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Abstract
Automatically recognizing an existing semantic relation (e.g. “is a”, “part of”, “property of”, “opposite of” etc.) between two words
(phrases, concepts, etc.) is an important task affecting many NLP applications and has been subject of extensive experimentation and
modeling. Current approaches to automatically telling if a relation exists between two given concepts X and Y can be grouped into two
types: 1) those modeling word-paths connecting X and Y in text and 2) those modeling distributional properties of X and Y separately,
not necessary in the proximity to each other. Here, we investigate how both types can be improved and combined. We suggest a
distributional approach that is based on an attention-based transformer. We have also developed a novel word path model that combines
useful properties of a convolutional network with a fully connected language model. While our transformer-based approach works better,
both our models significantly outperform the state-of-the-art within their classes of approaches. We also demonstrate that combining the
two approaches results in additional gains since they use somewhat different data sources.

1. Introduction

During the last few years, Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs) have
resulted in major breakthroughs and are behind the current
state-of-the-art algorithms in language processing, com-
puter vision, and speech recognition (LeCun et al., 2015).
Meanwhile, modeling higher level abstract knowledge still
remains a challenging problem even for them. This in-
cludes classification of semantic relations: given a pair of
concepts (words or word sequences) identify the best se-
mantic label to describe their relationship. The possible
labels are “is a”, “part-of”, “property-of”, “made-of”, etc.
This information is useful in many applications. For ex-
ample, knowing that London is a city can help a Question
Answering system answer the question What cities does the
River Thames go through? Information retrieval benefits
from query expansion with more specific words, e.g. trans-
portation disasters → railroad disasters. For the task of
database federation, an attribute in one database (e.g. with
values France, Germany, and UK) often needs to be auto-
matically matched with an attribute called country in an-
other database. The connection between word meanings
and their usage is prominent in the theories of human cog-
nition (Mikoajczak-Matyja, 2015) and human language ac-
quisition (Bybee and Beckner, 2015). While manually cu-
rated dictionaries exist, they are often out-of-date, not cov-
ering specialized domains, designed to be used by people,
and exist for only a few well resourced languages (English,
German, etc.). Therefore, here we are interested in methods
for automated discovery (knowledge acquisition, taxonomy
mining, etc.) .
The automated approaches to detecting semantic relations
between concepts (words or phrases) can be divided into
two major groups: 1) path-based and 2) distributional meth-
ods. Path-based approaches (e.g. Shwartz et al. (2016))
essentially look for certain patterns in the joint occurrences
of words (phrases, concepts, etc.) in the corpus. Thus,
every word pair of interest (x,y) is represented by the set
of word paths that connect x and y in a raw text corpus
(e.g. Wikipedia). Distributional approaches (e.g. Wang et

al. (2019)) are based on modeling the occurrences of each
word, x or y, separately, not necessary in the proximity to
each other. Our goal here is to improve, compare and com-
bine those two classes of approaches.
Attention-based transformers (e.g. Vaswani et al. (2017))
have been recently shown more effective than convolutional
and recurrent neural models for several natural text appli-
cations, leading to new state-of-the-art results on several
benchmarks including GLUE, MultiNLI, and SQuAD (De-
vlin et al., 2018; Lample and Conneau, 2019). At the same
time, we are not aware of any applications of attention-
based transformers to the task of recognizing semantic re-
lations between words. Our contributions are as follows:
1) We develop a novel path-based model that combines
useful properties of convolutional and fully connected net-
works. Our approach resolves several shortcomings of the
prior models within that type. As a result, it outperforms
the state-of-the art path-based approaches. 2) We suggest a
distributional approach that is based on an attention-based
transformer, and show that it exceeds the state-of-the art
performance on several standard datasets. 3) While our
distributional approach worked significantly better than our
neural path-based model, the combination of our two ap-
proaches demonstrates additional gains, since the two ap-
proaches use somewhat different data sources. 5) We illus-
trate that even our best transformer model still has certain
limitations which are not always revealed by the standard
datasets.
We make our code and data publicly available. The next
section overviews the prior related work. It is followed by
the description of the models, followed by our empirical
results.

