
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5546–5554
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5546

A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual
Mappings of Word Embeddings: Making the Method Robustly Reproducible as

Well

Nicolas Garneau†, Mathieu Godbout†, David Beauchemin†, Audrey Durand, Luc Lamontagne
Université Laval

2325 Rue de l’Université, Québec
nicolas.garneau@ift.ulaval.ca, mathieu.godbout.3@ulaval.ca, david.beauchemin.5@ulaval.ca

audrey.durand@ift.ulaval.ca, luc.lamontagne@ift.ulaval.ca

Abstract
In this paper, we reproduce the experiments of Artetxe et al. (2018b) regarding the robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. We show that the reproduction of their method is indeed feasible with some minor assump-
tions. We further investigate the robustness of their model by introducing four new languages that are less similar to English than the
ones proposed by the original paper. In order to assess the stability of their model, we also conduct a grid search over sensible hyperpa-
rameters. We then propose key recommendations that apply to any research project in order to deliver fully reproducible research.
Keywords: Machine Learning, Unsupervised Learning, Word Alignment, Cross-Lingual Word Embeddings, Reproducibility

1. Introduction
The cross-lingual mapping of word embeddings is a prob-

lem that has been studied more thoroughly with the rise
of distributed representations induced from neural network
architectures (Mikolov et al., 2013b). The goal of this task
is to induce automatically a word-to-word translation dic-
tionary D ∈ R|Vs|×|Vt| where D[i, j] = 1 means that the
i-th word from the source vocabulary Vs is a translation of
the j-th word in the target vocabulary Vt. The data used
to learn the mapping from two different languages is two
sets of word embeddings Xs and Xt corresponding to the
vectors of the source and the target language respectively.
The mapping from one language space to the other is usu-
ally done with a projection matrix Wt which projects the
embeddings of the target language in the same space as the
source language (or vice versa), i.e. Xs ≈ XtWt.
There are several methods available to achieve such a map-
ping depending on the resources in hand. Given a dataset of
parallel word-aligned data, supervised mapping-based ap-
proaches are amongst the most popular to date (Mikolov et
al., 2013a; Dinu and Baroni, 2014; Gouws and Søgaard,
2015). Several unsupervised methods (Yang et al., 2018;
Conneau et al., 2017) based on Generative Adversarial
Neural Networks (GANs) (Goodfellow et al., 2014) have
also been proposed in the case where no seed dictionary is
available.
The method that we reproduce is the work of Artetxe et
al. (2018b) (referenced as ”the authors”). It also falls in
the unsupervised setting but is based on distances between
nearest neighbors to build the initial seed dictionary. We re-
fer the reader to the survey of Ruder et al. (2019) for more
details, which provides an extensive overview of the differ-
ent methods for learning cross-lingual mappings between
two different word embedding spaces.
On another hand, delivering reproducible research is too
often an underestimated concern. The fast pace of the re-
search community makes the verification of every submit-
ted paper barely possible, especially in a boiling commu-

†Authors contributed equally to this work.

nity such as natural language processing. Fortunately, we
see the rise of different challenges1,2,3 that emphasize the
importance of supporting the proposed results with an of-
ficial code implementation as well as the corresponding
dataset. It has even been mandatory to provide the source
code and the detailed procedure to obtain the same results
like the ones claimed in the paper in the NeurIPS Repro-
ducibility Challenge4.
In light of this quest for reproducibility, we hereby propose
to reproduce the paper from Artetxe et al. (2018b) in the
context of REPROLANG 2020 by also providing the stam-
mering of a methodology for delivering reproducible exper-
iments. Even though this algorithm relies on a stochastic
component, we can reproduce the results issued from this
algorithm and further analyze its behavior. It is therefore
important to provide a clean, readable codebase that sup-
ports a clear and concise paper.
We begin in section 2. with the problem statement and
section 3. with the presentation of the analyzed algorithm.
We then present what we reproduced from the original pa-
per’s results as well as how we obtained our results in sec-
tion 4. We provide recommendations regarding the tech-
niques used to obtain these results and their applicability
to other research projects in section 5. and close the analy-
sis with an assessment of the algorithm’s robustness in sec-
tion 6. We also publish our code online as required 5.

