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Abstract
People choose particular names for objects, such as dog or puppy for a given dog. Object naming has been studied in Psycholinguistics,
but has received relatively little attention in Computational Linguistics. We review resources from Language and Vision that could be used
to study object naming on a large scale, discuss their shortcomings, and create a new dataset that affords more opportunities for analysis
and modeling. Our dataset, ManyNames, provides 36 name annotations for each of 25K objects in images selected from VisualGenome.
We highlight the challenges involved and provide a preliminary analysis of the ManyNames data showing that there is a high level of
agreement in naming, on average. At the same time, the average number of name types associated with an object is much higher in our
dataset than in existing corpora for Language and Vision, such that ManyNames provides a rich resource for studying phenomena like
hierarchical variation (chihuahua vs. dog), which has been discussed at length in the theoretical literature, and other less well studied
phenomena like cross-classification (cake vs. dessert).
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1. Introduction
A central issue in Language & Vision (L&V) is how speak-
ers refer to objects. This is most prominent for referring
expression generation and interpretation (Kazemzadeh et al.,
2014; Mao et al., 2015; Yu et al., 2016), but it also pervades
virtually any other L&V task, such as caption generation or
visual dialogue (Fang et al., 2015; Devlin et al., 2015; Das et
al., 2017; De Vries et al., 2017). One of the central compo-
nents of referring expressions are object names; for instance,
speakers may name the left object in Figure 1 cake, food, or
dessert, a.o. This aspect of reference has been understudied
in Computational Linguistics and L&V; as a consequence,
it is not clear to what extent current L&V models capture
human naming behavior.
In the same way that it has proven useful to model referring
expressions in visual scenes in an isolated fashion, for which
systems are required to integrate and reason over the visual
scene and context objects in which an object is presented,
we believe there is value in modeling object names on their
own. Specifically, questions that need addressing regard-
ing object naming are (1) how much naming variation is
attested and what factors drive the choice of a name (object
category? individual properties of the object? context?); see
e.g. Rohde et al. (2012) and Graf et al. (2016); (2) how to
make L&V models more human-like with respect to naming,
improving the design of L&V architectures (e.g., Lazaridou
et al. (2015); Ordonez et al., (2016); Zhao et al., (2017)).
In this paper, we present a new dataset, ManyNames, to
provide richer possibilities for both analysis and modeling
of human naming behavior. Existing resources in L&V
that provide object names can be exploited for this area of
inquiry to a limited extent only, as we will detail in Sec-
tion 3, because their low number of annotations per item
prevents reliable assessment of naming preferences, on the
one hand, and variation, on the other. We chose a creation
methodology for ManyNames that overcome these short-
comings in particular.

cake (53), food (19), bread (8), burger (6),
dessert (6), snacks (3), muffin (3), pastry (3)

cake (83)

Figure 1: Names for a cake object in ManyNames (left)
and in Snodgrass’s Naming Norms (right), percentages of
responses in parentheses.

ManyNames v.11 contains 36 crowd-sourced names for 25K
object instances from VisualGenome (Krishna et al., 2016).
It is inspired by picture naming norms as developed in Psy-
cholinguistics (Snodgrass and Vanderwart, 1980; Rossion
and Pourtois, 2004), which is the field that has devoted
the most attention to object naming to date. Picture naming
norms are typically small (500-1K images) and use idealized
drawings (Figure 1, right; but see, e.g., Brodeur et al., (2014)
for exceptions); ManyNames is much larger and uses real-
world images of objects in complex visual contexts, which
makes it suitable for research in L&V.
Here, for reasons of scope and space, we provide preliminary
results on the amount and type of variation we find in the
data. The trends we identify in the dataset are illustrated in
Figure 1 (left): Our data reveals clear naming preferences
(in the example, 53% of the annotators prefer the name
cake, corresponding to the so-called basic-level category, see
Section 2) and also rich variation (the remaining annotators
prefer other options like food, dessert, bread ) that is not
restricted to taxonomic relations studied in previous work
on naming (Ordonez et al., 2016; Graf et al., 2016): while
food is in a taxonomic relation to cake (it is a hypernym),
dessert highlights a different facet of the object.

