
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5688–5697
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5688

The DAPRECO knowledge base: representing the GDPR in LegalRuleML

Livio Robaldo, Cesare Bartolini, Gabriele Lenzini
University of Luxembourg

2, avenue de l’Université, 4365 Esch-sur-Alzette, Luxembourg
{livio.robaldo, cesare.bartolini, gabriele.lenzini}@uni.lu

Abstract
The DAPRECO knowledge base (D-KB) is a repository of rules written in LegalRuleML, an XML formalism designed to represent the
logical content of legal documents. The rules represent the provisions of the General Data Protection Regulation (GDPR). The D-KB
builds upon the Privacy Ontology (PrOnto) (Palmirani et al., 2018a), which provides a model for the legal concepts involved in the
GDPR, by adding a further layer of constraints in the form of if-then rules, referring either to standard first order logic implications or to
deontic statements. If-then rules are formalized in reified I/O logic (Robaldo and Sun, 2017) and then codified in (LegalRuleML, 2019).
To date, the D-KB is the biggest knowledge base in LegalRuleML freely available online at (Robaldo et al., 2019).

Keywords: Reification, LegalRuleML, GDPR

1. Introduction
In the years 2010-2016, research in Computational Law had
primarily focused on the application of NLP methods to le-
gal texts, for designing legal document management sys-
tems to assist legal professionals in retrieving the informa-
tion they are interested in. An example is the Eunomos
legal document management system (Boella et al., 2016).
Eunomos and similar systems classify, index, and discover
inter-links between legal documents, possibly by employ-
ing NLP techniques (see (Robaldo et al., 2011), (Boella et
al., 2012), and (Adebayo et al., 2016). This is often done
by transforming the source legal documents into XML stan-
dards, such as Akoma Ntoso (Palmirani and Vitali, 2011),
and tagging the relevant information. Subsequent phases
are devoted to archiving and querying the XML files.
Documents are tagged with respect to legal ontologies, e.g.,
(Ajani et al., 2017). These encode formal naming and def-
initions of the concepts involved in the modeled domain,
which enables reuse and cross-document navigation and
search. The ontological concepts may also be linked to
other concepts from external public ontologies from the
Web of Things, including Linked Open Data (LOD), thus
enhancing the interoperability, the standardization, and the
reasoning capabilities of the resources.
Although the joint use of Akoma Ntoso and legal ontolo-
gies indeed helps navigate legislation, its overall usefulness
is limited due to the focus on terminological issues and in-
formation retrieval, all the while disregarding the specific
semantic aspects of law. Determining what is obligatory,
permitted, or forbidden, which obligations have been ful-
filled or violated, and which ones are still in force, allow
inferences that can be expended in decision making.
For this reason, recent research in Computational Law led
to the identification of a new level devoted to logic rules, as
exemplified in Figure 1. Systems such as Eunomos incor-
porate the first two levels in Figure 1, while the third one
(logic rules) is still at the stage of basic research.
A new standardization initiative called (LegalRuleML,
2019) has been recently proposed to explicitly deal with
this new level. LegalRuleML separately represents and
stores the logical content of the provisions, while associ-

Figure 1: Three levels in Computational Law

ating them with both the paragraphs of the Akoma Ntoso
documents and the concepts in the legal ontology.
LegalRuleML provides a set of XML tags to encode for-
mulæ in some logic. In this paper, we will consider reified
I/O logic (Robaldo and Sun, 2017), a novel formalism to
represent legal provisions in natural language.
This paper presents an implementation, formalized in rei-
fied I/O logic and encoded in LegalRuleML, of the third
level in Figure 1, with respect to the GDPR.
This is the DAPRECO knowledge base (D-KB), the main
tangible output of the DAPRECO (DAta Protection REgu-
lation COmpliance) research project (Bartolini et al., 2016).
The D-KB is built upon recent research results obtained in
the context of the (MIREL, 2019) project, which cover the
first two levels in Figure 1, with respect to the GDPR:

- The GDPR has been tagged in Akoma Ntoso. The
indexes of the structural elements (paragraphs, points,
etc.) of the Akoma Ntoso file are used within the D-
KB in order to associate these elements with the reified
I/O logic formulæ representing their meaning.

- An ontology called PrOnto (Privacy Ontology) has
been developed in OWL2-DL (Palmirani et al.,
2018a), (Palmirani et al., 2018b). PrOnto concepts are

5689

associated with the predicates used in the formulæ in
the D-KB, via LegalRuleML.

PrOnto has been built via standard minimization princi-
ples from the ontology engineering literature (Brank et al.,
2005; Bandeira et al., 2016). Thus, PrOnto does not truly
fit for legal reasoning: PrOnto only defines the main con-
cepts involved in the GDPR and their inter-relations, but
it lacks another component necessary for legal reasoning:
defeasibility (cf. (Casini et al., 2015)).
Reified I/O logic has been precisely designed to represent
deontic statements in natural language, possibly defeasible,
by means of a simple formal machinery that facilitates the
creation of large knowledge bases of formulæ.
The next sections, after a quick introduction of reified I/O
logic, will focus on some of the main Natural Language Se-
mantics issues encountered during the development of the
D-KB, and how reified I/O logic is able to cope with them.
On the other hand, since XML is rather verbose, space con-
straints forbid us to report the corresponding LegalRuleML
representations in this paper; however, these are publicly
available online at (Robaldo et al., 2019).
Overall, the D-KB includes 966 formulæ formalized in rei-
fied I/O logic and encoded in LegalRuleML. It thus repre-
sents a benchmark for the XML legal standard: no other so
large repositories of LegalRuleML representations are pub-
licly available online. In future works, we plan to conduct
further research on the top of the D-KB and to develop ap-
plications in the data protection domain that use it.

2. Reified I/O logic
Reified I/O logic (Robaldo and Sun, 2017) is a recent novel
formalism for representing norms in textual form. It com-
bines I/O logic (Makinson and van der Torre, 2000) with
the reification-based logic in (Hobbs and Gordon, 2017).