2. Prior Work
While earlier path-based approaches used small sets of
manually crafted templates to detect patterns (Hearst, 1992;
Snow et al., 2004), later works successfully involved train-
able templates (Nakashole et al., 2012; Riedel et al., 2013).
Successful models using trainable distributional represen-
tation of words (their embedding vectors) (Mikolov et al.,
2013; Pennington et al., 2014) were developed and for
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some time surpassed the path-based methods in perfor-
mance (Santus et al., 2016; Necsulescu et al., 2015). Levy
et al. (2015) noted that supervised distributional methods
tend to perform lexical memorization: instead of learning a
relation between the two terms, they learn an independent
property of a single term in the pair. For example, if the
training set contains pairs such as (dog, animal), (cat, an-
imal), and (cow, animal), the algorithm learns to classify
any new (x, animal) pair as true, regardless of x.

Shwartz et al. (2016) successfully combined both distribu-
tional and path-based approaches into a single model that
uses a recurrent neural network (RNN) and exceeded the
best results at the time for the hypernymy detection (“is-a”
relation). Their model was later extended to multiple rela-
tions in Shwartz and Dagan (2016) and became the state-
of-the-art after winning a competition-format workshop on
recognizing semantic relations. We include a mathematical
description of their approach here since 1) We are using it
as one of our baselines and 2) in the immediately following
section, we elaborate how we overcome its shortcomings.
Their approach (HypeNet, later called Lexnet) proceeds as
following. The data consists of the targeted pairs of words
along with their relationship label and all the word paths
connecting the target pairs in the corpus. Each path consists
of edges (words). Each edge is represented by a word em-
bedding vector. Thus, each word path p is represented as a
sequence of edge vectors {−→ve1,−→ve2,−→ve3, ...} = {−→vet(x, y)}
for t = 1, ..., lp, where lp is the path length. This sequence
is mapped by an RNN into a context vector−→vp(x, y) defined
for each path:

−→vp(x, y) = RNN(
−−→
{vet(x, y)}) (1)

The context vector for the pair (x,y) is defined as the aver-
age context vector for its paths:

−→v xy =

∑
p
−→vp(x, y)

#Paths(x, y)
(2)

where #Paths(x, y) is the number of word paths connect-
ing the pair (x,y). This vector, in turn, is used to make a
classification decision, with an optional hidden layer.

There have been several related studies following Shwartz
et al. (2016): Shwartz et al. (2017) did extensive compari-
son of supervised vs. unsupervised approaches to detecting
“is-a” relation. Washio and Kato (2018) looked at how ad-
ditional word paths can be predicted even if they are not
in the corpus. Roller et al. (2018) also looked at “is-a”
relation and confirmed the importance of modeling word
paths in addition to purely distributional methods. Still, the
models from Shwartz et al. (2016) and Shwartz and Da-
gan (2016) remain unsurpassed within the class of word-
path models. We are using them as one of our baselines,
along with the same datasets and same corpus data for a
direct comparison of our models. Among distributional ap-
proaches, Wang et al. (2019) suggested using hyperspher-
ical relation embeddings and improved over the results of
Shwartz and Dagan (2016) on 3 out of 4 datasets. We use
the model from Wang et al. (2019) as another baseline.

A cognate approach concerns a stacked architecture com-
bining CNN and LSTM, which for example was used in

(Yuan and Sharoff, 2020) for classification of translation
errors.