1Available at https://github.com/amore-upf/
manynames.

https://github.com/amore-upf/manynames
https://github.com/amore-upf/manynames
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2. Background
2.1. Object Naming as a Linguistic Phenomenon
The act of naming an object amounts to that of picking out
a nominal to be employed to refer to it (e.g., “the dog”, “the
white dog to the left”). Since an object is simultaneously a
member of multiple categories (e.g., a young beagle belongs
to the categories DOG, BEAGLE, ANIMAL, PUPPY, PET, etc.),
all the various names that lexicalize these constitute a valid
alternative, meaning that the same object can be called by
different names (Brown, 1958; Murphy, 2004).
Seminal work by Rosch et al. (1976) inspired a taxonomic
view of object naming, in which names exhibit a preferred
level of specificity or abstraction called the “entry-level”
(Jolicoeur, 1984). This typically corresponds to an interme-
diate level of specificity (basic level, e.g., bird, car), as op-
posed to more generic (super-ordinate, e.g., animal, vehicle)
or more specific categories (sub-ordinate, e.g., sparrow, con-
vertible). However, less prototypical members of basic level
categories tend to be instead identified with sub-ordinate
categories (e.g., a penguin is typically called penguin and
not bird ; Jolicoeur (1984)).
While the traditional notion of entry-level categories sug-
gests that objects tend to be named by a single preferred
concept, research on pragmatics has found that speakers
adopt their naming choices to the context and, hence, are
flexible with respect to the chosen level of specificity (Olson,
1970; Rohde et al., 2012; Graf et al., 2016). For example, in
presence of more than one dog, the name dog is ambiguous
and a sub-ordinate category (e.g., rottweiler, beagle) is po-
tentially preferred by speakers. The effect of such distractor
objects on the production of referring expressions has been
widely examined in the language generation community
(Krahmer and Van Deemter, 2012), though not specifically
for object naming. We believe that our new dataset provides
an interesting resource for tackling this question.
The purely taxonomic view on naming has also been criti-
cized in work on object organization, which found that many
objects of our daily lives are part of multiple category sys-
tems at the same time (Ross and Murphy, 1999; Shafto et al.,
2011). This cross-classification occurs, for instance, with
food categories which can be taxonomy-based (e.g., meat,
vegetable) or script-based (e.g., breakfast, snack ). We pro-
vide tentative evidence that cross-classification is indeed
relevant for naming variation, and that the taxonomic axis is
not the most frequent source of variation in our data.

2.2. Picture Naming in Cognitive Science
An important experimental paradigm in work on human
vision and categorization is picture naming, where subjects
have to say or write down the first name that comes to
mind when looking at a picture of (typically) a line drawing
depicting a prototypical instance of a category (Snodgrass
and Vanderwart, 1980; Rossion and Pourtois, 2004), see
Figure 1. Subjects reach very high agreement in this task
(Rossion and Pourtois, 2004), i.e. for a given object, there is
a clear tendency towards a certain name across all speakers.
The resulting naming norms are useful for studying various
cognitive processes (Humphreys et al., 1988). Our task
is inspired by picture naming, but uses real-world images
showing objects in context.

2.3. Object Recognition in Computer Vision
In Computer Vision, object recognition is often modeled
as a classification task where state-of-the-art systems iden-
tify objects by classifying them into thousands of different
categories (Szegedy et al., 2015; Russakovsky et al., 2015).
Current recognition benchmarks use labels and images from
the ImageNet (Deng et al., 2009) ontology, and typically
assume a single ground-truth label. The construction of
ImageNet was set up as a two-stage procedure: (i) images
for given categories in the ontology were automatically col-
lected by querying search engines, (ii) crowd-workers then
verified whether each candidate image is an instance of the
given category. Other data collection efforts for object labels
also used a predefined vocabulary and asked annotators to
mark all instances of these categories in a set of images (Lin
et al., 2014; Kuznetsova et al., 2018). Recently, Pont-Tuset
et al. (2019) have argued for annotation of object labels
using free form text though here this free vocabulary is then
mapped to a set of underlying classes. Thus, even though
object recognition benchmarks do provide images of objects
and categories, they generally do not provide what we are
interested in in this work, namely natural names of objects.

