
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 549–558
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

549

The ISO Standard for Dialogue Act Annotation, Second Edition

Harry Bunt1, Volha Petukhova2, Emer Gilmartin3, Catherine Pelachaud4,
Alex Fang5, Simon Keizer6, and Laurent Prévot7

1Tilburg University, 2Saarland University, Saarbrücken 3Trinity College, Dublin, 4CNRS-ISIR, Sorbonne University, Paris
5City University, Hong Kong 6Toshiba Research Erope Ltd., Cambridge 7Université Aix-Marseille

bunt@uvt.nl, v.v.petukhova@gmail.com, gilmare@tcd.ie, catherine.pelachaud@upmc.fr,
alex.fang@cityu.edu.hk, keizer.simon@gmail.com, laurent.prevot@lpl-aix.fr

Abstract
ISO standard 24617-2 for dialogue act annotation, established in 2012, has in the past few years been used both in corpus annotation and
in the design and implementation of components of spoken and multimodal dialogue systems. This has brought some inaccuracies and
undesirable limitations of the standard to light, which are addressed in the second edition. This second edition allows a more accurate
annotation of dependence relations and rhetorical relations in dialogue. Moreover, a triple-layered plug-in mechanism is introduced
which allows dialogue act descriptions to be enriched with information about their semantic content and other information, such as
accompanying emotions, and which allows the annotation scheme to be customised by adding application-specific dialogue act types.

Keywords: dialogue annotation, dialogue acts, ISO standards, plug-ins, semantic annotation

1. Introduction
The first edition of ISO standard 24617-2 for dialogue act
annotation, published in 2012 (Bunt et al 2010; 2012), has
been applied in corpus annotation1 and in the design of
components for language understanding, dialogue man-
agement, and output generation in spoken and multimodal
interactive systems.2. These applications have brought
some inaccuracies of the standard to light and some
undesirable limitations, both of which are addressed in the
second edition.

The design of the standard has also contributed to the
specification of a framework for defining other standards
for semantic annotation. This framework was in turn
established as an ISO standard in 2016 (ISO 24617-6,
Principles of semantic annotation). In its specification
the second edition of ISO 24617-2 closely follows the
requirements and recommendations of this framework.

When revising an annotation standard, an important issue
concerns the compatibility between annotations according
to the original and the revised version. It is desirable that
‘old’ annotations do not require re-annotation or conver-
sion, for being valid according to the revised version, ex-
cept where the revision concerns the correction of errors
in the original version.The revised standard should thus
preferably be ‘downward compatible’ with the original ver-
sion. The second edition of ISO 24617-2 is indeed down-
ward compatible with its first edition, which was made pos-
sible by the fact that the ISO scheme is extensible in the
following respects:

Dimensions: Due to the orthogonality of the set of di-
mensions, additional dimensions may be introduced

1See e.g. Fang et al., 2012; Chowdhury et al. (2014);
Petukhova et al. (2014), Gilmartin et al., 2018; Ngo et al. (2018);
Bunt et al. (2019); Mezza et al. (2019).

2See e.g. Keizer and Rieser (2018); Keizer et al. (2019),
Malchanau (2019), Malchanau et al. (2019)

as long as they are orthogonal to the already existing
dimensions and to each other. (By the same token, di-
mensions may be left out without affecting the use of
the remaining dimensions.)

Communicative functions: The taxonomy of commu-
nicative functions expresses semantic relations be-
tween functions: dominance relations express differ-
ent degrees of specialisation; sister relations express
mutually exclusivity. Communicative functions may
be added to the taxonomy as long as these relations
are respected.

Qualifiers: Of the attribute-value combinations that form
qualifiers which can be associated with communica-
tive functions, the attributes are ‘orthogonal’ in deal-
ing with semantically distinct aspects, and the values
are mutually exclusive. Additional attributes and val-
ues may be introduced as long as they respect these
properties.

The second edition of ISO 24617-2 contains the following
new elements:

• ‘reference segments’ for more accurate annotation of
a dialogue act’s dependence relations;

• the dimension of ‘Contact Management’, and commu-
nicative functions specific for this dimension;

• a mechanism for using ‘layered’ plug-ins with struc-
tured interfaces to ISO 24617-2 for enriching the de-
scription of individual dialogue acts and dialogue act
sequences;

• predefined plug-ins and interfaces for:

– rhetorical relations between dialogue acts;
– the semantic content of dialogue acts;
– fine-grained communicative functions for feed-

back;

550

– application-specific communicative functions;
– emotional aspects of dialogue acts.

ISO 24617-2 has remained fixed since its publication in
2012, as is appropriate for a good standard. The DIT++
annotation scheme, on which the ISO scheme is based, has
evolved in order to accommodate inaccuracies and limi-
tations encountered in use, The changes in ISO 24617-2
have first been implemented in DIT++ Release 5.2 (see
https://dit.uvt.nl/#Release5.2).

This paper describes the changes in the ISO standard.
Section 2 documents the changes relating to the accurate
markup of semantic dependence relations in dialogue. Sec-
tion 3 discusses the introduction of new dimensions and
communicative functions. Section 4 describes the differ-
ent use cases of the ISO and DIT++ annotation schemes
and the requirements that each use case brings. Section 5
discusses the limitations of annotation standards, analysing
the motivations for looking for ways to extend their cover-
age. The most important innovation is the use of structured
‘plug-ins’ with an abstract syntax and a semantics, accord-
ing to the ISO 24617-6 principles of semantic annotation.
Section 6 describes the formal structure of a layered plug-
in and its interface with a host annotation scheme, and a
number of predefined plug-ins for ISO 24617-2. Section 7
summarises the paper and concludes with perspectives for
future work.

2. Dependence Relations in Dialogue
2.1. Types of Dependence Relation
ISO 24617-2 distinguishes two types of semantic depen-
dence relations in dialogue: functional dependence rela-
tions and feedback dependence relations.
The functional dependence relation is defined as the “rela-
tion between a given dialogue act and a preceding dialogue
act on which the semantic content of the given dialogue act
depends due to its communicative function.” This relation
occurs with inherently responsive dialogue acts such as
answers, (dis-)confirmations, (dis-)agreements, corrections
and the acceptance or rejection of requests, offers, and
suggestions. Such dialogue acts depend for their full
meaning on one or more dialogue acts that occurred earlier
in the dialogue. The property of ‘responsiveness’ is closely
related to what is sometimes called ‘backward-looking’;
for example, in the DAMSL annotation scheme the
communicative functions are divided into forward-looking
and backward-looking. Backward-looking functions
are defined as functions that indicate how the current
utterance relates to the previous discourse. These also in-
clude feedback acts and acts concerned with speech editing.