2.1. I/O logic
I/O logic is a formalism for deontic reasoning. Unlike log-
ics based on possible-world semantics, I/O logic adopts
norm-based semantics in the sense of (Hansen, 2014).
I/O systems are families of if-then rules in the form (x, y),
such that when x is given in input, y is returned in out-
put. Further axioms may be added to constrain the be-
havior of the if-then rules. For instance, (Makinson and
van der Torre, 2001) define additional meta-structures to
handle contrary-to-duty reasoning. Moreover, as (Sun and
Robaldo, 2017) shows, I/O logic features a computational
complexity lower than other deontic logics, in particular
those based on possible-world semantics. These issues are
beyond the scope of this paper, so that we address the inter-
ested reader to the mentioned references.
(Boella and van der Torre, 2004) was the first attempt to use
I/O logic for legal reasoning. The approach is based on the
well-known distinction between regulative norms and con-
stitutive norms (Searle, 1995). The former are obligations,
permissions, and prohibitions, i.e., the deontic statements.
The latter are definitions that model the meaning of the con-
cepts used in the former. Drawing from (Boella and van der
Torre, 2004), (Sun and van der Torre, 2014) propose to use
two sequential I/O systems, as shown in Figure 2:

C � f(a; a); (a; b);

(b;); (; d); : : :g

onstitutive norms

fa; ; : : :g fa; b; d; : : :g

fats institutional

fats

O � f(b; e); (d; f); : : :g

P � f(a; g); (b; h); : : :g

regulative norms

fe; f; : : :g; fg; h; : : :g

obligations&

permissions

Figure 2: I/O logic system for the legal domain.

The first set C is the set of constitutive norms. Every pair
(x, y) ∈ C is a standard first-order implication ‘x → y’.
C takes as input the facts of the domain and returns the in-
stitutional facts. In (Searle, 1995)’s terminology, C defines
when something counts as something else in the domain.
The output of C is given in input to other two sets of pairs,
O and P : the set of obligations and the set of permissions.
A pair (x, y) ∈ O reads as “given x, y is obligatory”, while
a pair (x, y) ∈ P reads as “given x, y is permitted”.
We can then compute, under different axioms on C, O, and
P , what is obligatory, permitted, or forbidden, which obli-
gations have been fulfilled or violated, and which ones are
still in force; details in (Makinson and van der Torre, 2000).

2.2. (Hobbs and Gordon, 2017)
(Hobbs and Gordon, 2017)1 proposes a wide-coverage
logic for natural language able to handle a large set of lin-
guistic phenomena into a formally simple formalism. It is
grounded on the notion of reification (Davidson, 1967).
In (Hobbs and Gordon, 2017), every FOL predication, e.g.,
‘(blond John)’ asserting that John is blond, may be asso-
ciated with another FOL predication ‘(blond’ eb John)’,
where eb is a new FOL term called “eventuality”. eb is the
reification of John’s “blond-ness”, i.e., it represents the fact
that John is blond. Other predications may be then applied
to eb, and recursively reified into new eventualities. For
instance, we may represent “John wishes to be blond” as:

(1) (wish’ ew John eb) ∧ (blond’ eb John)

In order to distinguish that the fact that John wishes to be
blond (variable ew) holds in the context at time t, while
nothing can be inferred about the fact that John is blond
(variable eb), we assert ‘(RexistAtT ime ew t)’. Only
eventualities for which RexistAtT ime is asserted on t re-
ally exist at time t. The final representation is then:

(2) (RexistAtT ime ew t) ∧ (wish’ ew John eb) ∧
(blond’ eb John)

(Hobbs and Gordon, 2017)’s logic is characterized by a
massive use of reification, which may be applied to every
relation on FOL terms, including boolean operators. For
instance, ‘(not′ e1 e2)’ is used to assert that e1 is the even-
tuality of e2’s not existing, while ‘(or′ e e1 e2)’ states that
e is the fact that at least one of e1 and e2 really exists.
In order to get the intended meaning, not′ and or′ need
to be defined in terms of additional axioms/definitions: (3)
and (4) respectively. (3) states that if two eventualities e
and e1 are related to each other in terms of a not′ relation,
whenever e really exists, e1 does not. (4) states that if two
eventualities e1 and e2 are related with a third eventuality e
in terms of an or′ relation, whenever e really exists, at least
one of e1 and e2 really exists too.

1See also http://www.isi.edu/˜hobbs/csk.html.

http://www.isi.edu/~hobbs/csk.html

5690

(3) ∀t∀e∀e1 [((RexistAtT ime e t) ∧ (not′ e e1))→
¬(RexistAtT ime e1 t)]

(4) ∀t∀e∀e1∀e2 [((RexistAtT ime e t) ∧ (or′ e e1 e2))→
((RexistAtT ime e1 t) ∨ (RexistAtT ime e2 t))]

Note that not′ and or′ are not boolean operators. Rather,
they are FOL predicates relating two and three eventualities
respectively. Then, axioms (3) and (4) define their meaning
in terms of the boolean operators ‘¬’ and ‘∨’.
In this paper, we distinguish between formulae belonging to
the assertive contextual statements (ABox), such as (1) and
(2), from formulae belonging to the terminological declar-
ative statements (TBox), such as (3) and (4). The former
are flat conjunctions of atomic predications, while the latter
may be any formula in standard FOL.
With reification, (Hobbs and Gordon, 2017) avoids any
nesting of subformulae within complex operators. This is
the main insight of the approach: modeling complex lin-
guistic phenomena in terms of flat atomic FOL (reified)
predicates in the ABox. The definitions of these predicates
is separately modeled in terms of axioms in the TBox.
In light of this, combining (Hobbs and Gordon, 2017) and
I/O logic appears to be a promising choice. In I/O logic we
assert flat set of if-then rules, constrained by separate ax-
ioms, aiming at modeling the same meaning that standard
deontic logic aims at modeling via complex deontic opera-
tors that embed (nested) subformulae.

2.3. Combining reification and I/O logic
In reified I/O logic, combines (Hobbs and Gordon, 2017)
and I/O logic by taking the elements x and y of every I/O
pair (x, y) in Figure 2 to be (Hobbs and Gordon, 2017)’s
formulae representing excerpts of NL norms.
In other words, the sets C, O, and P (constitutive rules,
obligations, and permissions) defines the ABox of the I/O
normative system in Figure 2. Their elements are always
pairs of conjunctions of atomic predications. On the other
hand, the TBox includes the semantic relations codified
in PrOnto, e.g., the is-a relations between the ontological
classes associated with the predicates, as well as definitions
of other needed predicates, such as (3) and (4) above for
handling negation and disjunction. Note that PrOnto does
not add complexity to the overall system, in that it is written
in OWL2-DL, which is a decidable fragment of FOL.
A first example is the obligation in (5), formalized as in (6):

(5) Those who are not wearing a tie or those who are
blond ought to leave the room.