2.4. Object Naming in L&V
Previous work in L&V has collected and used datasets where
annotators produced free and natural utterances for a given
image. These datasets typically record utterances that are
more complex than a single word, such as image captions
(Fang et al., 2015; Devlin et al., 2015; Bernardi et al., 2016),
referring expressions (Kazemzadeh et al., 2014; Mao et
al., 2015; Yu et al., 2016), visual dialogues (Das et al.,
2017; De Vries et al., 2017) or image paragraphs (Krause
et al., 2017). While object names occur in all of these
datasets, they are not necessarily marked up and linked to
the corresponding image regions. The overview in Section 3
will discuss corpora where the grounding of names of objects
to their regions is given, as in the case of VisualGenome
(Krishna et al., 2016), or where it can be easily derived, as
in the case of referring expressions.
Our new collection, ManyNames, focusses on object names
in isolation and is substantially more controlled than com-
mon L&V datasets. This controlled collection procedure
allowed us to elicit many names for the same object from
different annotators, resulting in a dataset that is amenable
to studying systematically and on a large scale the core
phenomena of object naming, viz. naming variation and
preferences.

3. Object Names in Existing L&V Resources
We identified three previously existing resources that can
be of use for analysis and modeling of object naming: Ref-
COCO (and a variant, RefCOCO+), Flickr30k Entities, and
Visual Genome. Table 1 summarizes their main characteris-
tics and compares them to our dataset (last two columns; see
Section 4). As the table shows, previous datasets provide
between one and three annotations per object, which, we
believe, is not enough to assess naming behavior for individ-
ual objects and which motivates our data collection. In the
following, we will look at their characteristics in more detail
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RefCOCO/+ Flickr30kE VG VGmn MN

# objects 50,000 243,801 3,781,232 25,315 25,315
name vocabulary size 5,004 10,423 105,441 1,061 7,970
av. annotations/object 2.8 2.3 1.7 7.2 35.3
ratio of objects with # types > 1 0.7 0.3 0.02 0.05 0.9
av. # name types/object 1.9 1.4 1 1.1 5.7

Table 1: Overview statistics for different datasets containing object naming data. VGmn shows statistics for the subset of VG
that overlaps with our ManyNames dataset.

and work out requirements for a dataset that is suitable for a
large-scale study of object naming.

3.1. RefCOCO and RefCOCO+
Both RefCOCO and RefCOCO+ (Yu et al., 2016) use the
ReferIt (Kazemzadeh et al., 2014) game for collecting re-
ferring expressions (RE) for natural objects in real-world
images, and are built on top of MS COCO (Lin et al., 2014),
a dataset of images of natural scenes of 91 common object
categories (e.g., DOG, PIZZA, CHAIR). The REs were col-
lected via crowdsourcing in a two-player reference game
designed to obtain REs uniquely referring to the target ob-
ject. Specifically, a director and a matcher are presented
with an image, and the director produces a RE for an out-
lined target object. The matcher must click on the object she
thinks the RE refers to. REs in RefCOCO/+ were collected
under the constraints that (i) all images contain at least two
objects of the same category (80 COCO categories), which
results in longer and more complex REs than just the object
name, and (ii) in RefCOCO+ the players cannot use certain
location words, urging them to refer to the appearance of
objects.
Table 1 shows that the multiple annotations (2.8 on aver-
age) actually contain a considerable amount of variation in
naming (almost 2 different names on average per object).
However, the small number of annotations per object does
not allow to reliably infer object-specific naming preferences
or assess speaker agreement.
RefCOCO has been used to model and examine the effect
of context on referring expression generation in general
(Yu et al., 2016), though this work did not look at object
names specifically. A controlled analysis of the effect of
context on choice in naming, as for instance in (Graf et al.,
2016), would require substantial further data annotation as
not all objects of an image are annotated with REs and cor-
responding categories. Hence, so-called distractor objects
(Krahmer and Van Deemter, 2012) and their names cannot
be analyzed systematically. Also, while in RefCOCO the
elicited names can be assumed to be natural, it is unclear
how the additional constraints in RefCOCO+ impact on the
naturalness of object naming. Finally, the underlying set of
MS COCO categories is quite small (80 categories). To sum
up, RefCOCO is suitable for generally modeling referring
expressions in context for a restricted set of categories, but
less appropriate for analyzing object naming at a large scale.

