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Abstract
In order to achieve interoperability of information in the context of the Semantic Web, it is necessary to find effective ways to align
different ontologies. As the number of ontologies grows for a given domain, and as overlap between ontologies grows proportionally,
it is becoming more and more crucial to develop accurate and reliable techniques to perform this task automatically. While traditional
approaches to address this challenge are based on string metrics and structure analysis, in this paper we present a methodology to
align ontologies automatically using machine learning techniques. Specifically, we use convolutional neural networks to perform string
matching between class labels using character embeddings. We also rely on the set of superclasses to perform the best alignment. Our
results show that we obtain state-of-the-art performance on ontologies from the Ontology Alignment Evaluation Initiative (OAEI). Our
model also maintains good performance when tested on a different domain, which could lead to potential cross-domain applications.
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1. Introduction
An ontology is a set of structural rules designed to repre-
sent concepts in order to perform logic-based operations to
retrieve or infer new information. As Semantic Web tech-
nologies are expanding and becoming more popular, the
amount of data that needs to be represented grows propor-
tionally, as does its complexity. Since web technologies are
designed to be decentralised, redundancy inevitably occurs
among knowledge bases. For this reason, finding methods
to align equivalent data or their model is crucial. This is the
goal of our research, which is described in this paper.
Traditional ontology matching methods are mainly based
on string similarity and structure analysis. In this paper
we propose another approach using machine learning tech-
niques. The core of our method is based on the idea that
semantic information can be retrieved automatically from
text information within ontologies, and within their struc-
ture. To achieve this task, convolutional neural networks
were used.

2. Previous Works
As indicated earlier, the usual way to align ontologies gen-
erally consists in standard string similarity measurement
techniques, and the analysis of the ontologies’ structure to
identify equivalent classes and properties.
There are three main string analysis techniques: 1) string
distance metrics (Levenshtein, Jaccard, string equality,
etc.), 2) syntactic transformations (tokenization, lemmati-
zation, stop word removal, etc.) and 3) semantic opera-
tions (finding synonyms, translating, categorization, etc.)
(Cheatham and Hitzler, 2013). Although using only string
metrics can lead to significant results for the ontology
matching problem, it is crucial to choose the right metric
to obtain the best alignment. Some advanced string metrics
can also be defined and show powerful results, such as met-
rics that take both the similarities and the differences be-
tween two labels into account (Stoilos et al., 2005). Other
powerful string metrics are based on n-gram decomposi-
tion, using the number of common n-grams to measure sim-
ilarity (Sun et al., 2015). But in any case, a confidence value

must be attributed to any of these metrics.
Another possible approach consists of analyzing similari-
ties between data types of key properties for each studied
concept (Granitzer et al., 2010); however, this approach
cannot be used on its own, and must be coupled with a
text analysis approach, such as string distance, as discussed
above.
The structure of an ontology can also be used to deter-
mine similarity between concepts: if two classes have sim-
ilar children or parents, they can be considered equivalent
(Granitzer et al., 2010). The Ontology Alignment Evalu-
ation Initiative (OAEI)1 features some state-of-the-art on-
tology matching systems, among which the most effective
are AML (Faria et al., 2013), the LogMap family (Jiménez-
Ruiz and Grau, 2011) and POMAP (Laadhar et al., 2017).
AML mainly uses three types of ontology matchers: a lex-
ical matcher (that matches ontological classes using literal
names), a mediating matcher (that uses an external ontol-
ogy and the previously mentioned lexical matcher to estab-
lish ”bridge” alignments between the two input ontologies)
and a word matcher (that is derived from a Jaccard index
between the words in the classes’ names). LogMap uses
a lexical matcher, that is enriched by a context analyzer:
if class C1 and class C2 are mapped, then classes that are
semantically close to C1 are more likely to be mapped to
classes that are semantically close to C2. POMAP matches
ontologies at two different levels: first at the element level
(all classes of ontology O1 are compared to all classes of
ontology O2, and the matches with the highest level of
confidence are chosen); then at the structural level (if two
classes are matched, then their siblings are more likely to
be matched, as well as their subclasses).
Finally, some machine learning approaches have been im-
plemented but are still uncommon in the field of ontology
alignment. Some tried and tested algorithms such as K
Nearest Neighbors (KNN), Support Vector Machine (SVM)
and decision trees, which can outperform state-of-the-art
matching tools (Nezhadi et al., 2011). Machine learning

1http://oaei.ontologymatching.org
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techniques can also be used as a side tool for the alignment
task, such as word embeddings to determine string similar-
ity (Dhouib et al., 2019). Our approach goes a step further
and frames the ontology alignment as a binary classifica-
tion task that uses character embeddings of the class label
and a set of superclasses’ labels as an input.