(6) ∀x∀t(
∃eo∃en∃eb∃ew∃t1 [(RexistAtT ime eo t) ∧

(or′ eo en eb) ∧ (blond′ eb x) ∧
(not′ en ew) ∧ (wearing′ ew x t1) ∧ (tie t1)],

∃el [(RexistAtT ime el t) ∧ (leave′ el x R)]) ∈ O

In (6), universal quantifiers external to the pair are intro-
duced in order to “carry” single individuals from the input
to the output. In other words, they act as a “bridge” from
the left side to the right side. Only variables which occur in
both sides are bound by these quantifiers.

(6) reads as follows: for every x and for every time t, if
at t either x does not wear a tie t1 or x is blond, then it is
obligatory at time t the real existence of a “leaving” action
el from the room R, performed by x.
A more complex example, taken from the D-KB, is the rep-
resentation of the provision in Art. 12(7) of the GDPR:

(7) Art.12(7): The information to be provided to data
subjects pursuant to Articles 13 and 14 may be pro-
vided in combination with standardised icons in or-
der to give in an easily visible, intelligible and clearly
legible manner a meaningful overview of the intended
processing. Where the icons are presented electroni-
cally they shall be machine-readable.

(7) contains both a permission and an obligation, formal-
ized, in the D-KB, as formulæ (8) and (9) respectively.

(8) ∀t1∀y∀en (
∃a1
∃ep∃edp∃w∃z∃x∃i[(RexistAtT ime a1 t1) ∧

(and′ a1 ep en edp) ∧ (DataSubject w) ∧
(PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧
(Communicate’ en y w i)],

∃eat∃ic[(RexistAtT ime eat t1) ∧
(AttachTo′ eat y ic en) ∧ (Icon ic)]) ∈ P

(9) ∀t1∀ic(∃a1
∃ep∃en∃eat

∃el∃edp∃w∃z∃y∃x∃i[
(RexistAtT ime a1 t1) ∧
(and′ a1 ep en eat el edp) ∧ (DataSubject w) ∧
(PersonalData z w) ∧ (Controller y z) ∧
(Processor x) ∧ (nominates’ edp y x) ∧
(PersonalDataProcessing’ ep x z) ∧
(Communicate’ en y w i) ∧ (Icon ic) ∧
(electrForm′ el ic) ∧ (AttachTo′ eat y ic en)],

∃emr
[(RexistAtT ime emr t1) ∧

(machineReadableness′ emr ic)]) ∈ O

Formula (8) contains an and′ predicate2. This is a rela-
tion between multiple eventualities: its first argument (a1,
in (8)) really exists if and only if all other arguments (ep,
en, and edp, in (8)) really exist. All other predicates in (8)
parallel NL words and do not need particular explanations.
(8) reads as follows: if there is a processor y and a notifica-
tion event en of some information i, performed by y with
respect to a data subject w (to whom some personal data z
are related, processed by a processor x and controlled by
y), then y is permitted to attach an icon ic to en.
On the other hand, (9) states that in case the icon is in elec-
tronic form, it ought to be machine-readable.
A significant difference between (9) and (8) is that the for-
mer also requires the real existence of eat and of el. eat
refers to the action of attaching an icon to the notification,
performed by the controller y, while el refers to the fact

2See https://www.isi.edu/˜hobbs/bgt-logic.
text for details.

https://www.isi.edu/~hobbs/bgt-logic.text
https://www.isi.edu/~hobbs/bgt-logic.text

5691

that the icon ic is in electronic form. In case eat and el re-
ally exist as well, then the “machine-readable-ness” of ic is
obligatorily required (eventuality emr).

3. Building the D-KB
The current version of the D-KB includes 966 formulæ in
reified I/O logic: 271 obligations, 76 permissions, and 619
constitutive rules. The number of constitutive rules is much
higher than the one of obligations and permissions as the D-
KB includes constitutive rules needed to trigger the special
inferences explained below in subsection 3.1.
The formulæ refer to the paragraphs in the GDPR. It is pos-
sible to associate more than one formula with a paragraph.
For instance, Art. 12(7), shown above in (7), is associated
with both an obligation and a permission ((8) and (9)).
On the other hand, let us consider an example of if-then rule
belonging to the set C. The rule represents the meaning of
Article 6, paragraph 1, point 1, of the GDPR.
According to Art. 5(1)(a) of the GDPR, it is obligatory for
a processing of personal data to be lawful. This is mirrored
in the PrOnto ontology via a boolean attribute called LAW-
FULNESS, which is a data property of a PrOnto class PER-
SONALDATAPROCESSING. The attribute is true when the
processing is lawful, and false otherwise. However, PrOnto
does not specify the conditions under which the LAWFUL-
NESS attribute is either true or false. This is done by means
of a set of formulæ in the D-KB, specifically in the set C.
For instance, Art. 6(1)(a), of the GDPR specifies that the
processing is lawful if “the data subject has given consent
to the processing of his or her personal data for one or more
specific purposes;”. This is formalized3 in formula (10).

(10) ∀ep (∃a1∃t1∃ehc
∃eau∃edp∃w∃z∃y∃x∃c[

(RexistAtT ime a1 t1) ∧ (and′ a1 ep ehc eau edp) ∧
(DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (Purpose epu) ∧
(nominates’ edp y x) ∧ (Processor x) ∧
(PersonalDataProcessing’ ep x z) ∧
(isBasedOn ep epu) ∧ (GiveConsent′ ehc w c) ∧
(Consent c) ∧ (AuthorizedBy′ eau epu c)],

(lawfulness ep)) ∈ C

Constitutive rules behave as standard FOL implications;
in case of (10), if the left side holds in the context,
“(lawfulness ep)” (and the corresponding LAWFULNESS
attribute of PrOnto) is true. As said above, the connection
between the predicates in the formulæ and the correspond-
ing PrOnto concepts is realized by LegalRuleML tags.
We developed a JavaScript tool to guide and monitor the
building of the D-KB formulæ, see Figure 3. The tool al-
lows to load an Akoma Ntoso file, select an excerpt of text,
and associate it with one or more reified I/O logic formulæ.
Since reified I/O logic formulæ are if-then rules of conjunc-
tions of atomic predications, the human annotator simply
specifies, one by one, the predicates in the conjunctions,

3Indeed, (10) lacks a predicate referring to an exception to Art.
6(1)(a). The handling of exceptions will be illustrated below in
subsection 3.2., so that we avoid that predicate in (10).

Figure 3: The tool to edit reified I/O logic formulæ

while filling them with their arguments. Special place-
holders allow to specify whether the rule is an obligation,
a permission, or a constitutive rule. Once the formulæ
are complete, the tool allows to save the result in Legal-
RuleML, while automatically creating the associations with
the Akoma Ntoso indexes and the PrOnto concepts. In fu-
ture works, we plan to extend and reuse the tool for trans-
lating in reified I/O logic other legislative documents.
Since it is not possible to illustrate the details of each for-
mula in the D-KB, below we only explain how reification
allows to easily deal with three well-known thorny issues
for the representations of NL norms: nested obligations and
permissions, defeasibility, and legal interpretations.

