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Abstract
We present new results on Metaphor Detection by using text from visual datasets. Using a straightforward technique for sampling text
from Vision-Language datasets, we create a data structure we term a visibility word embedding. We then combine these embeddings
in a relatively simple BiLSTM module augmented with contextualized word representations (ELMo), and show improvement over
previous state-of-the-art approaches that use more complex neural network architectures and richer linguistic features, for the task of
verb classification.
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1. Introduction
Metaphors play a special role in human language and
thought, as they evoke a complex array of hidden connota-
tions, past experiences, feelings, and humor, in the service
of helping the speaker convey their message in a way that is
easier to relate to. However, by their very nature, metaphors
continue to pose a challenge to Natural Language Process-
ing (NLP) systems, and their identification is crucial for
many tasks, such as Machine Translation, Information Re-
trieval, and others.
In most cases, metaphor identification is done at the sen-
tence level, where the input consists of some or all of
the words in the sentence, and the output refers to the
metaphoricity of the word(s) in the specific context. Often,
Metaphor Identification takes the form of one of two tasks:
(1) Sequence Labeling, in which each token in the sentence
is classified as either “metaphorical” or “literal” (multiple
outputs per sentence), or (2) Classification of a specific tar-
get word, usually the main verb (one output per sentence).
In this paper, we deal with the second task, which more
formally takes a sentence w, ...wn and a verb index i as
input, and outputs a label for the target verb wi of either
“metaphorical” or “literal”, in relation to its role in the sen-
tence (See Figure 1 for examples for non-metaphorical (lit-
eral) and metaphorical usages of the same verb in different
contexts).
In our approach to improve metaphor detection, we follow
Black (1979)’s observation that a metaphor is essentially
an interaction between two terms, creating an “implication-
complex” to resolve two incompatible meanings. Opera-
tionally, we follow Turney et al. (2011) and their adoption
of Lakoff and Johnson (1980)’s notion that metaphor is a
way to move knowledge from a concrete domain to an ab-
stract one. Hence, there should be a correlation between
the “degree of abstractness in a word’s context [...] with
the likelihood that the word is used metaphorically” (Tur-
ney et al., 2011). Recent studies have suggested that there
is a strong correlation between the concreteness scores of
words, as annotated by humans, and the visibility of words,
as calculated as a function of their occurrences in a visual
corpus (Kehat and Pustejovsky, 2017). In the present pa-
per, we take this notion one step further and use visibility
of words directly as a feature of the system.

More specifically, we further improve on the recently pre-
sented results by Gao et al. (2018) on the task of verb clas-
sification for metaphor detection. In their work, Gao et al.
(2018) used contextual information, in the form of contex-
tualized word embeddings (ELMo) (Peters et al., 2018), as
well as the GloVe embeddings (Pennington et al., 2014),
both concatenated and fed as an input to a simple BiLSTM.
We use a number of popular Vision-Language Datasets
to create what we call Visibility Embeddings. These
embeddings are created by a simple sampling technique
from visual corpora (the textual part of vision-language
datasets, usually in the form of a list of image-caption sen-
tences). We show that these Visibility Embeddings are
useful when combined in a simple concatenation manner
with the previously presented architecture by Gao et al.
(2018). Our code is available at https://github.
com/gititkeh/visibility_embeddings.

2. Background and Related Work
2.1. Metaphor Detection
Currently, neural methods are dominating the task of
Metaphor Detection, with recent state-of-the-art results by
Gao et al. (2018) and Mao et al. (2019), using BiL-
STMs and contextualized word embeddings (ELMo) (Pe-
ters et al., 2018), demonstrated on a number of popular
annotated Metaphor Detection datasets by Mohammad et
al. (2016) (MOH-X), Steen et al. (2010) (the VU Am-
sterdam Metaphor Corpus (VUA)) and Birke and Sarkar
(2006) (TroFi). In the recent 2018 VUA Metaphor Detec-
tion Shared Task, several neural models with different ar-
chitectures were introduced. Most of the teams in the task
used LSTM’s combined with other linguistic features, such
as part-of-speech tags, WordNet data, concreteness scores
and more (Wu et al., 2018; Swarnkar and Singh, 2018; Pra-
manick et al., 2018; Bizzoni and Ghanimifard, 2018).
Previous work by Turney et al. (2011), Tsvetkov et
al. (2014) and Köper and im Walde (2017) showed con-
creteness scores to be effective for Metaphor Detection.
Embedding-based approaches such as in Köper and im
Walde (2017) and Rei et al. (2017) also proved to work
effectively on several annotated datasets. Different types of
word embeddings were studied by researchers, including

https://github.com/gititkeh/visibility_embeddings
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Figure 1: Example sentences with non-metaphorical (literal) and metaphorical usages of the verbs “pour” and “wrestle”.
The literal sentences (as well as the images) are taken from the Visual Genome dataset (Krishna et al., 2016), and are the
captions of the regions highlighted in squares in the respective images. The metaphorical sentences are taken from the
MOH-X datasets (Mohammad et al., 2016). Words with significantly higher concreteness scores are highlighted in green,
and words that are considered abstract are highlighted in red.

