


cation of weak signals. Further experiments can be con-
ducted to investigate its usefulness in cross-platform (i.e.,
other social media platforms) and cross-language predic-
tion in terms of exploiting a pre-trained metadata model
with transfer learning techniques. By comparing “RPDNN-
CC” and “RPDNN-CM?” to the full model, the final uni-
fied model improves Fj performance by around 1-2%,
which can be attributed to its modeling of higher-order fea-
ture interactions of two correlated contexts. 3) context-
aware attention mechanisms: the benefits of incorporat-
ing stacked attention mechanisms into a context model are
further justified in our experiments by comparison of per-
formance between the full model and attention excluded
model ("RPDNN-Att”). Our context-aware attention mech-
anism can slightly improve both recall and precision, and
overall performance with attention achieves a slight im-
provement in F-measure under the two evaluation settings
by 1.4% and 1% respectively. Empirical observation in our
data indicates that the stacked attention models can reweigh
contexts according to their relevance and significance layer
by layer. Due to the recurrent structure, the hidden vec-
tor close to the end is more informative than its beginning.
Thus, for small context, the performance of the attention-
based full model is similar to that of the standard LSTM
model (i.e., “RPDNN-Att”). Few representative context
samples from the test set with 3 layers of attention weights
can be found in Figure [I0]in Appendix.

5.2. Training Loss and Performance

Based on the experiments, we set the number of epochs to
10 in order to avoid overfitting. Figure [0 presents training
loss and accuracy curve with 10 epochs over time during
the training of “RPDNN” models in 7-fold LOO-CV.
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Figure 9: Loss and accuracy curves for 7 folds in LOOCV.

The figures on 7 LOO models show steady decreases in
training loss within the first 5 epochs and the tendency of
overfitting after the 10th epoch. In comparison, we see a
constant increase of accuracy in both training and valida-
tion sets for all the LOO models. The results show that the
“sydneysiege” LOO set is the most difficult one to fit. Its
divergence in loss can be observed in the very early stage
since the 5th epoch and validation accuracy starts to drop
after the 10th epoch. The average training time of full mod-
els on LOO-CV data is around 28 hours with GPU.

6. Conclusion

In this paper, we addressed the task of message-level ERD
in early development stages of social media rumors where
limited information is available. A novel hybrid, context-
aware neural network architecture was proposed to learn
a unified representation of tweet contents and propagation
contexts, enabling the modeling of the evolution of public
opinion and the early stages of rumor diffusion. We per-
formed comparative evaluations with two CV techniques
and larger test sets from real-life events. The results showed
that the proposed model achieves SoA performance. Exper-
imental results showed the advantage of utilizing two types
of correlated temporal context inputs from conversational
contents and the metadata of tweets in learning an optimal
sequential model by improving its effectiveness and gen-
eralizability in unseen rumor events. An ablation study
proved the positive effect of incorporating a task-specific
neural language model and a multi-layered attention model
in representation learning in terms of improving resistance
to overfitting and noise.

There are several directions for future research. One is to
consider the incorporation of social network structure. A
potential benefit of modeling retweet chains via follower-
following relationship can be studied. In our current work,
we find no way to obtain this context data for our public
retrospective data using public Twitter APL. In addition, the
impact of many recent neural language models (typically
transformer-based models) and variants of context-aware
self-attention models (e.g., multi-head self-attention mech-
anism in recent work) with larger context size can be ex-
amined. Furthermore, generating larger training data with
weak supervision technique is promising and can be ex-
ploited to allow a deeper NN architecture. It is also inter-
esting to investigate the transferability of a unified model
across multiple social media platforms, particularly for the
language-independent metadata model. The efficiency and
scalability in online social networks are unknown and not
examined in this paper.
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Appendix: Model Settings

All the parameters of stacked LSTM and attention weights
are trained by employing the derivative of the cross-entropy
loss function through back-propagation. We use the Ada-
Grad algorithm for parameter optimisation. As described
in Section 3.1} source tweets are filtered out based on two
constraints: content length and context size. Context se-
quence size is set to 200 (i.e. 7 = 200). The length of each
ELMo content embedding is 1024, and that of each meta-
data feature vector is 27. The number of forward LSTM
layers in each stacked LSTM is set to 2, and that of hid-
den units is set to twice input size. The learning rate and
weight decay are set to le-4 and le-5, respectively. All
training instances with corresponding context inputs are it-
erated over in each epoch where batch size is 128. The
number of epochs is set to 10 to avoid overfitting. Leaky
ReLU is employed in 3 dense layers. Drop out rates 0.2,
0.3, and 0.3 are respectively applied after each of the three
layers. Preliminary results show that the RPDNN suffers
from “dying ReLLU” problem (Maas et al., 2013), which
means weights in NNs always drive all inputs to ReLU neu-
rons to negative. This is problematic because ReL.u neurons
will no longer useful in discriminating the input. Replacing
with LReLU fix the problem which gives nonzero gradient
for negative value.