3.1. Nested obligations and nested permissions
Reification allows to avoid nestings of subformulæ within
complex operators. The latter are represented in terms of
FOL predicates that take as argument the main eventuality
referring to the state of affairs described by the subformula.
Similar nestings are found also in deontic assertions, al-
though they are rare, and they have been addressed, for
instance, in (Governatori, 2015). (11) shows an example
of“nested obligations”’; similar patterns can be of course
found for permissions.

(11) If a manager is obliged to perform an action a, his
secretary is obliged to write it down in his agenda.

The intended meaning of (11) is that the secretary is obliged
to write down in the manager’s agenda the fact that the man-
ager is obliged to perform the action a. In standard I/O
logic it is not possible to represent the meaning of nested
obligations such as (11), as the formalism does not allow
to specify semantic links between the if-then rules. Con-
versely, reification makes that straightforwardly possible.
Suppose that every manager attending a party “p” is
obliged to be elegant, represented as in (12):

(12) ∀m∀t(∃ea [(RexistAtT ime ea t) ∧
(attend′ ea m p) ∧ (manager m)],

∃ee [(RexistAtT ime ee t) ∧ (elegant′ ee m)]) ∈ O

5692

We can then represent the status of being obliged in terms
of a new predication ‘(Obliged′ eo t m e)’, meaning that
m is obliged to the real existence of e at time t. This is
enforced by adding a special constitutive rule, associated
with (12), asserting that if a manager m is attending p, then
s/he is in the status of being obliged to be elegant:

(13) ∀m∀t(∃ea [(RexistAtT ime ea t) ∧
(attend′ ea m p) ∧ (manager m)],

∃eo [(Obliged′ eo t m ee) ∧ (elegant′ ee m)]) ∈ C

The obligation of the secretary is then represented as:

(14) ∀m∀eo∀t(∃e[(Obliged′ eo t m e) ∧ (manager m)],

∃ew [(RexistAtT ime ew t) ∧
(write′ ew secr(m) eo)]) ∈ O

In (14), ‘secr(m)’ is a FOL function that, taken a manager
m, returns his secretary, who is the agent of the writing
action ew. On the other hand, the object/patient of ew is the
fact that m is obliged to the real existence of e at time t.
Like RexistAtT ime, Obliged is a possible modality that
eventualities may hold. RexistAtT ime specifies which
eventualities hold the status of real existence at t, while
Obliged specifies which ones hold the status of obligatori-
ness at t. A dual predicate Permitted is instead used for
eventualities that hold the status of permissiveness at t.
In light of this, every obligation and permission is asso-
ciated with an additional constitutive rule specifying the
status of obligatoriness or permissiveness of their bearers.
This also applies recursively; for instance, (15), associ-
ated with (14), states that secretary is in the status of being
obliged to write down the obligations of the manager:

(15) ∀m∀eo1∀t(∃e[(Obliged′ eo1 t m e) ∧ (manager m)],

∃eo2∃ew [(Obliged′ eo2 t secr(m) ew) ∧
(write′ ew secr(m) eo1)])∈ C

As said above, although nested obligations are rare, they
could indeed occur in existing legislation. The D-KB for-
malizes some as well, e.g., Art. 17(2) of the GDPR:

(16) Art.17(2): Where the controller has made the per-
sonal data public and is obliged pursuant to par. 1 to
erase the personal data, the controller, taking account
of available technology and the cost of implementa-
tion, shall take reasonable steps, including technical
measures, to inform controllers which are processing
the personal data that the data subject has requested
the erasure by such controllers of any links to, or copy
or replication of, those personal data.

(16) is represented via the reified I/O logic formula in (17):

(17) ∀y1∀y2∀w∀z∀t1 (∃eob∃era1 [(RexistAtT ime eob t1) ∧
(DataSubject w) ∧ (PersonalData z w) ∧
(Controller y1 z) ∧ (Obliged′ eob y1 era1 t1) ∧
(Delete’ era1 w z) ∧ (public z) ∧
(Controller y2 copyOf(z))],

∃en∃era2∃t2 [(RexistAtT ime en t2) ∧

(numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en y1 y2 era2) ∧
(Delete’ era2 w copyOf(z)) ∧
(reasonable en)]) ∈ O

(17) reads as follows: if a controller y1 controls public per-
sonal data z of w, a controller y2 controls a copy of z, and
y1 is obliged to make era1 really existing (where era1 is the
fact that w has requested to erase z), then, in t2 ≥ t1, y1 is
obliged to communicate era2 to y2. In other words, if y1 is
obliged to delete, he is (also) obliged to communicate. Fur-
thermore, such a communication must be “reasonable”4.

3.2. Exceptions
It is often the case that general regulative norms are over-
ridden by more specific rules in restricted contexts. Those
more specific rules are then exceptions to the general rule.
Furthermore, specific rules may be in turn defined in the
restricted contexts (exceptions of exceptions). An example
from Art. 8(1) of the GDPR is shown in (18):

(18) Art. 8(1): Where Art. 6(1)(a) applies, in relation
to the offer of information society services directly to
a child, the processing of the personal data of a child
shall be lawful where the child is at least 16 years old.
Where the child is below the age of 16 years, such
processing shall be lawful only if and to the extent
that consent is given or authorised by the holder of
parental responsibility over the child. Member States
may provide by law for a lower age for those purposes
provided that such lower age is not below 13 years.

Art. 8(1) refers to Art. 5(1)(a) and Art. 6(1)(a):

(19) Art. 5(1)(a): Personal data shall be: (a) pro-
cessed lawfully, fairly and in a transparent manner in
relation to the data subject ... [CUT];

Art. 6(1)(a): Processing shall be lawful only if
and to the extent that at least one of the following ap-
plies: (a) the data subject has given consent to the pro-
cessing of his or her personal data for one or more
specific purposes;

The meaning of (18) may be summarized as follows:

(20) • Processing of personal data ought to be lawful.

• If the data subject has given consent to the pro-
cessing, then it is lawful.

• Exception to (b): if the data subject is less than 16
years old, his consent does not entail lawfulness
of processing.

• If the data subject is less than 16 years old and if
the holder of his parental responsibility has given
consent to the processing, then it is lawful.

• Exception to (c)-(d): Member States may lower
the minimal age for consent down to 13 years.