embeddings trained on corpora representing different lev-
els of language mastery (Stemle and Onysko, 2018), and
embeddings representing different dictionary categories in
the form of binary vectors for each word (Mykowiecka et
al., 2018).
In our work, we study the effect of using embeddings cre-
ated from visual datasets, which were shown to be useful in
Metaphor Detection (Shutova et al., 2016), as well as in the
task of estimating concreteness scores (Kehat and Puste-
jovsky, 2017).

2.2. Vision-Language datasets
The field of Vision and Language has become extremely
popular in the last several years. New tasks involving both
images and texts were introduced to both the Computer Vi-
sion and Natural Language Processing communities, such
as Visual Question Answering (Antol et al., 2015) and vi-
sual entailment (Krishnamurthy, 2015).
This growing interest has led to an explosion of datasets
combining visual and textual information, mostly in the
form of an image (or segmented regions of an image) and
its corresponding or associated textual caption. Many of
the most popular vision-language datasets are based on ex-
tensive crowdsourcing. The most famous ones to date are
the Visual Genome (Krishna et al., 2016) (See examples
in Figure 1), Microsoft COCO (Lin et al., 2014), Imagenet
(Deng et al., 2009), which is a visual version of WordNet
(Miller, 1995), and Flickr30K (Young et al., 2014). Other
vision-language datasets, like the SBU dataset (Ordonez et
al., 2011) were created automatically by simply querying
the web.
In our work we use what we call “visual corpora”, which
are the text-only parts of vision and language datasets.
These texts tend to represent words and ideas of higher
concreteness on average, helping us to solve concreteness-
related tasks such as metaphor detection (Kehat and Puste-
jovsky, 2017).

2.3. Word Concreteness
The concreteness of a word commonly refers to what extent
the word represents things that can be perceived directly
through the five senses (Brysbaert et al., 2014; Turney et
al., 2011), such as water and blue. Accordingly, an abstract
word represents a concept that is far from immediate per-
ception, or alternatively, could be explained only by other
words (as opposed to being demonstrated through image,
taste, etc.), like decision and fun.
The most common resources for concreteness ratings of En-
glish words are the list of 40K scores by Brysbaert et al.
(2014), with assigned concreteness scores between 1.0-5.0,
and the MRC psycholinguistic database (Coltheart, 1981)
that contains over 4K words and their concreteness scores
(range from 158 to 670), given by human subjects through
psychological experiments.

3. Improving Metaphor Detection
As presented in previous work, certain lexical features, like
concreteness scores, have been shown to improve metaphor
detection models (Mykowiecka et al., 2018; Turney et al.,
2011). Nevertheless, these models were based on hand-
annotated resources, such as the MRC Psycholinguistic
Corpus (Coltheart, 1981). One of the major disadvantages
of using these lists is the fact that they contain a limited
number of words and are usually available and evaluated
for English only and are hard to reproduce for other lan-
guages, as noted by Mykowiecka et al. (2018).
In order to introduce information about the concreteness
of word to the models without having to use an annotated
dataset or a dictionary, we take a similar approach to Kehat
and Pustejovsky (2017), and use vision-language datasets
as a reference. Many of the available vision-language
datasets were created by crawling image-sharing social net-
works like Flickr (Ordonez et al., 2011), which are already
popular among users throughout the web.
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In the following sections, we show our results on two com-
monly used annotated datasets for metaphor detection:

The dataset by Mohammad et al. (MOH) (Mohammad
et al., 2016), was created as part of a bigger dataset that
also contains annotations about the emotional level and
emotional polarity of words. In this dataset, about 1,600
sentences were annotated in a binary fashion, as either
“metaphorical” or “literal”, in relation to a certain verb oc-
currence. The MOH dataset is commonly cut into a smaller
dataset, called the MOH-X dataset, which contains only
about 650 sentences, and is more balanced in terms of the
number of labels for each class (the original MOH dataset
contains many more “literal” annotations than “metaphori-
cal” ones).

the VU Amsterdam Metaphor Corpus (VUA) (Steen et
al., 2010) is the largest available metaphor dataset to date.
In this dataset, every word (not just a target verb) is labeled
through an exhaustive annotating scheme. We use the Verbs
subset of the VUA metaphor dataset, as used in the 2018
shared task (See section 2.1). This subset concsists of more
than 17K training samples and over 5K test samples, taken
from the British National Corpus (BNC).