The feedback dependence relation is defined as the “rela-
tion between a feedback act and the stretch of communica-
tive behaviour whose processing the act provides or elic-
its information about”. Feedback acts provide information
about the processing of what was said before - such as its
perception or its interpretation. This is illustrated by the
examples in (1).

(1) 1. A: Judging by the CVs, John Shlakeyin seems
the best candidate to me.

2. a. B: John WHO?
b. B: I see.
b. B: Agreed.

A feedback dependence relation targets one or more pre-
ceding dialogue acts if the feedback concerns high-level
processing, such as understanding and agreeing (as in 2b
and 2c), and it targets a dialogue segment in the case of
low-level processing, such as hearing what was said (as in
2a). In the latter case, ISO 24617-2 stipulates that the feed-
back dependence relation should refer to the smallest func-
tional segment containing the segment that the feedback act
is about. This way of annotating feedback dependence re-
lations is not quite accurate, since feedback about a stretch
of communicative behaviour smaller than a functional seg-
ment is not about the entire segment. For example, negative
feedback that signals a problem in hearing certain words
may imply positive feedback about the rest of the segment.
For more accurate annotation, the second edition introduces
a ‘reference segment’ as a stretch of communicative be-
haviour that is the target of a feedback dependence relation
and that is not a functional segment.
Feedback acts have either a communicative function that is
specific for feedback (i.e. AutoPositive, AutoNegative, Al-
loPositive, AlloNegative, FeedbackElicitation) or a general
purpose communicative function, such as CheckQuestion,
or Confirm. The two varieties are illustrated in (2). A feed-
back act with a responsive general-purpose function has a
functional dependence; all other feedback acts have a feed-
back dependence.

(2) 1. C: Best before nine on Monday, or on Tuesday
2. S: Monday before nine you said?

[Auto-Feedback, CheckQuestion, feedback
dependence on reference segment “Best before
nine” in 1]

3. C: That’s right.
[Allo-Feedback, Confirm, functional
dependence on dialogue act expressed by 2]

2.2. Self- and Partner Repair
Reference segments are also useful for the accurate annota-
tion of Own Communication Management (OCM) acts and
Partner Communication Management (PCM) acts. For ex-
ample, the accurate annotation of a self-correction (in the
OCM dimension) or a partner correction (in the PCM di-
mension) requires the specification of the segment that is
corrected, which may well be a single word or morpheme
(rather than a functional segment).

3. Adding Dimensions
As mentioned in the Introduction, thanks to the indepen-
dence (‘orthogonality’) of the dimensions, new dimensions
may freely be added or left out without affecting the rest
of the annotation scheme. The Contact Management di-
mension, known from DIT++, and known to be orthogonal
to the other 9 dimensions (Task, Turn Management, Time
Management, Auto- and Allo-Feedback, Own and Partner

https://dit.uvt.nl/#Release5.2

551

Communication Management, Discourse Structuring, and
Social Obligations Management), has been found to be
needed when applying the ISO scheme and is added in the
second edition, along with a few communicative functions
specific for this dimension.

Task Management, another potential dimension known
from DAMSL, has also been considered for inclusion in
the ISO scheme. In DAMSL, this dimension was intro-
duced for talking about the task in task-oriented dialogues.
This includes utterances that involve coordinating the ac-
tivities of the speakers (Are you keeping track of the time?),
or discussing the status of the task (Shall we start? or I
think we’re done). An application where a great number
of task management acts was found, is the DBOX corpus
(Petukhova et al., 2014), where the task consists of partici-
pating in a quiz with the system in the role of quiz master;
these dialogues have a first part in which the quiz master ex-
plains the rules of the game, and a second part in which the
game is played. The two parts of these dialogues seem to
be concerned with different tasks, rather than with different
dimensions, but dialogue acts concerned with task manage-
ment sometimes occur in the middle of the dialogue (“Is
this question too general perhaps?”) and are more conve-
niently categorised as belonging to a different dimension.
Dialogues in the medical domain also frequently contain
utterances where health care professionals make their role
explicit to a patient, and feel like they belong to another
dimension than the dialogue acts that concern the medical
issue under discussion. To deal with this phenomenon, ei-
ther Task Management can be added as a dimension to the
ISO scheme or can be made available by means of a plug-
in.
Doctor-patient dialogues also tend to contain dialogue acts
that serve to reassure or encourage a patient, and expres-
sions of worry and concern. Such dialogue acts could
be considered as forming a separate dimension, concerned
with building and maintaining interpersonal relations. This
is important not only in the medical domain, but also
for example in educational settings (tutor-student, master-
apprentice). For dealing with this kind of dialogue acts
there is again a choice between (a) considering these dia-
logue acts as application-specific, and adding them to the
ISO scheme through a plug-in, or (b) adding a dimension
of ‘interpersonal relation management’. No decision has
yet been made on this subject (see also Section 6.3).

4. Use Cases
Annotation schemes may have other use cases than cor-
pus material markup. The W3C recommendation Emo-
tionML mentions three types of use cases (Baggia et al.,
2014; Burkhardt et al., 2017):

(3) 1. Manual annotation of material involving emo-
tionality, such as annotation of videos, speech
recordings, faces, etc.;

2. Automatic recognition of emotions from sensors,
including physiological sensors, speech record-
ings, facial expressions, etc., as well as from mul-
timodal combinations of sensors;

3. Generation of emotion-related system responses,
which may involve reasoning about the emotional
implications of events, emotional prosody in syn-
thetic speech, facial expressions and gestures of
embodied conversational agents, etc.

Similarly, a dialogue act annotation scheme may be
designed primarily for dialogue annotation, but may also
be useful for the on-line recognition and generation of
dialogue acts in interactive systems, like spoken dialogue
systems. The different use cases of a dialogue act annota-
tion scheme bring the following different requirements and
desiderata.

UC1: Manual annotation has the advantage of produc-
ing annotations of the highest quality if performed by
experts, but has the drawback of being costly and only
feasible for limited amounts of data. Expert annotation
delivers the highest quality of annotations since expert
annotators are not only skilled in recognising the relevant
features of communicative behaviour, but also have a
wealth of context information, general world knowledge,
and commonsense reasoning abilities to infer speaker
beliefs and intentions. This enables expert annotators
to assign fine-grained characterisations to segments of
dialogue behaviour with high accuracy. To support manual
annotation, the annotation scheme should therefore include
fine-grained concepts with the level of detail that expert
annotators can use. On the other hand, manual annotation
is often done by annotators who do not have quite the skills
of experts, partly because of the high cost, but also because
it is interesting to know whether an annotation scheme
can successfully be used by less skilled or even ‘naive’
annotators (Geertzen et al., 2008); for such annotators it is
useful if the annotation scheme includes less fine-grained
concepts. In both DIT++ and ISO 24617-2 these two
requirements are met by using a hierarchically structured
set of more and less specific communicative functions.