3. Data
The data we used come from the Ontology Alignment Eval-
uation Initiative (OAEI). This data is organized in different
tracks. For each track, several ontology matching tools (de-
signed by various research teams) compete to obtain the
best alignment performance. For training, we used data
from the LargeBio track (Section 3.1); for testing, we used
other independent tracks, described in Section 3.2.

3.1. Training - LargeBio Ontologies
LargeBio consists of three biomedical ontologies:

• Foundational Model of Anatomy (FMA)2;

• SNOMED3;

• National Cancer Institute Thesaurus (NCI)4.

Table 1 shows the number of classes and properties for each
ontology used for training. Table 2 indicates the number of
reference alignments.

Ontology # Classes # Properties
FMA 78988 54
NCI 66724 190

SNOMED 223418 55

Table 1: The number of classes and properties (object prop-
erties + datatype properties) for each ontology used for
training.

Ontologies # Alignments
FMA-NCI 2686

FMA-SNOMED 6026
SNOMED-NCI 17210

Table 2: Reference number of aligned classes for training.

OAEI provides alignments between each of these ontolo-
gies. We used them to build a dataset that consists of class
label pairs coming from the two ontologies to be aligned as
positive examples. In order to obtain a balanced dataset
(with the same number of positive and negative align-
ments), we randomly generated the same number of neg-
ative examples, matching classes that were not referenced
as similar in the ontologies. Some classes in the ontologies
did not have any label, and since this makes them unusable
with our approach, they were excluded from the dataset.
We also noticed that classes referenced as equivalent often
had identical labels (after converting labels to lower case),

2http://sig.biostr.washington.edu/projects/fm/
3http://www.ihtsdo.org/index.php?id=545
4http://ncit.nci.nih.gov/

which biased the training process. Indeed, given their pre-
dominance in the dataset of positive alignments, they biased
the model to classify all pairs without similar labels as neg-
ative alignments. This rendered these classes as irrelevant
since their alignments were trivial. Hence these examples
were excluded from the dataset as well. With these con-
straints, we found 18105 positive examples within Large-
Bio ontologies with a complete dataset containing 36210
examples (after adding negative examples).
Finally, this dataset was divided into training, validation
and test sets. We used 80% of the original dataset for train-
ing, 10% for validation and 10% for testing. The test set
was used to choose the model with the best predictive ca-
pabilities, but it was not used to evaluate our approach and
to compare it to the state of the art. In fact, we considered
that data coming from the same ontologies for both training
and testing would not reflect the challenges of real align-
ment tasks, and could induce a favorable bias for our model.
Therefore, the final comparison and testing was performed
on other completely independent ontologies as described in
the next section.

3.2. Testing - Other OAEI Ontologies
In order to evaluate our method and compare it to previous
works, we used the other ontologies provided by the Ontol-
ogy Alignment Evaluation Initiative (OAEI). OAEI evalua-
tion is divided in different tracks, based on the domain and
complexity of ontologies. We chose to evaluate our method
on four OAEI tracks:

• Anatomy

• Phenotype and Disease

• BioDiv

• Conference

Table 3 indicates the number of classes and properties for
each ontology used for testing. Table 4 shows the number
of reference class alignments.

Track Ontology # Classes # Properties

Anatomy Mouse 2744 3
Human 3304 2

Phenotype
and Disease

DOID 17122 42
HP 32655 130
MP 31721 130

ORDO 13504 24

BioDiv

ENVO 8970 165
FLOPO 29088 156

PTO 1505 1
SWEET 4538 3359

Conference All 837 724

Table 3: The number of classes and properties (object prop-
erties + datatype properties for each ontology used for test-
ing.
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Track Ontologies # Alignments
Anatomy Human-Mouse 1516

Phenotype
and Disease

DOID-ORDO 1237
HP-MP 696

BioDiv ENVO-SWEET 421
FLOPO-PTO 153

Conference All 249

Table 4: Reference number of aligned classes for testing.