3. Combined Models for Semantic Relations
3.1. Path-Based
3.1.1. Informal Description
Since our proposed path-based model does not use a recur-
rent network, it is simpler to describe and faster to train. It
also resolves several shortcomings of the current state-of-
the-art model by Shwartz et al. ((Shwartz et al., 2016)) as
we explain below. Figure 1 presents an informal intuitive
illustration. We jointly train our semantic classification
along with an unsupervised language modeling (LM) task
which captures the probability distribution over sequences
of words in the language. In our experiments here, we used
exactly the same word paths as in our baselines (Shwartz et
al., 2016) and (Shwartz and Dagan, 2016) since the paths
are publicly available. 95% of the paths are no longer than
4 words. This allowed us to simplify our language model
even further: instead of currently popular recurrent neural
networks, we simply used a fully connected feed-forward
neural network with a single hidden layer. We limited the
number of input words to 4. The shorter paths are padded
with special symbols (“<E>”).
The output of LM is the probability of occurrence of any
input word sequence. We use some of those probabilities as
features for our relation classification model. Inspired by
the success of convolutional networks (CNNs)(e.g. (Ma et
al., 2019; Zeng and Ji, 2015), we use a fixed set of trainable
filters (also called kernels), which learn to respond highly
to certain patterns that are indicative of specific semantic
relations. For example, a specific filter fi can learn to re-
spond highly to is a (and similar) patterns. At the same
time, our LM may suggest that there is a high probability of
occurrence of the sequence green is a color in text. Com-
bining those two facts suggests that green belongs to the
category color (true is-a relation between them). Figure 1
shows only three such filters (and the probabilities of the
sequences P1, P2, P3), while in our current study we used
up to 16.
Thus, the LM probabilities act as approximate (“soft”) pat-
tern matching scores: 1) similar patterns receive similar
scores with the same filter and 2) similar filters produce
similar scores for the same pattern. LM also reduces the
need for using many filters as explained by the following
intuitive example: While training, LM can encounter many
examples of sequences like green is a popular color and
green is a relaxing color. By modeling the properties of a
language, LM learns that removing an adjective in front of
a noun does not normally result in a large drop of the prob-
ability of occurrence, so the sequence green is a color also
scores highly with LM even if it never occurs in text.
Since the current state-of-the art path-based approach
(Shwartz et al., 2016) aggregates the word paths connecting
each target pair by averaging the context vectors represent-
ing all the paths (formula 2), we believe their approach has
two specific drawbacks that our approach does not: 1) when
averaging is applied, the different occurrences of word pat-
terns are forced to compete against each other, so the more
rare occurrences can be dominated by more common ones
and their impact on classification decision neglected as a
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Figure 1: Our path-based neural approach to semantic relationship classification.

result. By using LM we avoid facing the question how to
aggregate the context vectors representing each path exist-
ing in the corpus. 2) The other relative strength of our ap-
proach over the baseline comes from the fact that our model
does not “anonymize” the word paths unlike Shwartz et al.
(2016), which uniformly uses ”x” and ”y” for the path ends
regardless of which words the target pair (x,y) actually rep-
resents. Without the use of LM, this anonymizing is un-
avoidable to generalize to the previously unseen (x,y) pairs,
but it also misses the opportunity for the model to transfer
knowledge from similar words.

3.1.2. Formal Description
Language model (LM) is a probability distribution over se-
quences of words: p(w1, ..., wm). We are using currently
common distributed word representations: all the words
are represented by vectors v1, v2, ..., vm which are trainable
paramaters in the model, typically called word embedding
vectors. For our LM, we use a fully connected feedforward
neural network with a single hidden layer and a softmax
layer, and limit the number of input words m (word path
length) to 4. Thus, the probability of word w4 to follow
a sequence of words w1, ..., w3 is determined as follows.
First, the hidden layer vector is defined as:

−→
h = tanh(W · [v1; v2; v3] + b) (3)

where v1, v2, v3 are the embedding vectors for the words
w1, w2, w3 accordingly1, [] stands for concatenation, W is
a trainable matrix (parameter) and b is a trainable vector
(bias). The hidden layer is used as the input to the softmax
layer, so the output probability is defined as:

p(w4|w1, w2, w3) = softmax (W1 ·
−→
h + b1)[w4] (4)

where W1 is a trainable matrix, b1 is a trainable vector
(bias), and softmax is a standard function to scale any given
vector of scores to probabilities. The operator [] here shows
that we take the value of the softmax function correspond-
ing to the word w4.
Next, we extend our LM to be defined not only over
word vectors, but over any arbitrary 4 vectors: pLM =
p(w4|v1, ..., v3). Since we are interested in what word