UC2: Automatic annotation of human-human dialogue,
or of the user’s contributions in a human-computer dia-
logue, typically lacks the general world knowledge and the
skills of expert human annotators, and has limited access
to context information - often only as far as represented
in the dialogue history. Automatic annotation therefore
in general cannot reliably characterise dialogue behaviour
with the same level of detail as expert manual annotation.
To effectively support automatic annotation, the annotation
scheme should therefore contain concepts that are more
coarse-grained than those needed for expert annotation.
For example, human annotators are sometimes able to
recognise the level of processing relating to feedback
behaviour, distinguishing positive (multimodal) feedback
expressing understanding from feedback expressing
agreement by the way of nodding in combination with
certain vocal sounds (Petukhova and Bunt, 2009). As in
the previous use case, the hierarchical structure of the
inventory of communicative functions, with fine- and
coarse-grained functions, is helpful to make the annotation
scheme suitable for both manual and automatic annotation.

552

UC3: Automatic recognition of dialogue acts in user
behaviour in an interactive system is a similar task as
automatic dialogue act annotation, except that in an
interactive system the semantic contents of dialogue acts
play a prominent role, often determined by structural prop-
erties of the application domain. For a given application,
it may be beneficial to have a tight coupling between
communicative functions and semantic content, and to
define application-specific dialogue act types for specific
types of content. For effectively supporting this use case,
it may be beneficial to extend the annotation scheme with
application-specific concepts. Plug-ins promise to be a
useful mechanism for this purpose; see Section 6.3.2.

UC4: Generation of dialogue acts in an interactive
system concerns the decision how to continue a dialogue
when it is the system’s turn, and this is the main task of
the system’s dialogue manager. This decision is typically
a two-stage process, where the first stage is to decide on
the communicative functions and semantic contents of one
or more suitable dialogue acts, and the second is to decide
on an appropriate realisation in linguistic, nonverbal,
or multimodal form. In contrast with human dialogue
participants, who may be somewhat vague or unspecific
about their beliefs and intentions, a system’s dialogue
manager typically works with precise beliefs and goals,
and generates, in the first of these two stages, dialogue acts
with fine-grained communicative functions. This happens
in particular for feedback acts, since the system may report
a processing problem that it has encountered in great
detail. The DIT++ taxonomy (Bunt, 2009) was originally
developed as on the one hand an instrument in the analysis
of dialogue structure and dialogue mechanisms, and on the
other hand a basis for the design of dialogue management
modules in interactive systems, and therefore includes very
fine-grained feedback functions.

ISO 24617-2 was originally designed for supporting inter-
operable dialogue act annotation (use cases UC1 and UC2).
Use cases UC3 and UC4 have been found to be potentially
of equally great interest, however; with some extensions,
the scheme has been applied in the implementation of the
dialogue manager in the Madrigal system (see Keizer and
Rieser, 2018; Keizer et al., 2019) and in the Virtual Ne-
gotiation Coach system (Malchanau et al., 2019; see also
Malchanau, 2019). These cases call for the combination of
communicative functions with elements from outside the
scheme. For example, the generation of a response by a
dialogue system involves the combination of a communica-
tive function and a propositional content, and the generation
of a certain emotion requires the specification of a dialogue
act that carries the emotion. Plug-ins are proposed for these
purposes; see Section 6.

5. Annotation Standards
5.1. Inherent Limitations
All annotation standards have certain inherent limitations,
which can be grouped into three categories:

Scope: The scope of an annotation standards, defined by
the class of phenomena they are meant to cover, sometimes
presents undesirable limitations due to the fact that classes
of linguistic or communicative phenomena are hard to
define in such a way that there is no overlap or interference
with phenomena that fall outside the scope. The annotation
of information about time and events using TimeML, for
example, runs into problems in the annotation of quantifi-
cation (as in ”every Monday” or ”most Wednesdays”), and
overlaps with semantic role labelling schemes for roles
of a temporal character, like the start- and end times and
the duration of an event. Likewise, PDTB annotation of
rhetorical relations in text (Prasad et al., 2008) struggles
with occurrences of negation. Such limitations restrict the
applicability of annotation schemes in use case UC1.

Generality: Annotation standards are designed to be
applicable across domains and applications, and therefore
do not include concepts that are specific for certain
domains or applications. This is part of their strength, but
is sometimes also a weakness, especially for applications
where it is deemed essential to include the use of spe-
cialised domain-specific concepts. Such a situation brings
the need to customise the standard by adding the relevant
specialised concepts.

Lack of consensus: Annotation schemes sometimes suffer
from a lack of consensus among researchers about the
way a certain class of linguistic phenomena should be
described. Two prominent examples are the annotation
of discourse relations (a.k.a. ‘rhetorical relations’) and of
emotions.

Regarding the annotation of emotions, Baggia et al. (2014)
note that ”Any attempt to standardise the description of
emotions using a finite set of fixed descriptors is doomed
to failure: even scientists cannot agree on the number of
relevant emotions, or on the names that should be given to
them. (...) Given this lack of agreement on descriptors in
the field, the only practical way of defining an EmotionML
is the definition of possible structural elements and their
valid child elements and attributes, but to allow users to
‘plug in’ vocabularies that they consider appropriate for
their work.”

Plug-ins like those for EmotionML are simply lists of
terms. Such plug-ins are not directly useful for semantic
annotation, since semantic annotations are meant to cap-
ture certain aspects of the meaning of the primary data.
If the annotations themselves do not have a well-specified
meaning, then the annotations can hardly be said to cap-
ture any meaning. For semantic annotation, the terms are
not so important, but rather the concepts denoted by the
terms. The ISO principles of semantic annotation (ISO
24617-6) therefore include the requirement of ‘semantic
adequacy’, which stipulates that semantic annotations must
have a well-defined semantics (Bunt & Romary, 2002).