Appendix: LOOCY results.
Details of LOO-CV results are presented in Table|[6]

Appendix: Analysis of attention degrees

In Figure we present weights of first layers of atten-
tion (in “CC” and “CM” columns) and second layer of at-
tention (in “CC+CM” column). The context-level attention
weights of example threads are highlighted in different col-
ors according to the rank of their weights in different layers.

Source tweet content
Reports claim Putin disappeared due to impending political coup http://t.co/8Ipnd T2bsl

Attention weights
Context content CC CM CC+CM
@MailOnline @CathyYoung63 n 0.2755 §¥ 0.1203 {10 0.0932

@MailOnline Ah yes to be closer to his billions of rubles

0.1386 0.1015 0.0966
2 3 8
@MailOnline Sure? 0.0775|  0.0946|  0.1023
3 8 3
@MailOnline Nothing to do with his wife giving birth 0.0731 0.0926 0.0998
then? 4 10 7
@MailOnline That's stupid 5 0.0726 9 0.0928 6 0.1004
@MailOnline He should disappear 6 feet under. 5 0.0726 7 0.0963 8 0.0996

@MailOnline he has prolly been having a facelift 5 00726/ . 0.0981] , 0.1012

5 4

“@MailOnline: Putin disappeared due to impending 5
political coup http://t.co/MKCIBsKfvK”
@MailOnline would be nice if it's true but I doubt it. Just 0.0726 4 0.1010 0.1031

Something big is happening right now in Moscow 0.0726 I 0.1055 I 0.1030
2 2

one more of Putin's games. £
@MailOnline are we ready for war? 5 0.0726|6 0.0973 ‘ 5 0.1007

Weight sum | | 1.0003 1] 09999

Source tweet content

Authorities collecting passports at #MH17 crash site. Australian coat of arms clearly

visible. http://t.co/ail6vY46FV http://t.co/JA0gjOt3P5

Attention weights

Context content CcC CM CC+C
M
@newscomauHQ still unverified footage 0.2703 p§ 0.2015|6 0.1226

®

@newscomauHQ collecting... They were taking them and 0.3427 |4 0.1493|  0.1092
showing the cameras the faces of passengers and then

throwing them back down. :(

3 0.13553 0.1154|7 0.1115
4 0.0614 |8 0.1043|5 0.1271
@newscomauHQ Is it just mean who finds these images 0.0476| 0.1074| 0.1303
disturbing. To what length would you have to go to have |5 5 4
these passports in your hands?
@newscomauHQ How do you identify the lost souls. They | 0.0475| 0.1097 | 0.1310
are people with families, probably going on holiday or 6 4 3
business not war!

@newscomauHQ Strange that passports look in very good 0.0475 7 0.1060 4 0.1329

@newscomauHQ @Harriett_Bur it's not authorities...

@newscomauHQ such heart breaking news!

condition when rest of plane demolished. g

reminiscent of the ones found on 9/11

@newscomauHQ why are they in such good condition 6 0.0475 6 0.1063 F 0.1353

Weight sum 0.9999| 0.9999

Figure 10: Visualisation of attention weights for example
tweets.

The results obtained by the second attention layer (i.e.
CC+CM) show that replies expressing doubts and/or ques-
tions tend to have higher attention weights. Interestingly,
for some replies, the first and second attention layers pro-
duce contradictory results, but the latter tends to output
more logical results. For instance, the reply “@MailOnline
@CathyYoung63” in first example of source tweet is in the
first rank according to the first layer’s results. However, it
does not contain any useful information, and its author is

6104



Table 6: LOOCYV results.