1 We deliberately do not use the arrow over the word vectors
to simplify the notation.

patterns are typically connecting the target pairs of words
(x,y), we only make use of conditional probabilities of the
form p(vy|vx, v1, v2), where (x, y) is one of the target pairs
of words, (vx, vy) are their embedding vectors and the vec-
tors v1, v2 define a trainable filter. Our filters are designed
to capture which paths commonly connect a given pair of
target words (x, y). While informally v1, v2 can be inter-
preted as defining certain patterns like “is a”, they don’t
have to correspond to any real words in the vocabulary. For-
mally, they are just model parameters and are trained along
with the other parameters by back-propagation. Thus, we
define the score of each of our filters the following way:

fi = p(vy|vx, vi1, vi2) (5)

We define the vector of filter scores by concatenating the
individual scores:

−→
f = [f1, f2, f3, ..fN ], where N is the

total number of filters (16 in our study here).

Filter scores
−→
f are mapped into a relation classification de-

cision by using a neural network with a single hidden layer.
Thus, we define:

−→
h1 = tanh(W2 ·

−→
f + b2) (6)

where W2 is a trainable matrix and b2 is a trainable “bias”
vector. The classification decision is made based on the
output activations:

c = argmax (W3 ·
−→
h1 + b3) (7)

where W3 and b3 are also trainable parameters. As tradi-
tional with neural networks, we train (optimize our model
parameters) to minimize the cross-entropy cost:

cost = − log((softmax (W3 ·
−→
h1 + b3))[cl]) (8)

where cl is the correct (expected) class label. Operator []
indicates here that we take the value of the vector returned
by the softmax function that corresponds to the correct class
label cl. We used stochastic gradient descent for cost mini-
mization.

3.2. Pre-Trained Attention-Based Transformer
The diagram on Figure 2 illustrates how attention-based
transformer (Vaswani et al., 2017) operates. Instead of
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Figure 2: Attention-based transformer used in our distribu-
tional approach to semantic relationship classification.

recurrent units with “memory gates” essential for RNN-
s, attention-based transformers use additional word posi-
tional embeddings which allows them to be more flexible
and parallelizable than recurrent mechanisms which have to
process a sequence in a certain direction. The conversions
from the inputs to the outputs are performed by several lay-
ers, which are identical in their architecture, varying only
in their trained parameters. In order to obtain the vectors
on the layer above, the vectors from the layer immediately
below are simply weighted and added together. After that,
they are transformed by a standard nonlinearity function.
We use tanh:

−→vi ′ = tanh(W ·
k∑

t=1

αt
−→vt ) (9)

here,−→vi ′ is the vector in the i-th position on the upper layer,
−→vt is the vector in the t-th position on the lower layer, W
is a trainable matrix (same regardless of i but different at
different layers), and αt is a trainable function of vectors
−→vi and −→vt , such as the weights for all −→vt add up to 1. We
use a scaled dot product of the vectors −→vi and −→vt :

αt =
−→vi ·W ′ · −→vt (10)

where W ′ is a trainable matrix (also same regardless of i
and t at the same layer but different at different layers).
The normalization to 1 is accomplished by using a softmax
function.

This mechanism allows rich vector representations to be
formed at the highest layers that can capture the entire con-
tent of a word sequence (e.g. a sentence or a word pair) so it
can be effectively used for any AI applications such as text
classification or generation. As it is commonly done with
the transformers, we make our output classification deci-
sion based on the first vector on the top level. We do not
use a hidden layer here, so we apply our formula ?? above
to h1 defined as the following:

−→
h1 =

−→
vu0 (11)

where {−→vut } is the vector sequence produced by the trans-
former for the top level.

