-law-like
word frequency distribution. IEEE Transactions on
Information Theory, pages 1842–1845.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoy-
anov, V. (2019). Roberta: A robustly optimized
BERT pretraining approach. CoRR, abs/1907.11692.

Myers-Scotton, C., (1993). Duelling Languages:
Grammatical Structure in Code-switching. Oxford :
Clarendon Press.

Patra, B. G., Das, D., and Das, A. (2018). Sentiment
analysis of code-mixed indian languages: An overview
of sail_code-mixed shared task @icon-2017. CoRR,
abs/1803.06745.

Poplack, S. (1980). Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618, 01.

Poplack, S., (2001). Code Switching: Linguistic,
pages 2062–2065. 12.

Pratapa, A., Bhat, G., Choudhury, M., Sitaram, S.,
Dandapat, S., and Bali, K. (2018). Language mod-
eling for code-mixing: The role of linguistic theory
based synthetic data. In Proceedings of ACL 2018.
ACL, July.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners.

Radford, A. (2018). Improving language understand-
ing by generative pre-training.

Samanta, B., Reddy, S., Jagirdar, H., Ganguly, N.,
and Chakrabarti, S. (2019). A deep generative model
for code-switched text. CoRR, abs/1906.08972.

Thompson, S. K., (2012). Sampling (3rd ed.), pages
141–157. Hoboken : John Wiley Sons.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

Webb, L. and Wang, Y., (2013). Techniques for sam-
pling online text-based data sets, pages 95–114. 09.

Zipf, G. K. (1949). Human Behavior and the Principle
of Least Effort. Addison-Wesley, Reading MA (USA).

	Introduction
	Qualitative and Quantitative Benchmarks for Code-Mixing Corpus
	Code-Mixing Index (CMI)
	Data Acquisition Pipeline

	Statistical Language Modelling
	Smoothing, Backoff and Interpolation
	Good Turing Smoothing
	Kneser-Ney Smoothing
	Modified Kneser-Ney Smoothing
	Written bell Smoothing
	Absolute Smoothing

	SLMs for CM - Performance

	Neural Language Modelling
	Transformer based models
	GPT-2 based model
	BERT

	NLMs - Performance

	Switching Points - The Bottleneck for the Language Modeling
	Minority Positive Sampling
	Sampling Approaches
	Zipf's Law Fit based Sampling (ZLFS)
	Non-switching Point based Sampling (NPS)
	Switching Point based Sampling (SPS)

	What happens if We Empower SLMs with Bi-Directionality?
	Synthetic vs. Naturally Mixed Data
	Conclusion & Takeaways