3.2. Flickr30k Entities
The Flickr30k Entities dataset (Plummer et al., 2015) aug-
ments Flickr30k, a dataset of 30k images and five sentence-

object id linked region descriptions
3595788 the bird is black in color, nose of the bird, a bird

relaxing in stand, small white beak of bird, large
black talon of bird, a bird on a green pole, a
green bar under bird, black bird on green rail,
small black eye of bird

2286017 large black vulture on fence, a vulture on bar
2681429 a semi long beak
2346210 a black and gray vulture

Figure 2: Bounding boxes, names and region descriptions
for an object in VisualGenome

level captions for each of the images, with region-level de-
scriptions extracted from the captions. Specifically, men-
tions of the same entities across the five captions of an image
are linked to the bounding boxes of the objects they refer to.
This dataset has three main differences with respect to Ref-
COCO/+: (i) the entity mentions were obtained via an image
description task (captioning), as opposed to a referential
task; (ii) the images and the production of entity mentions
were not subject to any constraints; (iii) a much wider range
of categories are covered (cf. the number of objects and
the vocabulary size in Table 1). Moreover, although no ex-
haustive annotations of the images are available, the dataset
does contain information for the most salient objects in the
image, as they are typically mentioned in the captions. The
number of annotations per object, 2.3 annotations, is compa-
rable to RefCOCO. This dataset is suitable to analyze object
naming in descriptions, for a quite large set of categories
(although, again, not enough annotations are available to
analyze image-specific naming data).

3.3. Visual Genome
VisualGenome (VG, Krishna et al. (2016)) is one of the most
densely and richly annotated resources currently available
in L&V; here, we focus on aspects immediately relevant to
object naming. VG aims at providing a full set of descrip-
tions of the scenes which images depict in order to spur
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Domain Collection synsets

animals plants ungulate1 (2037), horse1 (833), feline1 (763), dog1 (688) bird1 (389), flower1 (44), rodent1 (27), insect1 (12),
fish1 (11)

buildings house1 (364), bridge1 (297), shelter1 (169), restaurant1 (58), outbuilding1 (31), hotel1 (19), housing1 (17),
place of worship1 (12)

clothing shirt1 (968), overgarment1 (786), dress1 (199), headdress1 (135), neckwear1 (65), robe1 (27), glove2 (7),
footwear1 (5)

food dish2 (812), baked goods1 (770), foodstuff2 (280), vegetable1 (48), edible fruit1 (42), beverage1 (23)
home furnishing2 (5,355), vessel3 (525), kitchen utensil1 (132), crockery1 (92), cutlery2 (82), tool1 (72), lamp1 (34)
people woman1 (1768), man1 (1167), male child1 (853), athlete1 (396), child1 (333), creator2 (11), professional1 (5)
vehicles aircraft1 (1208), train1 (957), car1 (727), motorcycle1 (564), truck1 (559), boat1 (499), ship1 (38)

Table 2: Overview of the ManyNames dataset: Synset nodes for each domain (subscript indicates synset number; number of
instances in parentheses).

complete scene understanding. The data collection followed
a complex procedure, involving many different rounds of
annotation. The first round of the procedure, and the basic
backbone for the further rounds, is a collection of region-
based descriptions: workers were asked to describe regions
in the image and draw boxes around the corresponding area
in the image (for examples, see Figure 2).
In a second, independent round (involving new workers),
annotators were asked to process the region descriptions by
(i) marking the object names contained in the region descrip-
tion, and (ii) drawing a tight box around the correspond-
ing region. As different region descriptions can potentially
mention the same objects, each worker was shown a list
of previously marked objects and encouraged to select an
existing object rather than annotating a new one.
Some of the main advantages of VG are its size, with 3.8 mil-
lion objects (108K images) as opposed to 50K and 243K
for the other two datasets, and its category coverage, with a
vocabulary of object names of 105K compared to 5K/10K.
Another plus is the fact that it in principle provides exhaus-
tive annotations of objects in an image, often with several
region descriptions and possibly object names per object.
This should make it easier to identify factors intervening in
naming choices, and to model contextual aspects that may
affect them, than in the case of RefCOCO.
However, there is a crucial pitfall: As Figure 2 shows, there
is only a partial linking of objects that are mentioned across
different region descriptions; for instance, the first, second,
and fourth object ID in the figure actually correspond to
the same object. Moreover, the region for the beak of the
object (third object IDs) overlaps with those of the bird. Fi-
nally, even though there is a different name (vulture) for
bird in Figure 2, the annotation suggests that bird is the only
available name. Hence, the identity of objects cannot be
established based on the annotation, which severely limits
the usefulness of the data to analyze naming. The relatively
low number of 1.7 annotations per objects on average in VG
(Table 1) and the very small number of objects that have
more than one name associated with it (2%) seem to be
an effect of this partial linking problem. We experimented
with filtering and merging bounding boxes based on over-
lap, but this would introduce substantial noise into the data
(e.g., truly overlapping objects).
Table 1 also shows the statistics for the subset of those VG
objects that we selected for ManyNames and, here, we find a