3.3. Combining our models
To combine our models, we first used 75% of the train-
ing set to train them separately. Then, we froze both mod-
els and used the remaining 25% to learn how to combine
them. The combination was performed by a single softmax
decision layer that takes the following two concatenated in-
puts: 1) the activations at the hidden layer of our path-based
model as defined by formula 6 and 2) the classification vec-
tor
−→
vu0 of our transformer as defined by formula 11. Thus,

the combining model acted as a “mixture of experts”, while
still having access to word properties (embeddings), so it
learns to customize combination decisions, e.g. using dif-
ferent preferences between the two models for the pairs of
nouns from those for the pairs of verbs.

4. Empirical Evaluation
4.1. Illustration on Synthetic Datasets
In order to gain additional insight into which model works
best, we also experimented with a synthetic dataset. Us-
ing synthetic data is commonly used to illustrate the limita-
tions of a specific approach. For example, inability to learn
a XOR function by a single layer neural network illustrates
the need for a hidden layer. Thus, we sought to generate as
simple and easily replicable text as possible, while still hav-
ing the properties that are present in real datasets and may
present a challenge to a particular model. For the ease of
interpretation, we limited the number of semantic relations
in the simulation to 2 (true/false): an example of such situ-
ation is the problem of verifying membership in a semantic
category, e.g. (color, green, true), (coffee, drink, true) but
(coffee, green, false). Rather than generating the text and
then extracting the paths from it, we directly generate the
paths, so they all start/end with x/y where (x, y) is one of
our target pairs of words. Without loss of generality, we
call y a category, and we call x a candidate. We generate
three non-overlapping types of words:
1) Category labels: {c1, c2,..., cC}, where C is the total
number of categories. 2) Candidates: {w1,...,wW}, where
W is the total number of them. These are the words that
may happen to belong (true-pair) or not to belong (false-
pair) to the specific categories. 3) Connectors: {is1, is2,
..., isM}, where M is the total number. They represent
typical word patterns that connect true category-candidate
pairs. For example, for the path water is liquid, the con-
nector is is. For simplicity, all our connectors consist of a
single-word, and x always precedes y.
Every category uses only a randomly-assigned subset of m
connectors for positive (correct) candidates, which mirrors
the real text where, for example, category color uses “is a”
but does not use “is” , while category actor uses “is” but
does no use “is a”. Each category also uses m− 1 connec-
tors for negative pairs. Thus, the only difference between
true and false candidates is that the true candidates oc-
cur with larger number of connectors. Since we wanted
to stress our algorithms, we deliberately generated positive
and negative pairs that are challenging to tell apart.
We generate all the paths by the following: for each cate-
gory c, each true candidate x and each connector o we gen-
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Figure 3: F1 scores of our model compared to the state-of-
the-art baseline on synthetic data.

erate the path x + o + c if x is a true instance of c and
connector o is used by c. Otherwise, we generate the path x
+ o + w, where w is sampled uniformly from {w1,...,wW}.
So basically, if the connector is not used by category c or if
x is not a true instance of c, then the combinations of x and
connector c can be followed by any arbitrary words. E.g.
since red is not a drink, we will not have paths like red is
drink, but may have instead paths like red is color, red is
stop, etc.
In our first round of experiments we used W =
10000,M = 6,m = 4. We separately generated train-
ing and testing subsets of equal size, without overlapping
categories. Guided by the sizes of our real datasets listed
in Table 1, we tested the numbers of categories on the log-
arithmic scale: {10, 50, 100, 500, 1000}. Both the baseline
and our model were able to achieve the F1 score (the metric
used by our baseline papers (Shwartz et al., 2016; Shwartz
et al., 2017) above 95% on all of them.
In order to further strain both methods and to make our data
more realistic, we imposed additional noise by repeating
each path r number of times, where r was randomly se-
lected between 1 and 10. We have also added the paths con-
sisting entirely of “noise” words, which were randomly se-
lected from the {n1, ..., nNn} set. We setNn = C to avoid
introduction of an additional simulation parameter but still
reflecting the scale of the generated set.
Figure 3 presents the results for several numbers of cate-
gories C. We report the maximum score on the test set. It
can be seen that for the small number of categories both ap-
proaches still work well, but for 100+ categories the state
of the art method, which is based on averaging the context
vector, starts getting disoriented. One possible explanation
may be that it happens because the occurrences of some
connectors lose their impact on the classification decision
when averaging occurs. Since our approach is based on a
language model rather than on averaging, it is not affected
by the introduction of additional noise (the filter values re-
main the same).
We have run the similar experiments with the word em-
beddings and network sizes in the {25, 50, 100, 200} set.
While the specific F1 scores were different, the overall
comparison remained the same: only our approach was able
to handle the imposed noise well. Only after we reduced the
number of filters to below 6 (the number of unique possible
connectors in the simulation), its performance also dropped
below 90%.