4The truth value of ‘reasonable’ depends on the legal inter-
pretation ascribed to the associated adjective; see subsection 3.3..

5693

The formulæ representing (20.a–b) are shown in (21) and
(22). Note that (21) is an obligation, while (22) is a consti-
tutive rule, used to define the lawfulness of processing.

(21) ∀ep∀t(∃a1∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧
(and a1 edp ep) ∧ (DataSubject w) ∧
(PersonalData z w) ∧ (Controller y z) ∧
(nominates’ edp y x) ∧ (Processor x) ∧
(PersonalDataProcessing’ ep x z)],

∃el[(RexistAtT ime el t)∧ (lawfulness’ el ep)])∈O

(22) ∀ep∀t(∃epu∃edp∃ehc
∃eau
∃a1
∃x∃y∃z∃w∃c[

(RexistAtT ime a1 t) ∧ (and a1 edp ep ehc eau) ∧
(DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (nominates’ edp y x) ∧
(Processor x) ∧ (Purpose epu) ∧
(PersonalDataProcessing’ ep x z)
(isBasedOn ep epu) ∧ (GiveConsent’ ehc w c) ∧
(Consent c) ∧ (AuthorizedBy’ eau epu c)],

∃el[(RexistAtT ime el t)∧ (lawfulness’ el ep)])∈C

(20.c) is represented via the constructs proposed in (Hobbs
and Gordon, 2017)5 to implement defeasibility, which are
drawn from Circumscriptive Logic (McCarthy, 1980).
We represent general inferences while adding special pred-
icates to “block” them in case of exception. Thus, general
inferences are allowed only if more specific exceptions do
not occur. Specifically, we use negation-as-failure, written
as naf (X), which is supported in LegalRuleML. The pred-
ication naf (X) is true when it cannot be derived that X is
true, i.e., when it is either false or unknown.
Formula (22) is then rewritten as (23). The only dif-
ference between the two formulæ is the predication
‘naf(exceptionCha2Art8Par1 ep)’, which is true if the
exception about the processing ep does not occur.

(23) ∀ep∀t(∃epu∃edp∃ehc
∃eau∃a1∃x∃y∃z∃w∃c[

(RexistAtT ime a1 t) ∧ (and a1 edp ep ehc eau) ∧
(DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (nominates’ edp y x) ∧
(Processor x) ∧ (Purpose epu) ∧
(PersonalDataProcessing’ ep x z)
(isBasedOn ep epu) ∧ (GiveConsent’ ehc w c) ∧
(Consent c) ∧ (AuthorizedBy’ eau epu c) ∧
naf (exceptionCha2Art8Par1 ep)],

∃el[(RexistAtT ime el t)∧ (lawfulness’ el ep)])∈C

(20.c) can then be modeled via (24), which entails
‘(exceptionCha2Art8Par1 ep)’, in case the data subject
is less than 16 years old, and “blocks” the inference in (23).

(24) ∀ep (∃a1∃t∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧
(and a1 ep edp) ∧ (DataSubject w) ∧
(PersonalData z w) ∧ (Controller y z) ∧

5For a quick explanation, see https://www.isi.edu/

˜hobbs/bgt-defeasibility.text.

(nominates’ edp y x) ∧ (Processor x) ∧
(PersonalDataProcessing’ ep x z)
(numeric-less-than ageOf(w) 16)],

(exceptionCha2Art8Par1 ep)) ∈ C

New obligations may be then consistently asserted for data
subjects who are less than 16 years old, e.g., the formula
representing (20.d), which is omitted for space constraints.
Finally, it is necessary to (recursively) define an ex-
ception in (24) as well, since Art. 8(1) allows Mem-
ber States to lower the minimal age for consent (al-
though not below 13 years). To avoid over-assertion
of rules, we can substitute the constant ‘16’ in (24)
with a FOL function ‘minAgeConsent’ that asso-
ciate the processing ep with the minimal age for
giving consent to ep in the context where the for-
mula is evaluated. We then replace ‘(numeric-less-
than ageOf(w) 16)’ in (24) with ‘(numeric-less-
than ageOf(w) minAgeConsent(ep))’. The follow-
ing constitutive rule defines that the value of minimal age
for consent is 16, provided that there are no exceptions:

(25) ∀ep(naf (exceptionMinAgeConsent ep),
(numeric-equal minAgeConsent(ep) 16)) ∈C

Assuming, for instance, that French national legislation
lowers the minimal age for consent down to 14 years, the
D-KB will be enriched with the following constitutive rule:

(26) ∀ep (∃a1
∃t∃edp∃x∃y∃z∃w[(RexistAtT ime a1 t) ∧

(and a1 edp ep) ∧ (DataSubject w) ∧
(PersonalData z w) ∧ (Controller y z) ∧
(nominates’ edp y x) ∧ (Processor x) ∧
(PersonalDataProcessing’ ep x z)
(equal MemberState(y) France)],

(numeric-equal minAgeConsent(ep) 14)) ∈C

3.3. Legal interpretations

Legislators tend to use vague terms, e.g., “reasonable” in
(16), to make the norms applicable in a multitude of con-
texts. It is then up to judges and other appointed authorities
to interpret these terms in each context. However, even in
similar contexts, it is common that different judges adopt
incompatible interpretations (sometimes even concerning
identical cases). The D-KB allows these incompatible in-
terpretations to coexist in certain time spans via the Legal-
RuleML tags specifically designed for this purpose.
We show an example from (Bartolini et al., 2016), which
provides some possible legal interpretations of GDPR
norms in terms of correlations between them and the con-
trols in some ISO security standards. For instance, the D-
KB assumes that (27.a-b) are correlated, so that compliance
with control A9.1 of the ISO/IEC 27018:2014 security stan-
dard in entails compliance with Art. 33(2) of the GDPR:

https://www.isi.edu/~hobbs/bgt-defeasibility.text
https://www.isi.edu/~hobbs/bgt-defeasibility.text

5694

(27) • GDPR, Art.33(2): The processor shall no-
tify the controller without undue delay after be-
coming aware of a personal data breach.

• ISO/IEC 27018:2014, A9.1: The public
cloud PII processor should promptly notify the
relevant cloud service customer in the event of
any unauthorized access to PII.