3.1. Visibility Embeddings

In their work, Kehat and Pustejovsky (2017) showed that
visual corpora (text derived from vision-language datasets)
tend to have higher “concreteness level”, and used this fact
to automatically estimate concreteness scores of words, by
checking if the given word and its nearest neighbors (in a
semantic vector space) are contained in the visual corpus.
We aim to improve upon the suggested model by (Gao et
al., 2018), which already use embeddings such as the GloVe
(Pennington et al., 2014) and ELMo (Peters et al., 2018).
These inherently carry information about the semantic vec-
tor space structure and neighbors. Therefore, our approach
is even simpler, and checks only if the specific given word
is in the visual corpus.

We base our sampling method on the shown relatively high
differences in the “concretness level” of different visual and
non-visual corpora. The concreteness level of a corpus is
calculated as follows: given a concreteness score list (usu-
ally the 40K or MRC), we divide the words in the list into
two non-overlapping sets (words contained in the corpus
and words not contained in the corpus), and calculate the
average concreteness score of each set, as well as the dif-
ference of the two averages normalized by the score range
of the list (‘Diff/Range%’).

Table 1 contains the Diff/Range percentages of several vi-
sual and non-visual corpora and their subsets (as sets of
words). Like Kehat and Pustejovsky (2017), we refer to the
BV C as the Big Visual Corpus, a unified corpus consists
of several common visual corpora, which showed to have
the higher Diff/Range ratio. As a balanced non-visual cor-
pus, we take the Brown corpus (Francis and Kucera, 1964),
which showed to have the smaller, almost zero, Diff/Range
ratio (means, it is balanced in terms of concreteness).

Corpus D/R% 40K D/R% MRC
BV C 25.49% 24.53%
Brown 2.74% -0.28%
Brown−BV C -17.30% -24.44%
Brown&BV C 14.84% 13.34%

Table 1: The Diff/Range% of the Big Visual Corpus (BVC),
the Brown corpus, and their subsets. Higher Diff/Range
ratio indicates the corpus is more concrete on average.

3.2. The Construction of the Visibility
Embeddings

In this section, we show how to build word embeddings out
of the visual and non-visual corpora discussed above. In
the next section, we show how to plug these vectors in a
BiLSTM model, improving existing results.
For each seen word in a sentence, we build a vector of
length l, consisting of l values sampled from a normal dis-
tribution around mean m with variance v. We choose m
such that it can have one of three values, −1.0, 0.0 or 1.0,
where −1.0 aims to represent abstractness and 1.0 aims to
represent concreteness.
In order to determine m, we use several of the corpora in
Table 1 as reference. Based on the Diff/Range ratios, we
determine m as follows:

For each word in a sentence:

If the word is a stopword or punctuation:

assign m = 0.0.

Else, if the word is in Brown−BV C:

assign m = -1.0.

Else, if the word is in BV C:

assign m = 1.0.

Else:

assign m = 0.0.

First we check if a word is in Brown − BV C since this
sub-corpus is small with a very low Diff/Range ratio. We
continue checking if the word is in the BV C (we don’t
check for BV C − Brown since, according to our calcula-
tions, it is less concrete on average than the BV C). If the
word is in neither corpora or if it is a stopword, we choose
m to be the neutral ..
Following Kehat and Pustejovsky (2017) and Gao et al.
(2018), we do not normalize the tokens before building the
visibility embeddings (or generally inputting them into the
system). Our experiments show that without special han-
dling of contextual ambiguity, too much information is lost,
due to the derivative nature of the English language. For
example, for the lemma “woman”, we can construct both
“women” and “womanize”, which are highly different in
terms of concreteness scores.

3.3. Experiment Setting and Results
We further build on the model proposed by Gao et al.
(2018) by adding our own Visibility Embeddings to the set
of embeddings mapped to each word in a given sentence.
Originally, Gao et al. (2018) concatenated three types of
vectors: embeddings created with ELMo (of dimension
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1024), GloVe embeddings (Pennington et al., 2014) (of di-
mension 300), and binary verb embeddings (of dimension
50) which indicated the verb index in the sentence. We kept
the same structure and dimensions of the vectors and also
added the new Visibility Embeddings of dimension 50 (See
Figure 2).

Figure 2: The embeddings used in the model consist of the
ELMo output, GloVe, Verb Index binary embeddings, and
Trinary Visibility Embeddings.