4.2. The Datasets
Table 1 summarizes general statistics of the datasets. We
used the same datasets as our baselines: the first two are
from Shwartz et al. (2016) and were built using a sim-

ilar methodology: the relations used in them have been
primarily taken from various sources including WordNet,
DBPedia, Wikidata and Yago. Thus, their x-s are pri-
marily named entities (places, films, music albums and
groups, people, companies, etc.). The important differ-
ence is that in order to create the split between training,
testing and validation sets for HypeNet Lexical, the lexi-
cal separation procedure was followed (Levy et al., 2015),
so that there is no overlap in words (neither x nor y) be-
tween them. This reduces “lexical memorization” effect
mentioned above. The last four datasets are from Shwartz
and Dagan (2016), which originate from various preced-
ing studies: K&H+N (Necsulescu et al., 2015), BLESS
(Baroni and Lenci, 2011), ROOT09 (Santus et al., 2016),
EVALution (Santus et al., 2015). Most of the relations
for them were also taken WordNet. BLESS dataset also
contains event and attribute relations, connecting a con-
cept with a typical activity/property, e.g. (alligator, swim)
and (alligator, aquatic). EVALution dataset contains the
largest number of semantic relations including antonyms,
e.g. (good,bad). To make our comparison more direct, we
used exactly the same splits into training, development (val-
idation) and testing subsets as in the baselines. We also
used exactly the same word paths data, as it is made pub-
licly available by the authors.

4.3. Experimental setups

Since we sought to keep the number of hyper-parameters
to the minimum, we set the word embedding size, the RNN
context vector size, and the hidden layer size to be the same
within all our path-based models. We tested their values
in the range of {50-1000}. This size is the only hyper-
parameter that was varied in our experiments. We used
the static learning rate of 0.01. As it is commonly done,
we report the results computed on the test sets with the
hyper-parameter and the number of training iterations that
maximize the F1 scores on the validation sets, thus using
exactly the same metrics and procedures as were used to
obtained the baseline results: scikit-learn (Pedregosa et al.,
2011) with the “weighted” set-up, which computes the met-
rics for each relation, and reports their average, weighted
by support (the number of true instances for each relation).
For HypeNet datasets, that was accordingly set to “binary”.
We also verified through personal communications with the
authors of Shwartz and Dagan (2016) that our metrics are
numerically identical for the same sets of predicted labels.
For our path-based models, all the trainable parameters
were initialized by a normal distribution around 0 average
and standard deviation of 1. We used the same transformer
architecture and hyper-parameters as in Devlin et al. (2018)
(BERT mono-lingual English uncased version) which has
12 layers and the output vector size of 768, resulting in the
total number of trainable parameters of 110 million. As it is
commonly done when using a pre-trained transformer, we
initialize our weights to those that were already trained by
Devlin et al. (2018) for a language model and next sen-
tence prediction tasks on a copy of English Wikipedia text
and the BookCorpus. For consistency with the data used
during pre-training, we add the same special markers be-
fore, between and after our input word sequences x and y.
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dataset dataset relations #instances #unique X #unique Y
Hypenet Lexical is a 20335 16044 5148
Hypenet Random is a 49475 38020 12600

K&H+N is a, part of 57509 1551 16379
BLESS is a, part of, event, attribute 26546 201 8089

ROOT09 is a 12762 1218 3436
EVALution is a, part of, attribute, opposite, made of 7378 1631 1497

Table 1: The relation types and statistics in each dataset.