To make sure that our method was tested in the same way
as other competitors from the OAEI competition, we inte-
grated our tool with the SEALS platform5, as required by
the OAEI guidelines.

4. Description of the Alignment Method
In this section, we explain how our alignment system is
built, how input data is processed and how the final align-
ment is generated.

4.1. Preprocessing
The preprocessing stage consists of two different steps:

• transforming ontological data into numerical vectors
that a neural network model can use as input;

• pre-selecting alignments that are too trivial to be sub-
mitted to the neural network model.

4.1.1. Input Data Transformation
For the task we aim to achieve, input data consist of two
separate ontologies that must be aligned. As this cannot be
directly fed to a machine-learning model, it must be trans-
formed into a set of numerical vectors that a model can use
as input. The final alignment must be a set of comparisons
between each class of both ontologies to be aligned.
First, the structure of each ontology is extracted using a
dedicated tool (we used Apache Jena for this application).
Extracting the structure enables us to make a list of all
classes in the ontology. For each class that has a label, we
also extract the labels of its superclasses.
Our convolutional neural network takes as input a pair of
class labels and their superclasses (we observed experi-
mentally that using subclasses does not make predictions
more accurate ; results are detailed in section 5) and returns
whether they are similar or not. As neural network mod-
els require a fixed input vector length, some limits have to
be set in order to respect this constraint. First, for each
class label, we set a maximum length of 150 characters
(blank spaces are appended to shorter labels; longer labels
are cropped). We observed that this value led to a minimal
prediction error.
As classes have a variable number of superclasses, we must
set a limit for this parameter as well. We chose to use five
superclasses for each class. For classes with fewer super-
classes, we used padding with blank spaces; for classes
with more superclasses, we only took the first five levels
in the structure of their superclasses.

5Semantic Evaluation At Large Scale (SEALS) platform:
http://www.seals-project.eu/

A neural network model cannot take strings of characters as
direct input. Hence characters must be converted to num-
bers. A simple character encoding could have been used
(such as the ASCII code), but we chose to use character
embeddings6. These embeddings provide a representation
vector for each possible character. The embedding we used
is of dimension 300. Each provided value is normalized
between 0 and 1.
To limit noise within the input data, we also lowercased
each class label, and replaced underscores with spaces.

4.1.2. Pre-selecting Trivial Examples
In order to prevent combinatorial explosion when compar-
ing classes from both ontologies (each ontology can have
thousands of classes, leading to millions of possible combi-
nations to consider), we needed to prune obvious examples
before passing input data to the neural network model. Two
cases are worth noting:

• Trivial positive examples: across two different ontolo-
gies, some classes have identical names, as discussed
in section 3.1. When this happens, these classes are
automatically considered equivalent.

• Trivial negative examples: since only a small propor-
tion of the candidate pairs to align contain equivalent
classes, many completely different classes would have
to be evaluated if no preselection was carried out. To
limit this problem, we chose to apply a distance-based
preselection, using two criteria: Levenshtein distance
and the length of each class label. If the Levenshtein
distance between the labels of two classes is large,
then these classes are considered different. We also
noticed that short labels lead to many classification
errors. To solve this problem, we chose to weight
the Levenshtein distance with a factor that is inversely
proportional to the length of the labels: the shorter the
labels, the greater the final distance. Let a and b be
the labels of two classes that need to be compared. Let
La and Lb their respective length. We compute the
following index i:

i =
levenshtein(a, b)

La ∗ Lb
(1)

We then define a threshold th. If i > th, we classify
the two classes as different. We found experimentally
that th = 1.5 leads to reliable results.

4.2. Alignment using Machine Learning Models
Once input data has been preprocessed, it can be used to
train a neural network model. We chose to use convolu-
tional neural networks (henceforth CNN) in order to cap-
ture relevant structural information inside text data.

4.2.1. Neural network model
The model we used is composed of two main modules:

• CNN layers;

• Multilayer perceptrons (MLP).

6https://github.com/minimaxir/char-embeddings



5651

Figure 1: An example of a super-convolution layer that takes 64 features of size 32x32 as input.