considerably higher average of 7 annotations per object. We
think that this might be an effect of our category selection
procedure explained in Section 4. However, interestingly,
the portion of objects that have different names associated
with them is still extremely small. Note that in contrast,
even though RefCOCO has much less annotations per object,
there are many objects with different names (70%).

3.4. Discussion
While some existing resources do provide naming data for
objects in context, they do not provide enough data to sys-
tematically assess how variable or stable object naming
really is. The RefCOCO data (and to some extent the
Flickr30k data) suggests that for most objects there is more
than one available name, but it is unclear which name most
speakers would prefer or whether there is such a preferred
name at all. The VG data, to the contrary, seems to indicate
that the vast majority of objects should only be associated
with a single name, but it is difficult to estimate to what
extent this finding results from problems with annotation
(partial linking). This shows that to be able to analyze object
naming in more detail, it is crucial to have naming data from
many subjects for the same objects. Also, dense annotations
of images can be beneficial to analyze the factors affecting
naming (e.g., the category or salience of other objects), and
how these impact the modeling of natural language in L&V.
These are the motivations for our dataset, ManyNames, and
for building it on top of VG, as discussed next.

4. A New Dataset: ManyNames
We take data from VisualGenome (VG) because its dense
annotations of images can be beneficial to analyze the factors
affecting naming (e.g., the category or salience of other
objects), and how these impact the modeling of natural
language in L&V. VG suits our purpose of collecting names
for naturalistic instances of common objects, as it has images
of varying complexity, with close-ups as well as images
with many objects. Moreover, its object names are linked
to WordNet synsets (Fellbaum, 1998), which allows for
analysis possibilities that we will exploit in Section 5. Note
that, as common in Computer Vision, objects in VG images
are localized as bounding boxes, as shown in Figure 1 (left).2

2We use image and object interchangeably in the following,
since we only selected one target object per image (i.e., each object
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Figure 3: Number of images and top responses (most frequent name per image), per domain. All high-frequency names are
shown, as well as a few lower-frequency names.

4.1. Sampling of Instances
We selected images from seven domains: ANI-
MALS PLANTS, BUILDINGS, CLOTHING, FOOD, HOME,
PEOPLE, VEHICLES. They are all based on McRae
et al.’s (2005) feature norms, a dataset widely used in
Psycholinguistics that comprises common objects of
different categories, except for PEOPLE, which we added
because it is a very frequent category in VG and a very
prominent category for humans.
Within each domain, we aimed at collecting instances at
different taxonomic levels to cover a wide range of phe-
nomena, but this is not straightforward because ontological
taxonomies do not align well with the lexicon (for instance,
dog and cow are both mammals, but dog has many more
common subcategories), and most domains are not orga-
nized in a clear taxonomy in the first place (e.g., HOME).
Instead, we defined a set of 52 synsets (listed in Table 2)
that we used to collect object instances from VG, as follows.
First, to create our synset set, we chose those VG synsets that
match or subsume the object classes in the McRae norms,
and cover different names in VG. For example, VG instances
subsumed by McRae’s dog were named dog, beagle, grey-
hound, bulldog, etc., while McRae’s duck, goose, or gull
did not have name variants in VG, so we kept dog and bird
(which subsumes duck, goose, or gull ) as collection synsets.
We then retrieved all VG images depicting an object whose
name matches a word in these collection synsets or in those
subsumed by them. We refer to the names obtained as seeds
(450 in total). We did not consider objects with names
in plural form, with parts-of-speech other than nouns3, or
that were multi-word expressions (e.g., pink bird ). We
further only considered objects whose bounding box cov-
ered 20− 90% of the image area. Because of the Zipfian
distribution of names, and to balance the collection, we
sampled instances depending on the size of the seeds: up
to 500 instances for seeds with up to 800 objects, and up

and image in VG is chosen at most once).
3We obtained tags with CoreNLP (Manning et al., 2014).

to 1K instances for larger seeds. This yielded a dataset of
31, 093 instances, which was further pruned during annota-
tion, as explained next. Figure 3 shows the distribution of
images and names in ManyNames per domain.