4.4. Comparing against the Baselines
Table 2 presents our results. For additional compari-
son, we also include “Before Baseline” row, which lists
the baselines used in Shwartz et al. (2016) and Shwartz
and Dagan (2016). For HypeNet Random and Evalution
datasets, we put the larger values that we obtained in our
re-implementation of the distributional methods that they
used rather than their reported values. The following can
be observed:
1) Our neural word path model has been able to improve
the state-of-the-art on three (3) out of six (6) datasets: Hy-
penet L, Bless and Root09. The differences are statisti-
cally significant at the level of .01. On the remaining three
(3) datasets (HypeNet Random, K&H+N and Evalution),
our results are the same as with the baseline performance
(no statistically significant difference at the level .05). The
baseline did not improve on those datasets over the prior
work either. The scores for HypeNet Random and K&H+N
are already high due to ”lexical memorization” mentioned
above. Since the compared models used exactly the same
data, the obtained results clearly suggest that our neural
model is better than the current state-of-the-art word-path
model by Shwartz et al. (2016).
2) Our transformer-based model has also demonstrated tan-
gible gains over both state-of-the-art baselines (path-based
and distributional ) on four (4) out of six (6) datasets and
worked as well on the remaining two (2). Those differences
are statistically significant at the level of .01. There are no
statistically significant differences on Bless and K&H+N.
3) On four (4) out of six (6) datasets, our distributional
model worked better than our neural word path model.
The differences are statistically significant at the level of
.01. There are no statistically significant differences on the
remaining two. This suggests that an attention-based trans-
former is a very powerful mechanism for modeling seman-
tic relations. Although they have been shown to be very
effective in many other applications, this is the first study
that has used them for semantic relations.
4) Combining our models results in further error reduc-
tion on HypeNet Lexical, Bless and Root. While smaller,
those reductions are still statistically significant at the level
of .01. The reductions are not surprising since the models
use somewhat different data sources. We left more power-
ful combination models for future research.
We estimated the human performance on our datasets by
giving 100 randomly selected word pairs to 3 independent
graders, who were allowed to look up the meanings on-
line (last row). It can be seen that the state-of-the-art ap-
proaches have already achieved the human level on the
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Figure 4: Using only portion of HypeNet Lexical dataset
for training.

datasets where no improvement was detected (HypeNet
Random and K&H+N), so this may explain why our ap-
proaches did not substantially improve them any further.

4.5. Additional Comparisons
4.6. Observations
We also tried to play an adversarial role and fed more
challenging pairs to the trained models to see when
they are starting to fail. Our attention-based transformer
model trained for HypeNet Lexical dataset (named entities
mostly) erroneously classified all the 100 examples created
by combining random general words and the word “air”
(e.g. “car air”, “circle air”, “new air”) as “airline.” It also er-
roneously classified all the 30 correct airline names that we
tried as “airports” in addition to correctly classifying them
as “airline.” The proportion of correct airline names classi-
fied as “recording label” was 60%, which is lower than for
the correct category, but still alarmingly high. Meanwhile,
general words (like “car”, “book”, “new”, etc.) are very
rarely classified as members of any categories in this dataset
since the model correctly sees that they are not named enti-
ties. Those observations suggest that what the transformer
actually learns for this dataset is to use the combined prop-
erties of a word sequence (n-gram) to check if it can pos-
sibly be a named entity, and then if it topically fits the cat-
egory (e.g. “aviation” in general). Those two conditions
are sufficient to make a positive classification and to obtain
high scores since very few test categories in the dataset are
closely related (e.g. “airport” and “airline” ). While our
neural path models don’t make such mistakes, their mis-
takes are primarily due to no word paths existing between
the candidates in the training corpus, which was already
noted in the related prior work. This suggests that a com-
bination of those two approaches may provide additional
gains over each. We have left more formal exploration of
those observations for future studies.