553

5.2. Schema Architectures
The requirement that semantic annotations have a well-
defined semantics, combined with the fundamental
distinction between linguistic annotations and annotation
representation formats (Ide and Romary, 2004), means
that the definition of a semantic markup language should
have three parts, specifying (1) the class of well-defined
annotation structures; (2) a format for representing such
structures; (3) their semantics. The first part is called
an ‘abstract syntax’, the second is a so-called ‘concrete
syntax’, and the third is a specification of the semantics of
the structures defined by the abstract syntax.

In the specification of an abstract syntax, two types of
structure are distinguished: entity structures and link struc-
tures. An entity structure contains semantic information
about a segment of primary data and is formally a pair 〈m,
s〉 consisting of a markable, which refers to a segment of
primary data, and certain semantic information. A link
structure contains information about the way two or more
segments of primary data are semantically related. In the
abstract syntax of the Dialogue Act Markup Language
(DiAML) of the ISO 24617-2 scheme, an entity structure
is a formal specification of a dialogue act, while link
structures describe rhetorical relations between dialogue
acts.

The annotation structures defined by the abstract syntax
can be represented (or ‘encoded’) in a many ways; XML is
the most popular representation format, but other formats,
such as attribute-value matrices or annotation graphs (Ide
and Bunt, 2010) are equally possible. Bunt et al. (2019)
describe alternative representation formats for DiAML
annotation structures and how they are formally related.
Every concrete syntax must satisfy two requirements:
(1) completeness, which means that every structure de-
fined by the abstract syntax has a representation, and
(2) unambiguity, which means that every representation
structure encodes exactly one annotation structure. These
requirements are formalized in the DiAML specification by
the stipulation that the concrete syntax definition includes
(1) an encoding function for the structures generated by the
abstract syntax, and (2) a decoding function that works in
the opposite direction.

Formally, the definition of a semantic annotation language
is a triple 〈AS,CS, Sm〉, where AS is an abstract syntax,
CS is a concrete syntax, and Sm is a semantics. Each of
these components or ‘layers’ is further structured: the ab-
stract syntax specification consists of a conceptual inven-
tory (CI) and a class of well-formed annotation structures
(AC), like pairs and triples of concepts from CI as well
as nested pairs and triples; the concrete syntax is formed
by a vocabulary (VC), a class of ‘representation structures’
(CC), and an encoding function (eF) that defines a represen-
tation for each annotation structure with its inverse (’decod-
ing’ eF

−1); the semantics consists of a model structure (M)
and an interpretation function (I) of annotation structures.
The formal definition of a semantic annotation scheme Aa

is thus:

(4) Aa = 〈ASa, CSa, Sma〉
= 〈〈CIa, ACa〉, 〈V Ca, CCa, eFa, eF

−1
a 〉, 〈Ma, Ia〉〉

6. Layered Plug-ins

6.1. Plug-in Architecture

A plug-in for a given annotation scheme Aa is a way of
extending the scheme. Given that semantic annotation
schemes have the structure shown in (4), extensions have
an impact on all three layers of the scheme. Annotators
only use the annotation representations defined by the con-
crete syntax and need not be concerned with the levels of
abstract syntax and semantics. However, an implemented
annotation scheme comes with all the other components.
In particular the DiAML specification and implementation
comes with a decoding function that can be activated to
compute the annotation structure encoded by an XML rep-
resentation, and with an interpretation function that com-
putes the meaning of the annotation structure (and thus,
indirectly, of the XML representation). This is illustrated
at the DialogBank website (https://dialogbank.
uvt.nl/annotated-dialogues/), which contains
ISO 24617-2 annotated dialogues, and where Python
scripts are available for decoding DiAML-XML annota-
tions, constructing the encoded annotation structures of the
DiAML abstract syntax, en for encoding these annotation
structures in other, tabular representation formats (see Bunt
et al., 2019). A plug-in for such an annotation scheme
therefore specifies extensions at all three levels of the host
annotation scheme. The upshot of this is that a plug-in PLp

has the same triple-layered structure

(5) PLp = 〈ASp, CSp, Smp〉
= 〈〈CIp, ACp〉, 〈V Cp, CCp, eFp, eF

−1
p 〉, 〈Ma, Ia〉〉

A layered plug-in is formally just another annotation
scheme; it can be combined with a host annotation scheme
through the unions of their components, like the union of
the two conceptual inventories, the union of the two vocab-
ularies, and so on. In many cases, the structures generated
by host scheme and plug-in need to be integrated more
tightly than by the union of their components, however, and
this requires the specification of a plug-in interface. This
is again a triple-layered specification which introduces
link structures by which host and plug-in annotations are
combined; see (6) below for the interface of a plug-in PLc

for specifying the semantic content of dialogue acts for
DiAML as a host annotation scheme.

Layered plug-ins can be used in two ways: (a) predefined
standard plug-ins can be referenced in host annotations,
having the effect of keeping annotations conformant to the
standard, as is done in EmotionML (see (11) in Section
6.4), and (b) user-defined plug-ins can serve specific ap-
plications, leading to annotations that are not in all respects
conformant to the standard but providing optimal support
in the use cases UC3 and UC4. In the next section some
predefined plug-ins are briefly described; more details can
be found on the DIT++ Release 5.2 website dit.uvt.nl.

https://dialogbank.uvt.nl/annotated-dialogues/
https://dialogbank.uvt.nl/annotated-dialogues/
dit.uvt.nl

554

6.2. Predefined plug-ins
6.2.1. Semantic Content
For the use cases UC3 and UC4 it is important to have
information about the semantic content of dialogue acts.
The degree of detail in which semantic content should be
represented depends on the application domain. For some
domains a simple representation as a list of attribute-value
pairs may be adequate; for others a representation in terms
of events with their participants, time and place may be
more appropriate; for more advanced applications it may be
necessary to take general aspects of natural language utter-
ance meaning into account, including predicate-argument
structures, quantifications and modifications.
The interface of a semantic content plug-in PLc for a host
annotation scheme Aa can be defined as shown in (6). Its
abstract syntax aASc introduces the content link structure
as a pair 〈a, c〉 consisting of a dialogue act entity structure
(‘a’) and a content entity structure (‘c’); the concrete syn-
tax specifies its XML encoding using a <contentLink> el-
ement, and the semantics specifies its meaning as the appli-
cation of the interpretation Ia(a) of the dialogue act struc-
ture ‘a’, defined by the semantics of the host annotation
scheme, to the argument Ic(c), defined by the plug-in se-
mantics. This semantics reflects the dialogue act theory un-
derlying the ISO annotation scheme, according to which
the semantics of a full-blown dialogue act is an update op-
eration on information states, defined (Bunt, 2014) by ap-
plying the semantics of the communicative function to the
semantic content (computed as the interpretation of the con-
tent annotation).