4.2. Elicitation Procedure
To elicit object names, we set up a crowdsourcing task on
Amazon Mechanical Turk (AMT). In initial pilot studies,
we found object identification via bounding boxes to be
problematic. In some cases, the bounding box was not
clear; in others, AMT workers named objects that were
more salient than the one signaled by the box (e.g., for a
box around a jacket, the man wearing it). We took special
care of minimizing this issue in two ways: Specifying the
instructions such that workers pay close attention to what
object is being indicated in the box, and pruning images with
unclear boxes or occluded objects via an initial collection
round in which we allowed workers to mark such cases.
Figure 4 shows the task instructions for this first round, in
which 9 workers annotated each image.
After the first round, and based on the opt-out annotation,
we kept images that met all the following conditions (thresh-
olds were chosen by manually inspecting the remaining and
discarded instances, respectively, depending on different
threshold values): (i) they were not marked as occluded by
any subject; (ii) “Bounding box is unclear” was marked at
most twice; (iii) at most 17% of elicited names were in plu-
ral form (to remove cases where the bounding box contains
several objects); (iv) the most frequent elicited name is of
the same domain as the VG name. This yielded 25, 596 im-
ages (we discarded 5, 497). We then did 3 more collection
rounds, obtaining a total of 36 annotations per object. Fig-
ure 5 shows the instructions for these rounds; they were
accompanied by a FAQ solving common issues. We shuf-
fled the set of images per task between rounds, and workers
could only participate in one round, to avoid workers anno-
tating an instance more than once. Overall 841 workers4

4Participation was restricted to residents of the UK, USA,
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Figure 4: Instructions for AMT annotators for the first round (whole instructions showed more examples, see Figure 5).

Figure 5: Instructions for AMT annotators for rounds 2 to 4.

took part in the data elicitation, with a median of 261 in-
stances (range = [9, 17K]) per worker.

5. Analysis
As shown in Table 1 above, ManyNames gathers many more
names per object than previous datasets: 35.3 on average,
compared to 1−7. It also contains the most variability, since
objects have on average 5.7 names (compared to 1− 1.9).
Figure 6 shows some example datapoints of ManyNames
with high and low name agreement. ManyNames shows
high potential use for studying the degree of inter-subject
naming agreement, and what factors influence variation.
Data analysis shows that object identification remains an
issue in our data, though: Despite our care in filtering out
objects that are occluded or have unclear bounding boxes
(see Section 4), we still find many examples where annota-
tors identified different objects for the same box. Typically,
workers named an adjacent object or one supported by the
target object (such as toy/book instead of bed in Fig. 6,
image K), or a part of the target object. While some of these
cases are arguably annotation errors, in many cases it is not
possible to distinguish which object is being indicated by
the box, as in the bed/sleeping bag case in Fig. 6 (image L).
Referential uncertainty of this kind is a roadblock for the
use of L&V resources to study naming variation. Note that

Canada, New Zealand, and Australia.

pointing gestures in natural communication are as referen-
tially uncertain as bounding boxes, if not more; however,
typically those gestures are grounded in a specific discourse
context, which helps to reduce uncertainty. In future work,
we plan to filter out these cases.

5.1. Naming Variation and Agreement
We analyze the response sets obtained per object, that is, the
set of names and their frequency (number of annotators en-
tering a particular name). Our analysis of naming variation
shows that, on the one hand, we have a fair bit of consistency
in the names chosen for objects, and, on the other, also con-
sistent variation. Figure 7 shows the cumulative histograms
for type counts, i.e. how many objects have at least n names,
with different frequency thresholds t. Without any frequency
thresholding t=1, that is, allowing names entered by only
one annotator, the proportion of instances that have a single
name annotated is very small, below 10%, and there is a long
tail of datapoints with many names, up to 19. With a rea-
sonable threshold of t=2 (based on data inspection; names
entered by one annotator only have the most noise, which
is to be expected), a bit over 20% of the objects have one
name, almost 50% up to 3 names, and 100% up to 8 names.
This threshold is used in Fig. 6, showing names that have at
least frequency 2. The average number of names with this
threshold is 2.9, and the most frequent name accounts on
average for 75% of the responses for a given object (Table 3,
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A: sandwich (34) B: sandwich (15), basket
(6), food (5), burger (2),
hamburger (2), meal (2)