The model consists of three main layers (See Figure 3):
(1) A Bidirectional-LSTM layer; (2) An attention layer, in
which we apply linear softmax on the result and then calcu-
late the similarity of the created vector and the matrix cre-
ated from the Bi-LSTM output; (3) A classification layer, a
feed-forward layer with softmax log to get the classification
label of each sentence.
We implemented the model in Python using the AllenNLP
package for deep semantic NLP (Gardner et al., 2017). The
input for each learning iteration of the model is a batch of
embedded sentences. We also apply three dropout factors:
before the Bi-LSTM layer, inside the Bi-LSTM layer, and
before the classifier layer. To accommodate the new em-
beddings, we also changed a few constants, such as learning
rates, dropout, and number of epochs, but kept the structure
of the model and all the other parameters as in Gao et al.
(2018).

Figure 3: The classification model architecture.

The results of our model, compared with other recent top
results, are shown in Tables 2 and 3. We compare our work
with the best results gained so far, and with the recent work
by Gao et al. (2018), to show more clearly the effect of
adding our Visibility Embeddings to their system. We fine-
tuned the hyperparameters of the models for each of the
discussed metaphor detection datasets. We can notice that
by just adding our simply constructed visibility vectors to

Model P R F1
Lexical Baseline 39.1 26.7 31.3
Mao et al. (2019) 77.5 83.1 80.0
Gao et al. (2018) 75.3 84.3 79.1
Gao et al. (2018)+Vis 79.5 81.84 80.46
Gao et al. (2018)+Vis (rand) 80 80.62 80.02
Elmo+verb+Vis 79.35 84.6 81.57
Elmo+verb+Vis (rand) 81.16 81.03 80.85

Table 2: Results on the MOH-X dataset. Our model im-
proves upon the previous state of the art by Mao et al.
(2019).

Model P R F1
Lexical Baseline 67.9 40.7 50.9
Mao et al. (2019) 69.3 72.3 70.8
Wu et al. (2018) 60 76.3 67.2
Gao et al. (2018) 53.4 65.6 58.9
Gao et al. (2018)+Vis 70.11 64.33 67.1
40K scores 71.65 60.87 65.82

Table 3: Comparison of recent algorithms on the VUA verb
classification task. Our model, which is a variation on the
one by Gao et al. (2018), gets very close to the state of the
art achieved by Wu et al. (2018)

the already existed model by Gao et al. (2018), we can
achieve significant improvement over their previous results
on both the MOH-X and VUA datasets.
For the MOH-X dataset shown in Table 2, we can see that
by simply adding our visibility vectors, we can gain +1.36
to the F1-score. We experimented also with variations of
the models that do not include the GloVe embeddings (i.e.,
of dimension 1024+50+50), and found the system to per-
form better in this settings for the MOH-X dataset (though
not for the VUA dataset). These results are shown in the
last rows of Table2.
We note the difficulty in the evaluations of the results re-
ported by Gao et al. (2018). Though not mentioned in their
paper, the code that was made available online suggested
that the 10-fold cross-validation was performed without
shuffling. Also, the reported maximal score was computed
by sampling within a given number of iterations (rather than
in the end of every epoch). When running their code, we
discovered a steady difference between running on the same
pre-chosen sets over unshuffled samples (like they appar-
ently did), and randomly choosing the validation set (as tra-
ditionally done by researchers), with the right sampling in
the end of each epoch. Therefore, to maintain consistency
with future results, we also bring our models’ performances
when tested on randomly chosen 10-fold cross-validation
sets, which are, in fact, the ones we should report.
In general, we can observe that the higher results are on the
MOH-X dataset. this is due to the fact that for this dataset,
only the metaphoricity of the target verb is known, and the
sentences are relatively short. Other methods, such as label-
ing each token of a sentence, give better results on datasets
like the VUA.
Specifically for the VUA dataset, we also experiment with
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actual concreteness scores annotated by humans, from the
list of 40K concreteness ratings by Brysbaert et al. (2014).
For each word, we build a similar normalized vector us-
ing the concreteness score from the list as the mean m. To
set up the variance, we tried to use both the inter-annotators
standard deviation as appears in the list, and a constant stan-
dard deviation (as in the Visibility Vectors case), and found
the last one to give better results. All the means and vari-
ances were normalized to have the same range as the visi-
bility embeddings, and the results are shown in the last row
of Table 3.
We found that using the concreteness scores directly
showed less improvement than using the Visibility Embed-
dings. The overall F1-score is lower because of a lower
recall, yet the precision is higher. We hypothesize that the
high variance of the concrete and non-concrete terms in our
construction of the Visibility Embeddings is more signifi-
cant than the finer differences naturally occurring in the hu-
man annotation, hence their effect as part of the vectorized
input is more noticeable.

4. Summary
In this paper, we have presented a simple and direct way to
use visual corpora as a reference to certain visibility prop-
erties of words. We showed that by adding Visibility Em-
beddings, built in the same way, to existing deep learning
models for metaphor detection, we can compare with or
improve upon most classification scores for the task of verb
classification. Furthermore, our approach is much simpler
than previous models, and is not limited to English.
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