(6) aYc = 〈aASc, aCSc, aSmc〉, with:
aASc = 〈aCIc, aACc〉 = 〈∅, {〈a, c〉}〉〉
aCSc = 〈aVc, aCCc, aFc〉 =

〈〈∅, 〈{<contentLink> element},
aFc〉(〈a, c〉) = <contentLink dialAct=aFc(a)
semContent = aFc(c)/>〉

aSmc=〈aMc, aIc〉=〈∅, aIc(〈a, c〉) = Ia(a)(Ic(c))〉

This plug-in interface is combined with the content plug-in
and the host annotation scheme by the union of their
components to form the extended annotation scheme
Aa + PLc +a Yc

Attribute-Value Plug-in
A simple domain-specific plug-in for semantic content
described in terms of attribute-value pairs leads to content
annotation in the style (7).

(7) P1: I’d like to leave around ten in the morning
(= markable m1)

<avContent xml:id=“c1” target=“#m1”
attribute=“departureTime” value=“10:00”/>

Underlying this representation is a conceptual inventory
that lists the attributes and their possible values, and the
definition of entity structures consisting of attribute-value
pairs 〈Ai, vij〉. The semantics of such an entity structure
can be defined as the property λx.A′i(x) = v′ij , where
A′i = Iav(Ai) and v′ij = Iav(vij). Attribute-value pairs,
their XML encoding, and their semantics define a very sim-
ple content plug-in PLav . The content annotations that

they allow can be linked using the interface (6) to dialogue
act annotation representations as shown in (8).

(8) <dialogueAct xml:id=“da1”target=“#m1”
speaker=“#s” addressee=“#a” dimension=“task”
communicativeFunction=“inform”/>

<avContent xml:id=“c1” target=“#m1”
attribute=“departureTime” value=“10:00”/>

<contentLink dialAct=“#da1” content=“#c1”/>

Events and semantic roles
A more general content plug-in may be based on ISO
standard 24617-4 (‘SemAF-SR’) for the annotation of
semantic roles. The annotation scheme of this standard
marks up semantic information related to the question
“Who did what to whom?” by assigning semantic roles to
the participants in an event.

SemAF-SR interprets annotations as expressing the
occurrence (or denied occurrence, in case of a clause
with negative polarity) of certain events with certain
participants in certain roles. The plug-in consists in
this case of the abstract and concrete syntax and the
semantics of the SemAF-SR markup language. See
https://dit.uvt.nl for details.

Quantifiers and Modifiers
A plug-in for semantic content is more general and more
powerful as it takes more aspects into account of the mean-
ings of phrases, clauses, sentences, and other natural lan-
guage structures. On top of the identification of events
with their time, place, and participants with their respective
roles, the interpretation of quantifier and modifier structures
forms the most important source of semantic information.
The ISO standard under development (ISO-DIS 24617-12
(see Bunt, Pustejovsky & Lee, 2018; Bunt, 2020) can be
the basis of a plug-in for this type of information.

6.2.2. Rhetorical Relations
Reflecting the lack of theoretical consensus in this area,
ISO 24617-2 does not specify any particular set of relations
to be used when marking up rhetorical relations between
dialogue acts, Users of the ISO scheme have often em-
ployed a variant of the relation set defined in ISO standard
24617-8 (‘DR-Core’). This is a set of 18 ‘core’ relations
that occur in many annotation schemes.

Using ISO 24617-2 (first edition), two problems were noted
when annotating rhetorical relations. First, many rhetorical
relations have two arguments that play different roles, for
example, a Cause relation has a “Reason” and a “Result”
argument. DiAML, the markup language of ISO 24617-
2 and (DIT++), has no provision for indicating the roles
in a rhetorical relation. The DR-Core scheme does have
constructs as well as attributes and values for this purpose,
which have been imported in the second edition and allow
representation structures as shown in (10).
Second, rhetorical relations may occur in dialogue between
two dialogue acts, or between their semantic contents, or
between one dialogue act and the semantic content of an-
other. This phenomenon is known in the literature as the

https://dit.uvt.nl

555

‘semantic-pragmatic’ distinction. Example (9) illustrates
this.

(9) a. Ray is sick. He was attacked by a virus. [sem.]
b. Ray is sick. He beats his wife. [pragm.]

To enable making this distinction, the second edition of ISO
24617-2 introduces a ‘domain’ associated with rhetorical
relations as illustrated in (10).3

(10) <drLink arg1=“#da2” arg2=“#da3” rel=“cause”
relDomain=“pragmatic”>
<argRole arg=“#da2” role=“result”/>
<argRole arg=“#da3” role=“reason”/>

</drLink>

Specifying a set of rhetorical relations is left in the second
edition to a plug-in, which is very simple in this case since
no new structures need to be introduced in the abstract or
concrete syntax, and therefore no plug-in interface is re-
quired, just the specification of a set of relations with their
argument roles and their semantics. Taking the DR-core
as point of departure, a plug-in is predefined containing 19
relations, which are listed in Table 1 in the Appendix.

6.3. Additional communicative functions
6.3.1. Overview
A plug-in for adding certain communicative functions has
a very simple specification, since no new entity structures
or link structures are needed, but only the following com-
ponents: (1) Abstract syntax: conceptual inventory that
lists the new functions; (2) Concrete syntax: specification
of XML function names, and encoding function assigning
names to conceptual inventory items; (3) Semantics: the
(DiAML-) context-update semantics for the new commu-
nicative functions.

6.3.2. Application-specific functions
Designed to be domain-independent, ISO 24617-2 does not
include communicative functions that are specific for a cer-
tain application domain. All its communicative functions
are either general-purpose functions or are specific for one
of the dialogue control dimensions. While they form a pow-
erful battery of functions for use in any application, some
applications may benefit from the availability of additional,
domain-specific communicative functions. This is another
area where plug-ins can be useful. For example, in a nego-
tiation domain one finds bids, counter-bids, accepts and re-
jects of bids, and so on. Such acts can be viewed as special
cases of the general-purpose functions Offer and Addres-
sOffer, and they would thus fit well within the taxonomy of
the standard.