C: food (10), sandwich (8),
toast (5), french toast (4),
dessert (2), breakfast (2)

D: hotdog (14), food (7), bun
(4), sandwich (3), bread (2)

E: bridge (35) F: bridge (20), building
(11)

G: street (16), road (15),
bridge (3)

H: pier (6), railing (5), dock
(5), bridge (5), fence (4), rail
(3), boardwalk (3)

I: bed (36) J: bed (16), bench (6), crib
(5)

K: bed (17), book (6), table
(4), toy (3), bible (2), doll (2)

L: bed (12), sleeping bag (9),
blanket (7), bed sheet (5)

Figure 6: VG images labeled sandwich, bridge, and bed (top to bottom row) with high to low agreement in ManyNames.

Figure 7: Cumulative histograms for number of types in
ManyNames, with frequency thresholds

and see below). Hence, in our data, objects tend to have
a preferred name, as expected from work in Psychology
(Rosch et al., 1976; Jolicoeur, 1984), but at the same time
there is variation.
To further assess agreement on the object names, we check
the following measures, computed with t=2, with results in
Table 3:

• N: the average number of types in the response set.

• % top: the average relative frequency of the most
frequent response (shown in percent).

• H: the H agreement measure from (Snodgrass and
Vanderwart, 1980), where 0 is perfect agreement:
H =

∑k
i=1 pi log2

1
pi

, where k denotes the number of

Domain N %top (std) H (std) t=VG %VG

all 2.9 75.2 (21.9) 0.9 (0.7) 72.8 62.8

people 4.3 59.0 (20.4) 1.5 (0.7) 49.8 36.3
clothing 3.2 70.1 (18.5) 1.1 (0.6) 70.2 57.4
home 3.1 72.6 (20.7) 1.0 (0.7) 78.5 64.1
buildings 3.0 74.7 (20.7) 1.0 (0.7) 72.6 61.6
food 2.9 76.4 (20.7) 0.9 (0.7) 62.9 55.2
vehicles 2.4 76.6 (19.8) 0.8 (0.6) 71.1 63.9
animal plants 1.5 94.5 (12.1) 0.2 (0.4) 93.8 91.0

Table 3: Agreement in object naming, with a frequency
threshold of 2.

name types and pi is the proportion of type i in the
responses.

• t=VG: the percentage of items where the top response
in ManyNames is the VG name.

• % VG: the average relative frequency of the VG name
in the response set.

Apart from the trends mentioned above, it is remarkable
that only in 73% of the cases the most frequent response
coincides with the VG name, and the VG name accounts
for 63% of the responses on average. Our dataset can be
expected to yield a more robust estimate for so-called entry-
point names (Jolicoeur, 1984), that is, the name that most
naturally comes to mind for a given object. The H mea-
sures indicate a fair amount of agreement, a bit lower than
in picture norming studies on artificial idealized images
(e.g. Snodgrass and Vanderwart (1980) report an average H
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of 0.55), which can be expected when using real images.
If we check agreement by domain, two domains stand out:
the ANIMALS PLANTS domain, which is often discussed in
the literature and where we find almost perfect agreement
(H = 0.2), and the PEOPLE domain with a particularly low
agreement. Across domains, however, we find a large stan-
dard deviation for both %top and H , of around 20% for
all domains except PEOPLE. This indicates that agreement
varies quite a bit across instances, with factors that cannot
be attributed to domain only. The qualitative examples in
Figure 6 illustrate this, showing instances with very high
or low agreement. These suggest that instances which are
more prototypical of a category trigger higher agreement, al-
though further research is necessary to examine the relevant
factors. The following section will examine other sources of
variation in object naming.