2. Problem Statement
Word vectors, often called word embeddings, are dis-
tributed representations derived from a textual corpus

1https://reproducibility-challenge.
github.io/iclr_2019/

2https://aaai.org/Conferences/AAAI-19/
ws19workshops/#ws16

3http://rescience.github.io/
4https://reproducibility-challenge.

github.io/neurips2019/
5https://gitlab.com/nicolasgarneau/

vecmap/ using this commit: b1abbd26

https://reproducibility-challenge.github.io/iclr_2019/
https://reproducibility-challenge.github.io/iclr_2019/
https://aaai.org/Conferences/AAAI-19/ws19workshops/#ws16
https://aaai.org/Conferences/AAAI-19/ws19workshops/#ws16
http://rescience.github.io/
https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/neurips2019/
https://gitlab.com/nicolasgarneau/vecmap/
https://gitlab.com/nicolasgarneau/vecmap/
https://gitlab.com/nicolasgarneau/vecmap/commit/b1abbd2635d6174b8b10d75e7ca5a652249b6841

5547

(Mikolov et al., 2013b; Pennington et al., 2014). The di-
mension d of these representations often spans from 100 to
1,000. One key outcome of learning these word represen-
tations is that it associates words in a vocabulary V with a
similar meaning (appearing in a similar context) with simi-
lar distribution vectors. This set of representations, often
called the embedding matrix X ∈ R|V|×d serves as the
input for many models in natural language understanding
applications such as text classification and machine trans-
lation.
The paper on which we conduct our reproducibility exper-
iment tackles the task of word vectors space alignment.
Given two sets of source and target embedding matrices
Xs ∈ R|Vs|×d and Xt ∈ R|Vt|×d induced from two
different textual corpora, one tries to find the mappings
Ws ∈ Rd×d and Wt ∈ Rd×d such that XsWs ≈ XtWt.
The vocabularies Vs and Vt can be of different sizes. Usu-
ally, only a subset of the n most frequent words is used for
the alignment. The work of the authors strictly focuses on
the task of unsupervised bilingual dictionary induction,
hence aligning the word vector space of a source language
with one of a target language without word-aligned data.
Essentially, the original paper’s approach tries to find a
good initial solution D0 by aligning word vectors from the
source and the target language that have a similar distribu-
tion. Their motivation, referred to in the literature as the
isometry assumption, is that monolingual word embedding
spaces are approximately isomorphic (Vulić et al., 2019).
They demonstrated for example that the vector of the word
“two” in English has a similar distribution as the word vec-
tor “due” in Italian and will be different from the distribu-
tion of the word “cane”, also in Italian. Once the initial dic-
tionary D0 is induced from the unsupervised procedure, a
self-supervised iteration loop is invoked to refine the map-
ping from the source to the target language. The whole
algorithm is further analyzed in the following section.

3. The Proposed Algorithm
In this section, we detail the four different steps of the al-
gorithm proposed by Artetxe et al. (2018b).

3.1. Step 1: Embedding Normalization
To directly quote the original paper, the first step of the pro-
posed method is to length normalize the word embeddings
Xs and Xt, then mean center each dimension and finally,
length normalize again.

3.2. Step 2: Fully Unsupervised Initialization
The next step is a component introduced by the authors in
the original paper: the unsupervised seed dictionary ini-
tialization. To build the initial dictionary D0, we begin
by applying multiple transformations to both Xs and Xt,
described as follows. Given one language’s embedding
matrix X, we start by computing its Singular Value De-
composition, namely USVT = X. We then compute√
M = USUT where M = XXT = US2UT corre-

sponds to the similarity matrix for the given language’s em-
bedding matrix. Each row (word embedding) of the yielded
matrices

√
Ms and

√
Mt is then sorted independently of

other rows and we apply the embedding normalization de-
scribed in subsection 3.1. A similarity matrix between the
two sets of languages is computed K =

√
Ms

√
Mt

T
. It is

important to note that before the above steps, a vocabulary
cutoff of n = 4, 000 is applied, yielding Xs,Xt ∈ Rn×d.
Finally, D0 is built by applying Cross-domain Similarity
Local Scaling (CSLS) (Conneau et al., 2017) retrieval on K
and bidirectional dictionary induction D0 = DXs→Xt

+
DXs←Xt . Further details on both CSLS and the bidirec-
tional dictionary induction can be found in ??