(27.a-b) are formalized as in (28) and (29) respectively:

(28) ∀x∀y∀eb∀t1 (∃a1
∃edp∃ep∃ea∃w∃z[

(RexistAtT ime a1 t1) ∧ (and a1 edp ep ea) ∧
(DataSubject w) ∧ (PersonalData z w) ∧
(Controller y z) ∧ (nominates’ edp y x) ∧
(Processor x) ∧ (PersonalDataProcessing’ ep x z) ∧
(AwareOf ’ ea x eb) ∧ (DataBreach eb z)],

∃en∃t2 [(RexistAtT ime en t2) ∧ (nonDelayed en) ∧
(numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en x y allInfoAbout(eb))]) ∈ O

(29) ∀x∀y∀ea∀t1 (∃a1∃edp∃ep∃w∃z∃k[
(RexistAtT ime a1 t1) ∧ (and a1 edp ep ea) ∧
(PIIPrincipal w) ∧ (PIIController y z) ∧
(PIIProcessor x) ∧ (nominates’ edp y x) ∧
(PII z w) ∧ (PersonalDataProcessing’ ep x z) ∧
(access’ ea k z) ∧ (unauthorized ea)],

∃en∃t2 [(RexistAtT ime en t2) ∧ (promptly en) ∧
(numeric-greater-than-or-equal t2 t1) ∧
(Communicate’ en x y allInfoAbout(ea))]) ∈ O

To correlate (29) and (28) we introduce new entailments be-
tween them, so that one obligation is satisfied/violated if the
other one is. It seems rather unquestionable to assume that
“PII” (Personally Identifiable Information), from ISO/IEC
27018:2014, and “personal data”, from the GDPR, refer to
the same concept. Their definitions are essentially identi-
cal. Thus, the D-KB may safely include the constitutive
rule: ‘∀z∀w((PII z w), (PersonalData z w)) ∈ C’.
Similarly, we may add to the D-KB the following formulæ,
stating that the PIIPrincipal of the online service is a data
subject, the PII processor is a processor, the PII controller
is a controller, and that “promptly” entails “non-delayed”:

- ∀w((PIIPrincipal w), (DataSubject w)) ∈ C

- ∀x((PIIProcessor x), (Processor x)) ∈ C

- ∀y∀z((PIIController y z), (Controller y z)) ∈ C

- ∀e((promptly e), (nonDelayed e)) ∈ C

On the other hand, it could be questionable to assume that
an unauthorized access is a data breach: The constitutive
rule in (30) may be subject to different legal interpretations:

(30) ∀ea∀z∀t(
∃k[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧

(unauthorized ea)],

(DataBreach ea z)) ∈ C

Similarly to exceptions, we model different legal interpre-
tations by adding a special predicate ‘(assumption ea)’,
which is true if it may be assumed that (30) is valid:

(31) ∀ea∀z∀t(
∃k[(RexistAtT ime ea t) ∧ (access’ ea k z) ∧

(unauthorized ea)∧ (assumption ea)],

(DataBreach ea z)) ∈ C

The D-KB then contains further constitutive rules to block
the inference in (30), i.e., to entail ‘¬(assumption ea)’.
It is also possible to introduce constitutive rules that states
(assumption ea) as true, even if they will be redundant as
(assumption ea) is already assumed to be true. As argued
in (Robaldo and Sun, 2017), the D-KB should be “able to
keep track of the different legal interpretations over time”.
If some legal authorities explicitly state that the default as-
sumptions are true, we should “register” this in terms of
parallel explicit formulæ, even if these are redundant. Oth-
erwise, we lose the information that these legal authorities
“confirmed” the assumptions. For example, suppose we
have the following (fictitious) legal interpretations of (31):

- Italian Corte di Cassazione: An unauthorized access is
a data breach, according to the definitions found in the
state of the art of the cybersecurity domains.

- Spanish Audiencia de Toledo: An unauthorized access
is not a data breach, in that a data breach requires not
only an unauthorized access, but also a breach of secu-
rity and a causal connection between them.

- French Tribunal d’Avignon: In this case, we assume the
Tribunal examined the company “Alpha” performing a
security test on an IT system; even if unauthorized ac-
cesses indeed took place, they cannot be taken as data
breaches in that they were part of the security test.

The three legal interpretations above are modeled via the
constitutive rules in (32), (33), and (34) respectively.

(32) ∀ea∀z∀t(∃k[(RexistAtT ime ea t) ∧
(access’ ea k z) ∧ (unauthorized ea)],

(assumption ea)) ∈ C

(33) ∀ea∀z∀t(∃k[(RexistAtT ime ea t) ∧
(access’ ea k z) ∧ (unauthorized ea)],

¬(assumption ea)) ∈ C

(34) ∀ea∀z∀t(∃k[(RexistAtT ime ea t) ∧
(access’ ea k z) ∧ (unauthorized ea) ∧
naf (exceptionSecurityTest ea)],

(assumption ea)) ∈ C

∀ea (∃k∃z∃t[(RexistAtT ime ea t) ∧
(access’ ea k z) ∧ (unauthorized ea) ∧
(partOf ea et) ∧ (securityTest et)],

(exceptionSecurityTest ea)) ∈ C

(32), (33) and (34) cannot hold together. LegalRuleML pro-
vides tags to assert their XOR; we omit their description.

5695

(34) is particularly interesting. It includes two constitutive
rules, one of which entails an exception to the other one.
(34) states that: (1) an unauthorized access is a data breach
in the general case; (2) security tests are exceptions to this
general case. The difference between (32) and (34) is that,
in (32), processors shall comply with GDPR obligations,
including the one of notifying the controller without undue
delay, also in the case of security tests; on the contrary, in
(34), they are exempt from GDPR obligations in such cases.

4. Related works
Reification achieves formal simplicity and modularity,
without lowering the expressivity required to represent, for
instance, exceptions, legal interpretations, and nested obli-
gations/permissions. This allows for the easy and quick
building of large repositories of formulæ, e.g., the D-KB.
Exceptions and legal interpretations have been well-known
problems in Computational Law, and several formaliza-
tions, e.g., (Sartor, 2005; Governatori et al., 2009; Boella et
al., 2010; Rotolo et al., 2015; Walton et al., 2016; Malerba,
2017), have been proposed to deal with them.
For instance, (Rotolo et al., 2015) propose a rule-based
framework by adjusting the one proposed in (Governatori
and Rotolo, 2008), which is a modal defeasible logic ex-
tended with an operator ‘⊗’ to model preferences between
multiple legal interpretations. That work adopts three kinds
of rules: monotonic implications, non-monotonic (defeasi-
ble) implications, and the so-called “defeaters”, which are
used to “block” certain conclusions; defeaters are similar to
our mechanism exemplified for instance in (24). A binary
superiority relation ‘>’ between rules is then introduced, as
well as axioms to constrain their model-theoretic interpre-
tation and the interaction with the ‘⊗’ operator.
The authors then show that their formal machinery can be
used to model interpretative arguments in deontic defeasi-
ble reasoning in two ways: by interpreting the provisions
in their sentential (propositional) meaning as a whole, or
by ascribing different legal interpretations to their intra-
sentential components, or, in other words, by restricting
legal interpretations to the words or the chunks occurring
in the textual content describing the provision.
In reified I/O logic, it is not necessary to define two differ-
ent schemas to distinguish legal interpretations at either the
sentential or the intra-sentential level, as reification allows
to uniformly move across different levels of abstraction.
On the other hand, nested obligations and nested permis-
sions have been scarcely studied in literature, perhaps be-
cause they rarely occur in existing legislation.
A recent paper that addresses them is (Governatori, 2015),
where it is shown that Linear Temporal Logic (Pnueli,
1977), used in several contemporary approaches to norma-
tive multi-agent systems and business process compliance,
is unable to properly deal with nested obligations/permis-
sions. In light of this, that work proposes, as an alternative
to Linear Temporal Logic, the special operator originally
introduced in (Governatori and Rotolo, 2006), which is not
affected by the paradoxes raised by nested obligations/per-
missions through Linear Temporal Logic inferences.
On the other hand, subsection 3.1. above showed that reifi-
cation provides a straightforward way to deal with this kind