5.2. Sources of Variation
Previous work on object naming has assumed that variation
is mostly along a taxonomic axis, and in particular hierarchi-
cal (see Section 2). This parameter does not seem to explain
the variation in ManyNames. Table 4 shows the distribution
of the lexical relations between ManyNames responses and
the original VG annotation, estimated from WordNet. To
obtain these data, we exploited the synset annotation in the
VG names, and added automatic linking for the additional
ManyNames names, with a simple first-sense heuristic.5 As
shown in the table, in the vast majority of cases, no hier-
archical relation between the name and the synset can be
retrieved from WordNet. Even factoring in the noise in-
troduced by referential uncertainty, it is clear that a good
portion of our data cannot be explained by variation in the
level of abstraction of the chosen name. Among the names
that do have a taxonomic relation to the synset, hypernyms
are the most frequent, meaning that our annotators often
chose a more general name than the VG annotators.
In a qualitative analysis, we found the following types
of variation in the data, illustrated with examples in Fig-
ure 6: Cross-classification: a substantial group are names
conceptualizing alternative aspects of the same object (e.g.
toast/dessert, image C). Conceptual disagreement: as we
did not filter objects for prototypicality, our data mirrors a
certain amount of disagreement between speakers as to what
an object is (bed/bench, image J). Metonymy: we find ex-
amples reminiscent of metonymy discussed in the linguistic
literature (Pustejovsky, 1991) where logically related parts
of an object stand in as its name (burger/basket, image B).
Issues with WordNet: due to WordNet’s fine-grained hi-
erarchy, it is difficult to retrieve certain loose synonyms or
hypernyms (robe/dress, image not shown).

6. Conclusion
The question of how people choose names for objects pre-
sented visually is relevant for Language and Vision, Com-
putational Linguistics, Computer Vision, Cognitive Science,

5To detect hypernyms, we use the hypernym closure of the
synset with a depth of 10; the other relations are straightforward.
The coverage of WordNet for our name data is satisfactory (90%
of the name types, accounting for 97% of the tokens).

relation % types % tokens ex: jacket

word-not-covered 10.6 2.6 outdoor vest

synonym 1.1 1.1 hoodie
hyponym 2.2 3.8 parka
co-hyponym 3.1 5.9 raincoat
hypernym 10.5 27.7 clothing
rel-not-covered 72.2 58.3 sweatshirt

Table 4: Lexical relations of naming variants in ManyNames
to annotated VG synset, averaged over synsets, with exam-
ples of variants for jacket.

and Linguistics. We have surveyed datasets that can be use-
ful to address this question, and proposed a new dataset,
ManyNames, that affords new possibilities both for analysis
and modeling of object naming.
For Computer Vision and L&V, our data highlights the fact
that bounding boxes are often ambiguous, which can af-
fect model performance on object recognition and naming.
Crucially, evaluations in these tasks assume that object iden-
tification is possible based on the box; beyond showing that
this is not always the case, our data can be used to assess
whether model mistakes are plausible (similar to those of
humans, as in the toy/book/bed case), or really off.
Moreover, standard evaluations assume that object names (or
categories) are unique. The ability to distinguish incorrect
object names from good alternatives is essential for visual
object understanding. Our data provides a first step towards
enabling model evaluation on naming variants of an instance,
checking, e.g., to what extent the top N predicted names are
valid alternatives (dog, animal, pet) or not (dog, hat, grass).
However, to fully enable this kind of analysis, a further
annotation step is needed, to account for the referential
uncertainty of bounding boxes and annotation noise. We
plan to take this step in future work, which will also enable
more robust conclusions with respect to naming variation.
Our current data supports the prediction in theoretical re-
search on object naming that there will often be a preferred
(entry-level) name for a given visually presented object. It
tentatively suggests that (a) there is also consistent variation
in naming, with an average of almost three elicited names
per instance; (b) much of this variation cannot be explained
by adopting a hierarchical view, which has been dominant in
the psycholinguistic and computational literature; (c) there
is high variability in agreement across instances within the
same domain. The latter suggests that there are specific
visual characteristics of either the object itself or the visual
context in which it appears that trigger variation. With pro-
totypical, idealized pictures of the sort used in traditional
studies (see Figure 1), this observation would not be pos-
sible. These findings also show WordNet’s limitations in
its use for visual object naming (Ordonez et al., 2016, a.o.):
while, for a particular object, synonyms and hypernyms may
be retrieved as name alternatives, hierarchically unrelated
alternatives cannot, nor does WordNet provide information
on object-specific naming preferences.
We hope that ManyNames triggers more empirical research
on object naming, a topic that has been understudied in both
computational and theoretical approaches to language.
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