6.3.3. Functions for ‘Social’ Talk
Most annotation schemes have been designed for annotat-
ing dialogues that have a clear purpose, such as finding a
train connection, designing a remote control, or finding a
route on a map. Natural everyday conversations often do

3This addition could also be useful for accommodating the
two-dimensional approach to discourse relation definitions re-
cently proposed by Crible and Degand (2019).

not have such a clear task as their motivation, but have a
social purpose such as bonding or establishing a pleasant
atmosphere.
Task-related dialogues often have an initial phase in which
the participants exchange small talk before getting to the
task, and such initial phases have often been omitted in di-
alogue corpora, where the initial small talk is viewed as oc-
curring ‘before’ the ‘actual’ dialogue. An exception is the
ADELE corpus of chat dialogues (Gilmartin et al., 2018).
The dialogues in this corpus often have rather elaborate ini-
tial phases with greetings and discussions of each other’s
health, and sometimes also an extended leavetaking phase
with various kinds of greetings and well-wishing.
In order to annotate the dialogue acts in such phases in a sat-
isfactory way, the DIT++ annotation scheme (Release 5.2)
has been extended with some functions in the Social Obli-
gations Management dimension, which form a plug-in for
ISO 24617-2. Table 2 in the Appendix lists these functions
and gives some examples.

6.3.4. Fine-grained feedback functions
For applications that instantiate use case UC4, i.e. for the
generation of dialogue acts in an interactive system, it was
noted to be useful to have more fine-grained feedback func-
tions available than the rather coarse ones defined in ISO
24617-2:2012. More fine-grained functions are available in
DIT++, where a distinction is made between five levels of
processing at which feedback may be provided or elicited:
(1) attention; (2) perception; (3) interpretation (understand-
ing); (4) evaluation; and (5) execution. These functions de-
fine a simple plug-in in the same way as the ones for social
talk. Table 3 in the Appendix lists the 10 fine-grained auto-
feedback functions; fine-grained allo-feedback functions
(10 feedback-providing and 10 feedback eliciting func-
tions) have similar definitions, see https://dit.uvt.
nl.

6.4. Adding Emotion
A dialogue act may be performed with an expression of an
emotion, such as amusement, irritation, or disappointment.
ISO 24617-2 has no provisions for annotating that.
The W3C recommendation EmotionML (Burkhardt et
al., 2017; https://www.w3.org/TR/emotionml/)
provides a flexible scheme, designed with the aim of be-
ing combined with other annotation schemes. It charac-
terises emotions as complex entities, including ‘emotion
categories’ such as “anger”, “happiness”, or “surprise”, an
intensity value (called ‘valence’), and a confidence value,
as well as various alternative other ways of describing emo-
tions, notably in terms of ‘action tendencies’, ‘appraisals’,
and multiple ‘dimensions’. An emotion annotation in Emo-
tionML may have components of various categories to re-
flect the complexity of emotions; for instance, in the snip-
pet (11), taken from the document https://www.w3.
org/TR/emotionml/, an emotion is annotated as be-
ing a form of anger with elements of sadness and fear.

(11) <emotion category-set=“http://www.w3.org/
TR/emotion-voc/xml#big6”>
<category name=“sadness” value=“0.3”/>
<category name=“anger” value=“0.8”/>

https://dit.uvt.nl
https://dit.uvt.nl
https://www.w3.org/TR/emotionml/
https://www.w3.org/TR/emotionml/
https://www.w3.org/TR/emotionml/
http://www.w3.org/
TR/emotion-voc/xml#big6

556

<category name=“fear” value=“0.3”/>
</emotion>

As noted above, in view of the lack of consensus in the
community, EmotionML gives users a choice to select a
suitable emotion vocabulary plug-in for use in their anno-
tations. In order to promote interoperability, EmotionML
offers a number of alternative emotion vocabularies that
can be used for this purpose, which are either commonly
used in technological contexts or represent emotion models
from the scientific literature. One of the best known
repositories of the latter kind is Ekman’s ‘big six’ (Ekman,
1972), a set of basic emotions that are recognised and
produced in many cultures. Example (11) shows how this
repository (or one of the others listed by EmotionML) is
referenced in an annotation.

EmotionML is defined only at the level of concrete syntax,
but it can be used as the basis for defining a plug-in for ISO
24617-2. An emotion has an experiencer and an object that
the emotion is about. The emotional aspect associated with
a dialogue act is a relation between the speaker, as the ex-
periencer of the emotion, and (the semantic content of) the
dialogue act as the object of the emotion. For example, in
(E13) the experiencer of the emotion associated with the
acceptance of the preceding offer is participant P2 and the
object is the semantic content of this offer and its accep-
tance, viz. P2 having a cup of coffee.

(12) P1: Would you like to have a cup of coffee?
(= markable m1)

P2: That would be wonderful! (= markable m2)

<dialogueAct xml:id“da1” target=“#m1” speaker=
“#p1” addressee=“#p2” dimension=
“SOM” communicativeFunction=“offer”/S

<contentLink dialAct=“#da1” content=“#e1”/>
<dialogueAct xml:id=“da2” target=“#m2” speaker=

“#p2” addressee=“#p1” dimension=“SOM”
communicativeFunction=“acceptOffer”
functionalDependence=“#da1”/>

<event xml:id=“e1” target=“#m2” pred=
“have-coffee”/>

<srLink event=“#e1” participant=“#p2”
semRole=“agent”/>

<contentLink dialAct=“#da2” content=‘#e1”/>
<emotion xml:id=“em1” target=“#m2”

category=“happiness” value=“0.8”/>
<emoLink holder=“#p2” object=“#e1”

emotion=“#em1”/>

The annotation of emotions is not the primary aim of ISO
24617-2, but a simple plug-in for adding some informa-
tion about emotion related to dialogue acts, based on Emo-
tionML, can be defined as follows.
The abstract syntax lists a set of emotion categories and
intensity values (any floating point number in the interval
[0, 1]; entity structures as pairs 〈m, 〈 c, v〉〉 specifying an
emotion category and an intensity value. The concrete
syntax lists XML names for the emotion categories in the
conceptual inventory and specifies encodings of entity
structures using <emotion> elements (as defined in Emo-
tionML, but simplified). The semantics interprets pairs

〈c, v〉 as attribute-value pairs where c denotes a two-place
function, applicable to the experiencer and the object of an
emotion, so Ie(〈c, v〉) is defined as the two-place predicate
λx.λy.Ie(c)(x, y) = Ie(v).

For linking emotion specifications to dialogue act an-
notations, a plug-in interface is needed that defines the
<emoLink> element used in (12) with its underlying ab-
stract syntax and semantics. In the abstract syntax, an emo-
tion link structure is a triple 〈p, s, e〉 formed by a dialogue
participant ‘p’ who is the sender of a dialogue act, the se-
mantic content ‘s’ of this dialogue act, and an emotion ‘e’.
These components correspond in the concrete syntax to the
values of the attributes @holder, @object, and @emotion
in an <emoLink> element, as illustrated in 12.