of obligations/permissions in that it has been precisely de-
signed to flatten logical nestings. In fact, it was sufficient
to introduce constitutive rules defining the eventualities that
refer to “the fact that” someone is obliged/permitted to do
something. Then, (nested) obligations/permissions can be
uniformly asserted on these eventualities and added to the
sets O and P , together with the “normal” ones.

5. Conclusions
This paper presented the D-KB, which includes 966 for-
mulæ in reified I/O logic modelling GDPR norms. To date,
the D-KB is the biggest knowledge base in I/O logic and
LegalRuleML available online, and it aims at becoming a
benchmark for the XML standard (Robaldo et al., 2019).
The D-KB has been built in about four months by the first
author of this paper, with the aid of a Javascript tool allow-
ing to select the textual span to formalize, build the corre-
sponding formulæ, and save the result in LegalRuleML.
We showed how reified I/O logic allows to express complex
legal statements, by presenting examples from the GDPR
and other (exemplified) legal statements. Reification allows
to avoid nestings and simplify the architecture of the for-
mulæ, thus to build large knowledge bases in a short time.
Indeed, although the LegalRuleML standard has been under
design for some years already, no other such large knowl-
edge bases in LegalRuleML is currently available online.
There are of course papers showing examples in Legal-
RuleML, e.g., (Dimyadi et al., 2017), but no enough ex-
haustive and systemic work has been conducted so far to
translate a whole relevant piece of legislation in Legal-
RuleML. The D-KB is the first achievement in this respect.
In our view, the reason is that the formulæ used in the litera-
ture on LegalRuleML, being based on standard embeddings
of sub-formulæ within complex operators, are less readable
than the reified I/O logic ones, and so harder to edit and
debug. As argued in (Robaldo, 2010a), (Robaldo, 2010b),
and (Robaldo, 2011), syntactic embeddings are convenient
from a formal point of view, in that their model theory may
be defined recursively, but they are inadequate for Natural
Language Semantics and hard to scale.
Reification allows to straightforwardly represent nested
obligations/permissions, by introducing eventualities refer-
ring to the fact that someone is obliged/permitted to do
something, as well as exceptions and legal interpretations,
via special predicates explicitly referring to exceptions and
to th assumptions taken in legal interpretations.
Modelling defeasibility with predicates explicitly referring
to exceptions and assumptions on certain eventualities ap-
pears to be an effective solution for representing legislation.
Legislation is normally written by means of general and ab-
stract provisions, in the sense that legislators know a priori
only the general contexts where legislation will apply, al-
though sometimes some special situations deserving excep-
tions to the general rules are known already and encoded in
the text of the law. For the most part, legal interpretations
will be figured out later; in such cases, it is generally the
role of jurisprudence to rule out the correct application of
the provisions (case law), but in some cases legislation will
be amended in order to account for new exceptions.

5696

Therefore, it seems there is no need to introduce more
complex defeasible schema for modeling legislation. Ad-
vanced forms of reasoning are instead needed when we do
not know a priori which rules override other rules, but we
have to infer it from the asserted knowledge. This could be
needed, for instance, in argumentation systems, where the
weight of each argument is assigned at the beginning, then
it is inferred which arguments override other ones.

6. Bibliographical References
Adebayo, K. J., Caro, L. D., Robaldo, L., and Boella, G.

(2016). Textual inference with tree-structured LSTM.
In 28th Benelux Conference on Artificial Intelligence
(BNAIC 2016), pages 17–31.

Ajani, G., Boella, G., Di Caro, L., Robaldo, L., Humphreys,
L., Praduroux, S., Rossi, P., and Violato, A. (2017).
The european legal taxonomy syllabus: A multi-lingual,
multi-level ontology framework to untangle the web of
european legal terminology. Applied Ontology, 2 (4).

Bandeira, J., Bittencourt, I. I., Espinheira, P., and Isotani, S.
(2016). FOCA: A methodology for ontology evaluation.
CoRR.

Bartolini, C., Giurgiu, A., Lenzini, G., and Robaldo,
L. (2016). Towards legal compliance by correlating
standards and laws with a semi-automated method-
ology. In BNCAI, volume 765 of Communications
in Computer and Information Science, pages 47–
62. Springer. https://www.fnr.lu/projects/
data-protection-regulation-compliance.

Boella, G. and van der Torre, L. W. N. (2004). Regulative
and constitutive norms in normative multiagent systems.
In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Ninth International Conference
(KR2004), pages 255–266.

Boella, G., Governatori, G., Rotolo, A., and van der Torre,
L., (2010). Lex Minus Dixit Quam Voluit, Lex Magis
Dixit Quam Voluit: A Formal Study on Legal Compli-
ance and Interpretation, pages 162–183. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Boella, G., di Caro, L., Humphreys, L., Robaldo, L., and
van der Torre, L. (2012). NLP Challenges for Eunomos,
a tool to build and manage legal knowledge. European
Language Resources Association (ELRA).

Boella, G., Di Caro, L., Humphreys, L., Robaldo, L., Rossi,
R., and van der Torre, L. (2016). Eunomos, a legal doc-
ument and knowledge management system for the web
to provide relevant, reliable and up-to-date information
on the law. Artificial Intelligence and Law, 4.

Brank, J., Grobelnik, M., and Mladenić, D. (2005). A sur-
vey of ontology evaluation techniques. In Proceedings of
8th International multi-conference Information Society.