3.3. Step 3: Robust Self-Learning
The initial dictionary D0 is rarely a good solution in itself.
To overcome this, the authors proposed a self-learning algo-
rithm that iteratively refines the previously induced dictio-
nary. Hartmann et al. (2019) specifically demonstrated that
without this algorithm, the unsupervised dictionary induc-
tion is worse than vanilla GAN methods such as Conneau et
al. (2017). The algorithm comprises two main steps done
iteratively until convergence. The first step is to compute
the optimal orthogonal mapping maximizing the objective
function 6

argmax
Ws,Wt

∑
i

∑
j

Dij

(
(Xs[i, ∗]·Ws)·(Xt[j, ∗]·Wt)

)
(1)

for the current dictionary Dt at iteration t. The second step
is then to apply nearest neighbor retrieval over the similarity
matrix of the mapped embeddings XsWsW

T
t Xt to yield

the next seed dictionary Dt+1 for the next iteration.
In order to make the self-learning more robust and achieve
better performance, the authors also propose four improve-
ments to the above algorithm: stochasticity in the dictio-
nary induction, a frequency-based vocabulary cutoff, usage
of the CSLS instead of the nearest neighbor to compute the
optimal dictionary and usage of a bidirectional approach in
the dictionary induction.
The frequency-based vocabulary cutoff only retains the
top n = 20, 000 most frequent words from both embedding
matrices. Done after the unsupervised seed dictionary ini-
tialization and before the first self-learning step, the objec-
tive of this step is to increase the computing efficiency and
reduce the complexity of the optimization problem. The
proposed value of n was given without much explanation,
only saying that it was working well in practice. We chose
to further analyze the impact of different values of n in sub-
section 6.2.
The authors proposed a stochastic feature that may be vital
for the convergence of the algorithm with some languages.
They randomly keep some elements in the similarity ma-
trix yielded at the end of each iteration with a probability
of p while the others are ignored. This encourages the ex-
ploration of the search space and allows the dictionary to
greatly vary between two iterations when p is small. As the
algorithm starts to converge, the value of p gradually grows
to the maximum value of 1. The initial value of p is set to
p0 = 0.1 and it is multiplied by pfactor = 2 every time the
objective function (1) didn’t improve of more than a delta
value of ε = 10−6 in the last 50 iterations. We also chose to

6Here X[i, ∗] denotes the i-th row of the matrix X

5548

further analyze the impact of the (p0, pfactor) combination
in subsection 6.2.
Typically, to compute the optimal dictionary over the
mapped embeddings, we use the nearest neighbor retrieval
from the source language into the target language but Dinu
and Baroni (2014) showed that this approach suffers from
the hubness problem. This phenomenon, where many
points are universal neighbours to many other points, is an
intrinsic problem of high-dimensional spaces (Radovanović
et al., 2010). The authors adopted the CSLS introduced by
Conneau et al. (2017) which specifically tackles this prob-
lem. This approach’s idea is to penalize universal neigh-
bors by subtracting each word’s average cosine similarity
to its k nearest neighbors in the other language from the
cosine similarity result between words from the target and
source languages. Since the value used by the authors is
k = 10, as per Conneau et al. (2017)’s recommendation,
we again chose to further analyze the impact of different
values of k in subsection 6.2. to grasp a better understand-
ing of its impact.
The authors also proposed to use a bidirectional approach
for the dictionary induction. This improvement is based
on the intuition that, when the dictionary is induced from
the source into the target language, some of the words may
not be present or some may occur numerous times. The
authors claim that those target words occurring multiple
times may cause a problem of local optima since they may
act as an aggregation hub, making it much more difficult
to escape from that undesired solution. The bidirectional
approach thus uses the concatenation of both mappings,
source to target and target to source as the dictionary D,
namely D = DXs→Xt +DXs←Xt .