7. Concluding Remarks
The mechanism of triple-layered plug-ins, with an abstract
syntax and a semantics and with a plug-in interface, allows
the coverage of an annotation scheme to be extended with
out-of-scope types of information and with application-
specific concepts. The limitations of ISO 24617-2 and Di-
AML that users have noticed, are overcome in the second
edition of the standard partly by defining some extensions
and partly by plug-ins, including predefined plug-ins for
various ways of expressing the semantic content of a di-
alogue act, for the choice of rhetorical relations, and for
emotions associated with the performance of a dialogue act.
For annotators there is not much difference between the
availability of extensions and the use of plug-ins, but
the latter provides greater flexibility and possibilities for
customisability.

Future work will include the addition of annotations ac-
cording to the second edition of the standard to the Di-
alogBank (https://dialogbank.uvt.nl/, testing
the customisability of the annotation scheme to dialogues
in the medical domain, and evaluating the use of content
plug-ins in the design of dialogue management systems.

8. Bibliographical References
Baggia, P., C. Pelachaud, C. Peter, and E. Zovato (2014).

Emotion Markup Language (EmotionML) 1.0, W3C
Recommendation 22 May 2014. http://www.w3.
org/TR/2014/REC-emotionml-20140522/.

Bunt, H. (2009a). The DIT++ taxonomy for functional dia-
logue markup. In D. Heylen, C. Pelachaud, R. Catizone,
and D. Traum (Eds.), Proceedings of AAMAS-EDAML
Workshop “Towards a Standard Markup Language for
Embodied Dialogue Acts, Budapest”, pp. 36–36.

Bunt, H. (2012). The semantics of feedback. In Proceed-
ings of SeineDial, 16th Workshop on the Semantics and
Pragmatics of Dialogue, Paris, pp. 118–127.

Bunt, H. (2013). A context-change semantics for dialogue
acts. In H. Bunt, J. Bos, and S. Pulman (Eds.), Comput-
ing Meaning, vol. 4, pp. 177–201. Dordrecht: Springer.

Bunt, H. (2019). Plug-ins for content annotation of dia-
logue acts. In Proceedings 15th Joint ISO-ACL Work-
shop on Interoperable Semantic Annotation (ISA-15),
Gothenburg, Sweden, pp. 34–45.

https://dialogbank.uvt.nl/
http://www.w3.org/TR/2014/REC-emotionml-20140522/
http://www.w3.org/TR/2014/REC-emotionml-20140522/

557

Bunt, H. (2020). The annotation of quantification: The cur-
rent state of ISO 24617-12. In Proceedings of the 16th
Joint ISO-ACL Workshop on Interoperable Semantic An-
notation (ISA-16), Marseille.

Bunt, H., V. Petukhova, A. Malchanau, A. Fang, and
K. Wijnhoven (2019). The DialogBank: Dialogues
with interoperable annotations. Language Resources
and Evaluation 53, 213–249. Available online at DOI:
10.1007/s10579-018-9436-9.

Bunt, H., J. Pustejovsky, and K. Lee (2018). Towards
an ISO Standard for the Annotation of Quantification.
In Proceedings of the 11th International Conference
on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan.

Bunt, H. and L. Romary (2004). Standardization in Mul-
timodal Content Representation: Some methodological
issues. In Proceedings of 4th International Conference
on Language Resources and Evaluation (LREC 2004),
Lisbon, pp. 2219–2222. Paris: ELRA.

Burkhardt, F., C. Pelachaud, B. Schuller, and E. Zo-
vato (2017). EmotionML. In D. Dahl (Ed.), Mul-
timodal Interaction with W3C Standards, pp. 65–80.
Cham (Switzerland): Springer.

Chowdhury, S., E. Stepanov, and G. Riccardi (2014).
Transfer of corpus-specific dialog act annotation to the
iso standard: Is it worth it? In Proceedings of the 9th
International Conference on Language Resources and
Evaluation (LREC 2014), Paris. ELRA.

Crible, L. and L. Degand (2019). Domains and func-
tions: A two-dimensional account of discourse mark-
ers. Discours 24. Available online at DOI: 10.400/dis-
cours.9997.

Ekman, P. (1972). Universals and cultural differences in fa-
cial expressions of emotion. In J. Cole (Ed.), Nebraska
Symposium on Motivation, Vol. 19, pp. 207–282. Univer-
sity of Nebraska Press.

Fang, A., J. Cao, H. Bunt, and X. Liu (2012). The anno-
tation of the Switchboard corpus with the new ISO stan-
dard for dialogue act analysis. In Proceedings 8th Joint
ISO-ACL SIGSEM Workshop on Interoperable Semantic
Annotation (ISA-8), ILC-CNR, Pisa.

Geertzen, J., V. Petukhova, and H. Bunt (2008). Evaluat-
ing dialogue act tagging with naive and expert annota-
tors. In Proceedings of the 6th Inernational Conference
on Language Resources and Evaluation (LREC 2008),
Marrakech. Paris: ELRA.

Gilmartin, E., C. Saam, B. Spillane, M. O’Reilly, K. Su,
A. Calvo, L. Cerrato, K. Levacher, N. Campbell, and
V. Wade (2018). The ADELE corpus of dyadic social
text conversations: Dialogue act annotation with ISO
24617-2. In Proceedings 11th International Conference
on Language Resources and Evaluation (LREC 2018).

Ide, N. and H. Bunt (2010). Anatomy of annotation
schemes: Mapping to GrAF. In Proceedings 4th Lin-
guistic Annotation Workshop (LAW IV), Uppsala., pp.
247–255.

Ide, N. and L. Romary (2004). International Standard for
a Linguistic Annotation Framework. Natural Language
Engineering 10, 211–225.

ISO (2012a). ISO 24617-1: 2012, Language Resource
Management - Semantic Annotation Framework (Se-
mAF) - Part 1: Time and events. Geneva: International
Organisation for Standardisation ISO.

ISO (2012b). ISO 24617-2:2012, Language Resource
Management - Semantic Annotation Framework (Se-
mAF) - Part 2: Dialogue acts. Geneva: International
Organisation for Standardisation ISO.

ISO (2014). ISO 24617-4: 2014, Language Resource Man-
agement - Semantic Annotation Framework (SemAF) -
Part 4: Semantic roles. Geneva: International Organisa-
tion for Standardisation ISO.

ISO (2015). ISO 24617-6:2015, Language Resource Man-
agement - Semantic Annotation Framework (SemAF) -
Part 6: Principles of semantic annotation. Geneva: In-
ternational Organisation for Standardisation ISO.