Casini, G., Meyer, T., Moodley, K., Sattler, U., and Varz-
inczak, I. (2015). Introducing defeasibility into owl on-
tologies. In Robert Meersman, et al., editors, Proc. of
International Semantic Web Conference (ISWC).

Davidson, D. (1967). The logical form of action sentences.
In Nicholas Rescher, editor, The Logic of Decision and
Action. University of Pittsburgh Press.

Dimyadi, J., Governatori, G., and Amor, R. (2017). Evalu-
ating legaldocml and legalruleml as a standard for shar-

ing normative information in the aec/fm domain. In
Proc. of Joint Conference on Computing in Construction
(JC3), Heraklion, Greece, Volume: 1.

Governatori, G. and Rotolo, A. (2006). Logic of viola-
tion: a gentzen system for reasoning with contrary-to-
duty obligations. Australasian Journal of Logic, (426).

Governatori, G. and Rotolo, A. (2008). Bio logical
agents: Norms, beliefs, intentions in defeasible logic.
Autonomous Agents and Multi-Agent Systems, 17(1).

Governatori, G., Padmanabhan, V., Rotolo, A., and Sat-
tar, A. (2009). A defeasible logic for modelling policy-
based intentions and motivational attitudes. Logic Jour-
nal of the IGPL, 17(3).

Governatori, G. (2015). Thou shalt is not you will. In Pro-
ceedings of the 15th International Conference on Arti-
ficial Intelligence and Law, ICAIL 2015, pages 63–68,
New York, NY, USA. ACM.

Hansen, J. (2014). Reasoning about permission and obli-
gation. In S. O. Hansson, editor, David Makinson on
Classical Methods for Non-Classical Problems, pages
287–333. Outstanding Contributions to Logic Volume 3,
Springer.

Hobbs, J. and Gordon, A. (2017). A formal theory of com-
monsense psychology, how people think people think.
Cambridge University Press.

LegalRuleML. (2019). https://www.oasis-open.
org/committees/legalruleml/. OASIS con-
sortium, https://www.oasis-open.org.

Makinson, D. and van der Torre, L. W. N. (2000).
Input/output logics. Journal of Philosophical Logic,
29(4):383–408.

Makinson, D. and van der Torre, L. (2001). Constraints
for input/output logics. Journal of Philosophical Logic,
30(2):155–185.

Malerba, A. (2017). Interpretive Interactions among Legal
Systems and Argumentation Schemes. Ph.D. thesis, Joint
International Doctoral (Ph.D.) Degree in Law, Science
and Technology (LAST-JD).

McCarthy, J. (1980). Circumscription: A form of non-
monotonic reasoning. Artificial Intelligence, (13):27–
39.

MIREL. (2019). MIning and REasoning with Legal texts.
http://www.mirelproject.eu.

Palmirani, M. and Vitali, F., (2011). Akoma Ntoso for Legal
Documents, pages 75–100. Springer Netherlands, Dor-
drecht.

Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., and
Robaldo, L. (2018a). Legal ontology for modelling
GDPR concepts and norms. In The Thirty-first annual
conference for Legal Knowledge and Information Sys-
tems (JURIX 2018), pages 91–100.

Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., and
Robaldo, L. (2018b). Pronto: Privacy ontology for legal
compliance. In Proc. of the 18th European Conference
on Digital Government (ECDG 2018).

Pnueli, A. (1977). The temporal logic of programs. In
Proceedings of the 18th Annual Symposium on Foun-
dations of Computer Science, SFCS ’77, pages 46–57.
IEEE Computer Society.

https://www.fnr.lu/projects/data-protection-regulation-compliance
https://www.fnr.lu/projects/data-protection-regulation-compliance
https://www.oasis-open.org/committees/legalruleml/
https://www.oasis-open.org/committees/legalruleml/
https://www.oasis-open.org
http://www.mirelproject.eu

5697

Robaldo, L. and Sun, X. (2017). Reified input/output
logic: Combining input/output logic and reification to
represent norms coming from existing legislation. The
Journal of Logic and Computation, 7.

Robaldo, L., Caselli, T., Russo, I., and Grella, M. (2011).
From italian text to timeml document via dependency
parsing. In Alexander Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, pages 177–
187, Berlin, Heidelberg. Springer Berlin Heidelberg.

Robaldo, L. and Bartolini, C. and Lenzini,
G. (2019). The DAPRECO knowledge base.
https://github.com/dapreco/daprecokb/
blob/master/gdpr/rioKB_GDPR.xml.

Robaldo, L. (2010a). Independent set readings and gener-
alized quantifiers. The Journal of Philosophical Logic,
39(1):23–58.

Robaldo, L. (2010b). Interpretation and inference with
maximal referential terms. The Journal of Computer and
System Sciences, 76(5):373–388.

Robaldo, L. (2011). Distributivity, collectivity, and cu-
mulativity in terms of (in)dependence and maximal-
ity. The Journal of Logic, Language, and Information,
20(2):233–271.

Rotolo, A., Governatori, G., and Sartor, G. (2015). Deon-
tic defeasible reasoning in legal interpretation: Two op-
tions for modelling interpretive arguments. In Proceed-
ings of the 15th International Conference on Artificial In-
telligence and Law, ICAIL 2015, New York, NY, USA.
ACM.

Sartor, G. (2005). Legal Reasoning: A Cognitive Approach
to the Law. Treatise of legal philosophy and general ju-
risprudence / ed.-in-chief Enrico Pattaro. Springer.

Searle, J. R. (1995). The construction of social reality. The
Free Press, New York.

Sun, X. and Robaldo, L. (2017). On the complexity of in-
put/output logic. The Journal of Applied Logic, Vol. 25.

Sun, X. and van der Torre, L. W. N. (2014). Combin-
ing constitutive and regulative norms in input/output
logic. In Fabrizio Cariani, et al., editors, Deontic Logic
and Normative Systems - 12th International Conference,
DEON 2014, Ghent, Belgium, July 12-15, 2014. Pro-
ceedings, volume 8554 of Lecture Notes in Computer
Science, pages 241–257. Springer.

Walton, D., Sartor, G., and Macagno, F. (2016). An ar-
gumentation framework for contested cases of statutory
interpretation. Artif. Intell. Law, 24(1):51–91.

https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml
https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml

	Introduction
	Reified I/O logic
	I/O logic
	(Hobbs and Gordon, 2017)
	Combining reification and I/O logic

	Building the D-KB
	Nested obligations and nested permissions
	Exceptions
	Legal interpretations

	Related works
	Conclusions
	Bibliographical References