Figure 2: A negative and a positive example using classes’ labels, one superclass and one subclass. These examples come
from the Anatomy track.

We used several layers of CNN, with a different filter size
for each. This allows us to capture patterns at different
scales, which are obtained by successive applications of av-
erage pooling (which is equivalent to a x2 zoom each time:
for example, if the network analyzes data inside a window
of five characters, this window changes to ten characters).
We define a super-convolution layer with the following con-
figuration:

• a convolution layer with a kernel size of five charac-
ters;

• an activation layer (MLP with Rectified Linear Unit
activation (ReLU));

• a second convolution layer with a kernel size of five
characters;

• a second activation layer (MLP with ReLU);

• an average pooling layer of size two characters.

A super-convolution layer is shown in Figure 1.
The CNN part of the model is composed of eight super-
convolution layers (which allows us to process all scales
with a division factor of two in between each layer).
Super-convolution layers are then followed by MLP layers.
We observed experimentally that the depth of the network
had a more significant impact on performance than the size
of the layers. Thus the model we used was composed of 10
MLP layers, of size 500 neurons each. We used ReLU to
activate each layer.

Finally, the last layer of the model leads to a single neuron
(with sigmoid activation) in order to produce a binary clas-
sifier that indicates whether the two classes are aligned or
not.

4.2.2. Training strategy
In a real-life situation, when aligning two ontologies, the
number of positive and negative examples that have to be
classified is unbalanced. For example, for two ontologies
with 2,000 classes each, we need to process four millions
examples to complete the alignment, when only a few hun-
dred classes are equivalent in these ontologies. If this is-
sue is not considered during training (i.e., if the training
dataset has the same number of positive and negative exam-
ples), the trained model can generate a large number of false
positive alignments (which remains marginal when the test
dataset is balanced as well, but in a real-life situation, this
is no longer the case).
To address this problem, a proper training strategy must be
adopted. We chose to grant more weight to negative ex-
amples during training, as the false positive problem comes
from them. We found experimentally that a weight of 40
(versus a weight of 1 for positive examples) works best. Be-
low this value, too many false positives still appear. Above
it, the model fails to identify some positive examples.
As the model needs to be symmetrical (i.e., if class a is
equivalent to class b, then b is equivalent to a), the train-
ing dataset was duplicated and the class positions were
swapped: instead of building an input vector with data from
class a followed by that of class b, we built it with class b
followed by class a. In this case, the order of the classes
does not impact classification.
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Adam optimizer (Kingma and Ba, 2014) was used to man-
age the training phase. Considering the high number of
training examples, the learning rate was set to a low value
to achieve a stable training phase (i.e. the training loss de-
creases smoothly, instead of having local highs and lows).
We found that a value of 10−5 gives reliable results. We
also used learning rate decay, with β1 = 0.9 and β2 =
0.999.
In order to make the training process automatic, we used
early stopping to prevent overfitting (i.e. to prevent the neu-
ral network model from learning too much from its train-
ing data, leading to poor performance on test data, hence
when validation loss starts to increase, the training process
is stopped). As training is not perfectly stable, it is neces-
sary to use a patience value of two (i.e. when the validation
loss goes up during two consecutive iterations, the training
process is stopped) in order to avoid local minima. Valida-
tion loss was used as the early stopping criterion.
To get the best alignment performance, it is good practice
to train several models and select the one that demonstrates
the best prediction capability on a test dataset. As discussed
in section 3.1, a dedicated test set was created for this pur-
pose. We trained five models and chose the one with the
lowest error on test data.

5. Evaluation and Results
Our approach was evaluated on OAEI ontologies as de-
scribed in Section 3.2. Three of these ontologies are com-
posed of biomedical data (Anatomy, Phenotype and Dis-
ease, and BioDiv, which is the same domain as the training
data), and the last one (Conference) is based on conference
organisation data, which represents a different domain.
We first evaluated which structure was the most appropriate
for our classification problem: we tried considering class
labels only, then we tried various numbers of superclasses
and subclasses at different depths. An example is provided
in Figure 3. Figure 2 shows positive and negative examples
before their transformation into vectors of numbers that are
fed to the neural network model.
Detailed results are presented in Table 5. These results are
computed on our test dataset (which is different from the
final test set, described in Section 3.2).