ISO (2016). ISO 24617-8:2016, Language Resource Man-
agement - Semantic Annotation Framework (SemAF) -
Part 8: Semantic relations in discourse, Core annotation
scheme (DR-Core). Geneva: International Organisation
for Standardisation ISO.

Keizer, S. and H. Bunt (2006). Multidimensional dialogue
management. In Proceedings 7th SIGdial Workshop on
Discourse and Dialogue, Sydney, Australia, pp. 37–45.

Keizer, S., H. Bunt, and V. Petukhova (2011). Multidimen-
sional dialogue management. In A. van den Bosch and
G. Bouma (Eds.), Interactive Multimodal Question An-
swering, pp. 57–86. Berlin: Springer.

Keizer, S., O. Dusek, X. Liu, and V. Rieser (2019). User
evaluation of a multi-dimensional statistical dialogue
system. In Proceedings 20th SIG.

Malchanau, A. (2019). Cognitive Architecture for
Multimodal Multidimensional Dialogue Management.
Saarbrücken: PhD Thesis, University of Saarland.

Malchanau, A., V. Petukhova, and H. Bunt (2019). To-
wards integration of cognitive models in dialogue man-
agement: Designing the virtual negotiation coach appli-
cation. Dialogue and Discourse 9(2), 35–79.

Mezza, S., A. Cervone, E. Stepanov, G. Tortoretto, and
G. Riccardi (2018). ISO-standard domain-independent
dialogue act tagging for conversational agents. In Pro-
ceedings of he 27th International Conference on Com-
putational Linguistics (COLING 2018), Santa Fé, New
Mexico, USA, pp. 3539–3551. Association for Compu-
tational Linguistics.

Ngo, T., K. Pham, and H. Takeda (2018). A Vietnamese
dialogue act corpus based on the ISO 24617-2 stan-
dard. In Proceedings of the 11th International Con-
ference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. Paris: ELRA.

Petukhova, V. and H. Bunt (2009). Grounding by nodding.
In Proceedings GESPIN, Conference on Gestures and
Speech in Interaction, Poznán.

Prasad, R., N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo,
A. Joshi, and B. Webber (2008). The Penn Discourse
TreeBank 2.0. In Proceedings 6th International Con-
ference on Language Resources and Evaluation (LREC
2008), Marrakech. Paris: ELRA.

558

Appendix
Table 1: Rhetorical relations, based on ISO 24617-8.

Relation Definition
Cause The second argument provides a reason why the first argument occurs or holds true.
Condition The first argument is an unrealized situation which, when realized, would lead to the

situation that forms the second argument.
Negative The first argument is an unrealized situation which, when not realized,
Condition would lead to the situation that forms the second argument.
Purpose The second argument is the goal or purpose of the situation that forms the first argument.
Manner The second argument describes how the first argument comes about or occurs.
Concession The second argument cancels or denies an expected causal relation between

the first argument and the negation of the second.
Contrast One or more differences between the two arguments are highlighted with respect to

what each predicates as a whole or about some entities they mention.
Exception The second argument indicates one or more circumstances in which the situation

that forms the first argument does not hold.
Similarity One or more similarities between the two arguments are highlighted with respect to

what each predicates as a whole or about some entities they mention.
Substitution The two arguments are alternatives, the situation of the second argument being

the favored or chosen alternative.
Conjunction The two arguments bear the same relation to some other situation evoked in the

discourse. Their conjunction indicates that they both hold with respect to that situation.
Disjunction The two arguments bear the same relation to some other situation evoked

in the discourse. Their disjunction indicates that they are non-exclusive alternatives
with respect to that situation.

Exemplification The second argument is a situation that is an element of the set of situations
described by the first argument. Arg1 describes a set of situations.

Elaboration The two arguments are the same situation, but the second argument is specified
in more detail.

Restatement The two arguments are the same situation, but viewed from different perspectives.
Synchrony The two arguments form two temporally overlapping situations.
Asynchrony The first argument temporally precedes the second.
Expansion The two arguments are distinct situations that involve some shared entities;

the second argument expands a narrative of which the first argument forms part of a
certain narrative and Arg1 is a part, or expanding on the setting relevant for interpreting Arg1.

Evaluation The second argument provides an opinion on the social, esthetic, economic, or other
qualities of the first argument.

Table 2: Additional communicative functions for Social Obligations Management (from DIT++ Release 5.2).
Function Definition (S = sender, A = Addressee Examples
Follow-on Greeting S wants A to know that “Hi Anne.”

S has established the presence and the identity of A.
Politeness Question S wants to know the state of well-being “How do you do?”

of A, or of someone close to A. “How is your mother?”
Opening Politeness S wants A to know
Statement that S is pleased to meet A. “Nice to meet you”
Closing Politeness S wants A to know that S is pleased to have met A. “It was nice talking to you.”
Statement S intends to soon close the dialogue.
Farewell Wish S wishes A to be in a positive state of well-being,

and intends to close the dialogue. “Have a good time”.

Table 3: Fine-grained communicative functions for auto-feedback (from DIT++).
Communicative Function Definition (in brief, S = speaker)

1. Attention Positive Auto-Feedback S has noticed that something was said/done.
2. Perception Positive Auto-Feedback S has registered (heard/seen/felt,..) what was said/done.
3. Interpretation Positive Auto-Feedback S has interpreted what was said/done.
4. Evaluation Positive Auto-Feedback S has evaluated what was said/done.
5. Execution Positive Auto-Feedback S has acted on what was said/done.
6. Attention Negative Auto-Feedback S has failed to notice that something was said/done.
7. Perception Negative Auto-Feedback S has not been able to register (hear/see/feel,..) what was said/done.
8. Interpretation Negative Auto-Feedback S has not been able to interpret what was said/done.
9. Evaluation Negative Auto-Feedback S has not been able to evaluate what was said/done.
10. Execution Negative Auto-Feedback S has not been able to act on what was said/done.

	Introduction
	Dependence Relations in Dialogue
	Types of Dependence Relation
	Self- and Partner Repair

	Adding Dimensions
	Use Cases
	Annotation Standards
	Inherent Limitations
	Schema Architectures

	Layered Plug-ins
	Plug-in Architecture
	Predefined plug-ins
	Semantic Content
	Rhetorical Relations

	Additional communicative functions
	Overview
	Application-specific functions
	Functions for `Social' Talk
	Fine-grained feedback functions

	Adding Emotion

	Concluding Remarks
	Bibliographical References