Event Models P R F1 Acc.
RPDNN 0.743 0.882 0.807 0.788
RPDNN-cxt 0.654 0.956 0.777 0.725
charliehebdo RPDNN-SC 0.754 0.759 0.757 0.756
RPDNN-CC 0.712 0.924 0.804 0.698
RPDNN-CM 0.735 0.944 0.826 0.802
RPDNN-A(tt 0.751 0.868 0.805 0.79
RPDNN-SC-CM 0.697 0.868 0.773 0.746
RPDNN-SC-CC 0.559 0.597 0.578 0.563
(Han et al., 2019) 0.723 0.817 0.767 0.752
CRFs (Zubiaga et al., 2017) 0.545 0.762 0.636 -
RPDNN 0.59 0.884 0.708 0.635
RPDNN-cxt 0.564 0.781 0.655 0.588
ferguson RPDNN-SC 0.641 0.888 0.745 0.695
RPDNN-CC 0.567 0.798 0.663 0.594
RPDNN-CM 0.565 0.957 0.710 0.609
RPDNN-A(tt 0.627 0.67 0.647 0.635
RPDNN-SC-CM 0.527 0.996 0.69 0.552
RPDNN-SC-CC 0.581 0.292 0.389 0.541
(Han et al., 2019) 0.707 0.535 0.609 0.657
CRFs (Zubiaga et al., 2017) 0.566 0.394 0.465 -
RPDNN 0.594 0.745 0.661 0.618
RPDNN-cxt 0.577 0.887 0.699 0.618
germanwings RPDNN-SC 0.482 0.745 0.585 0.472
RPDNN-CC 0.555 0.623 0.587 0.561
RPDNN-CM 0.556 0.708 0.622 0.571
RPDNN-A(tt 0.602 0.755 0.67 0.627
RPDNN-SC-CM 0.511 0.849 0.638 0.519
RPDNN-SC-CC 0.653 0.65 0.651 0.652
(Han et al., 2019) 0.601 0.652 0.558 0.630
CRFs (Zubiaga et al., 2017) 0.743 0.668 0.704 -
RPDNN 0.647 0.945 0.768 0.715
RPDNN-cxt 0.686 0.924 0.788 0.751
ottawashooting RPDNN-SC 0.605 0.917 0.729 0.659
RPDNN-CC 0.743 0.879 0.805 0.787
RPDNN-CM 0.650 0.945 0.77 0.718
RPDNN-A(tt 0.652 0914 0.761 0.713
RPDNN-SC-CM 0.615 0.886 0.726 0.666
RPDNN-SC-CC 0.63 0.318 0.423 0.566
(Han et al., 2019) 0.85 0.71 0.77 0.80
CRFs (Zubiaga et al., 2017) 0.841 0.585 0.690 -
RPDNN 0.784 0.809 0.796 0.793
RPDNN-cxt 0.687 0.861 0.764 0.734
sydneysiege RPDNN-SC 0.675 0.823 0.741 0.713
RPDNN-CC 0.673 0.871 0.759 0.724
RPDNN-CM 0.683 0.847 0.756 0.727
RPDNN-A(tt 0.684 0.902 0.778 0.743
RPDNN-SC-CM 0.634 0.90 0.744 0.69
RPDNN-SC-CC 0.68 0.366 0.476 0.597
(Han et al., 2019) 0.755 0.644 0.695 0.717
CRFs (Zubiaga et al., 2017) 0.764 0.385 0.512 -
RPDNN 0.59 0.79 0.676 0.621
RPDNN-cxt 0.563 0.734 0.637 0.582
Twitter 15 RPDNN-SC 0.571 0.613 0.591 0.576
RPDNN-CC 0.581 0.731 0.648 0.602
RPDNN-CM 0.580 0.839 0.686 0.616
RPDNN-A(tt 0.595 0.786 0.677 0.625
RPDNN-SC-CM 0.565 0.69 0.621 0.579
RPDNN-SC-CC 0.472 0.746 0.578 0.455
RPDNN 0.588 0.785 0.673 0.618
RPDNN-cxt 0.654 0.723 0.687 0.67
Twitter 16 RPDNN-SC 0.622 0.827 0.71 0.662
RPDNN-CC 0.585 0.775 0.667 0.613
RPDNN-CM 0.608 0.7958 0.689 0.641
RPDNN-A(tt 0.589 0.801 0.679 0.62
RPDNN-SC-CM 0.583 0.843 0.69 0.62
RPDNN-SC-CC 0.573 0.843 0.682 0.607

not a high-impact user. It is ranked last by the second layer.
This observation supports the motivation behind adopting
multiple attention layers (Yang et al., 2016aj [Wang et al.,
2017b), that is, they can progressively refine feature maps
and focus on more salient features.
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