# Subclasses
# Superclasses

0 1 5 10

0 0.907 0.921 0.952 0.953
1 0.894 0.916 0.941 0.942
5 0.887 0.913 0.928 0.932

10 0.859 0.863 0.878 0.881

Table 5: F1-score for each tested structure. Each column
represents the number of levels of superclasses, and each
row represents the number of subclasses. The cell without
any superclass and any subclass means that only class labels
were used for classification.

As shown in Table 5, adding subclasses only leads to lower
performance, hence they were not used in the final neu-
ral network model. The best results were obtained with
the classes labels and ten levels of superclasses. However,

Figure 3: An example of the class structure used for clas-
sification. Here we are considering the Central Nervous
System Part, and we show two of its superclasses and two
subclasses. This example comes from the Human ontology,
in the Anatomy track.

with five levels of superclasses, the model has very similar
performance, hence we chose this value, since it made the
computation time a lot lower.
We integrated our tool with the SEALS platform so that
we could evaluate it in the same conditions as other partici-
pants of the OAEI workshop; we then compared the results
we obtained with the 2018 OAEI results7. Results are pre-
sented in Table 6.

Task F1 Best F1 Position
Anatomy 0.881 0.943 5/16
HP/MP 0.850 0.855 3/9

DOID-ORDO 0.831 0.848 4/10
FLOPO-PTO 0.829 0.86 2/8
Conference 0.75 0.77 3/15

Table 6: Final results on OAEI tracks. HP/MP and DOID-
ORDO are tasks from the Phenotype and Disease track.
FLOPO-PTO is a task from BioDiv. Best F1 corresponds
to the F1-score of the best participant for each task. Posi-
tion represents the position of our system in the competition
based on the best F1.

Task Precision Best precision Position
Anatomy 0.871 0.998 15/16
HP-MP 0.882 0.997 4/9

DOID-ORDO 0.870 0.996 7/10
FLOPO-PTO 0.872 0.987 3/8
Conference 0.80 0.88 10/15

Table 7: Final results on OAEI tracks. Best precision corre-
sponds to the maximum precision obtained for each track.
Position represents the position of our system in the com-
petition based on the best precision.

72018 OAEI results: http://oaei.ontologymatching.org/2018/results/
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Task Recall Best recall Position
Anatomy 0.890 0.936 3/16
HP-MP 0.819 0.855 4/9

DOID-ORDO 0.795 0.870 4/10
FLOPO-PTO 0.79 0.84 2/8
Conference 0.70 0.76 3/15

Table 8: Final results on OAEI tracks. Best recall corre-
sponds to the maximum recall obtained for each track. Po-
sition represents the position of our system in the competi-
tion based on the best recall.

As shown in Table 6, our approach leads to similar results
as state-of-the-art competitors. Table 7 and Table 8 show
that our system still lacks precision (which is related to the
problems discussed in Section 4.2.2), but does a good job
at retrieving non-trivial alignements (since the recall value
places our system among the best). Also, as the results for
the Conference track show, our system achieves good per-
formance for a non-biomedical ontology. This means that
our CNN model was successful in aligning classes from dif-
ferent domains even if it was trained on biomedical ontolo-
gies, which is a valuable result. Additional experiments on
various domains are left for future work. The preprocess-
ing part of the methodology presented in this paper could
also be replaced by more advanced techniques (possibly
machine learning as well). This could help solve the false-
positive problem presented in Section 4.2.2 by producing
more accurate results. Finally, we plan to include datatype
and object properties as inputs to our neural network.

6. Conclusion and future works
In this paper, we showed that a machine learning approach
to the ontology matching problem using convolutional neu-
ral networks leads to state-of-the-art results. As there is no
domain-dependant variable in our methodology, it can be
applied as-is to any domain. We also showed that a model
trained on biomedical data gives results that are consistent
when applied to other domains; however this needs to be
confirmed on more datasets.
Our approach could be improved using other types of neural
networks, or a combination of different models: recurrent
networks, especially Long Short-Term Memory networks
(LSTM), are very appropriate for text data, as they can be
used to analyse sequences, and may improve performance
for ontology matching. Similarly transformers might lead
to better results and are a research direction we would like
to explore, together with different inputs to the network.
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