4.7. Ablation Studies
We have also tested the influence of training size on the
model by comparing its performance with 5%, 10%, 25%,
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Model Hypenet L Hypenet R K&H+N BLESS ROOT09 EVALution
Prior Shwartz et al. (2016) 0.660 0.890 0.983 0.889 0.788 0.595

Word path models:
Shwartz et al. (2016) 0.700 0.901 0.985 0.893 0.814 0.600

Our neural model 0.739 0.897 0.991 0.925 0.831 0.600
Distributional:

Wang et al. (2019) N/A N/A 0.990 0.938 0.861 0.620
Our transformer-based 0.832 0.905 0.987 0.942 0.891 0.701

Our combination 0.841 0.905 0.986 0.949 0.903 0.700
Human 0.90 0.90 0.98 0.96 0.95 0.82

Table 2: F1 scores of our tested models compared to the state-of-the-art baselines.

Model Hypenet L Hypenet R K&H+N BLESS ROOT09 EVALution
No hidden layer -11 % -9% -.1% -31% -12% -.4%

8 filters only -5% -4% -.2% -5% -4% -1%
4 filters only -10% -8% -1% -10% -9% -5%

Half of word paths used -8% -9% -.5% -8% -8% -5%
Quarter of paths used -15% -21% -1% -10% -10% -9%

Table 3: Ablation results for our neural word path model: relative loss of F1.

0 50 100
0.7
0.8
0.9

% of training set used

F1

Our Transformer
Our Path-based

Figure 5: Using only portion of Root dataset for training.

50% and 75% of randomly selected training subsets of the
two datasets on which both our models provided the biggest
gains over the baselines: HypeNet Lexical and Root09. The
results shown in figures 4 and 5 suggest the importance of
the dataset size and the possibility of further improvements
when more training data is available for the path-based. At
the same time, out transformer-based model needs much
less training to reach its top possible performance.
We also verified that all the components of our path-based
model here are essential to exceed the baselines, specifi-
cally: using a hidden layer, using all the available word
paths, using all 16 filters. Larger number of filters did not
result in any gains, but increased the training time. Table
3 presents the relative loss in F1 due to a particular ablated
configuration.

5. Conclusions
We have considered the task of automatically recognizing
semantic relations between words (phrases, concepts, etc.)
such as “is a”, “part of”, “property of”, “opposite of” etc.,
which is an important task affecting many data applications.
While manually curated dictionaries exist in well resourced
languages such as English or German, they are often out-
of-date and not covering specialized domains, so the strong
need for automated classification remains. Using six stan-
dard datasets, we have demonstrated that both distributional
and word path state-of-the-art approaches can be tangibly

improved. Out of those two approaches that we suggested,
the transformer-based distributional approach worked sig-
nificantly better. It has decreased the gap between the cur-
rent strong baselines and human performance by roughly
50% for those datasets that still had room for improvement.
We are not aware of any other work applying an attention-
based transformer for this task. The combination of our two
approaches demonstrates additional gains, since the two ap-
proaches use somewhat different data sources. We have
also illustrated that the transformer-based model still has
its own limitations, which are not always revealed by the
standard datasets, e.g. learning to reliably recognize names
(countries, cities, companies, etc.) and their relatedness to
a certain topic (e.g. “aviation”), but still sometimes failing
to distinguish between closely related categories such as
“airport” and “airline”. More sensitive datasets and mod-
els will be required in future to overcome those limita-
tions, which we are currently planning. We plan a num-
ber of heuristic improvements, such as integrating training
of the transformer with the semantic classification task on
a deeper level. Another research direction concerns the
lack of resources for training, which can be overcome by
using cross-lingual models, especially between closely re-
lated languages (Doval et al., 2019; Sharoff, 2019; Lample
and Conneau, 2019).
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