3.4. Step 4: Symmetric Re-Weighting
As explained in Artetxe et al. (2018a), re-weighting the
parameters of the target language’s embeddings according
to their cross-correlation is beneficial and greatly improved
the quality of the induced dictionary. They also showed that
using re-weighting and self-learning didn’t seem to work
well together since it provokes an accentuation of the local
optima problem and discourages the exploration of other
possible better regions, which is most of the problem ad-
dressed by the four improvements proposed by the authors
in the self-learning step. As a result, this step is done only
once after the self-learning loop converged. However, un-
like Artetxe et al. (2018a) which applied the re-weighting
on either the source or the target language, the authors ap-
plied the re-weighting to both languages. Using the sym-
metric approach improves the performance of the system,
but it’s not clear why they chose to use a symmetric re-
weighting instead of a target only re-weighting as proposed
in Artetxe et al. (2018a).

4. Reproducing the Results
We focused on reproducing the results of the entire abla-
tion study of Table 4, as well as the “Proposed Method”
line from Tables 2 and 3 of the original paper of Artetxe et
al. (2018b). The results comprise four different languages,
Deutsch (DE), Spanish (ES), Finnish (FI) and Italian (IT).
Since we did not have access to the dataset of Zhang et al.

(2017), we could not reproduce the results of Table 1. We
thus discuss in this section the results we obtained for the
proposed method and the ablation study with some issues
we faced.

4.1. Original Results
To reproduce the results of the original paper, we directly
used their publicly available codebase7, instead of com-
pletely reimplementing their algorithm on our side. As re-
ported in Table 1, we were able to reproduce the original
results with their codebase within a negligible difference,
most likely due to the stochastic nature of the dictionary
induction of the algorithm. Like in the original paper, we
provide the best and average (avg) accuracy for every lan-
guage pair as well as its average runtime (t). We performed
25 runs per target language and, instead of listing the num-
ber of successful runs (where accuracy > 5 %), we present
the success rate (s). We can see that, as expected, we have
a success rate of 1.0.
The execution time highly differs from the original paper.
It is important to note that even by using the same hardware
as the authors (Nvidia Titan Xp GPU), the average runtime
for each language is 2 to 4 times longer than the actual run-
time reported in the paper. It is an important factor when
comes the time to reproduce the results if we have a limited
amount of resources at hand.
Another thing to keep in mind when using this algorithm
is that the frequency-based vocabulary cutoff assumes that
the word vectors have been saved in the embedding text
file ordered by their frequency in the training corpus.
While this is the default behavior of the Fasttext library
(Mikolov et al., 2018), it may not always be the case.

4.2. Ablation Study
Our reproduction results of the ablation study in the orig-
inal paper are reported in Table 2. Amongst other things,
we note that the accuracy results we obtained are all within
the 95 % confidence interval given by our 25 runs, with the
only exceptions being the unsupervised initialization abla-
tion and the runtimes.
Regarding the unsupervised initialization ablation, we ini-
tially faced the challenge of having to reproduce the random
seed dictionary initialization that was mentioned in the pa-
per yet missing in the code. We therefore explored two very
plausible approaches to random initializations: one where
each word of the smallest language is randomly assigned
a word from the biggest language (referred to as ‘Random
Complete’) and one where a cutoff is done on both lan-
guages before the random pairing (referred to as ‘Random
Cutoff ’). The first thing to note is that both our tested ran-
dom initializations reach convergence between 10 and 30 %
of the time, in contrast with the authors’ 0 % success rate.
Also, when runs beginning with random initialization are
successful, the final performance of the algorithm is the
same as the one with the full system. This hints that the
initial seed dictionary used, whether obtained by unsuper-
vised or random initialization, only affects the difficulty of
the optimization problem but not the retrieved solution.

7https://github.com/artetxem/vecmap

https://github.com/artetxem/vecmap

5549

EN-DE EN-ES EN-FI EN-IT

best avg s t best avg s t best avg s t best avg s t

Original 48.5 48.2 1.0 7.3 37.6 37.3 1.0 9.1 33.5 32.6 1.0 12.9 48.5 48.1 1.0 8.9
Reproduced 48.5 48.3 1.0 31.1 37.8 37.2 1.0 35.3 33.7 32.9 1.0 38.1 48.5 48.2 1.0 29.4

Table 1: The original results were taken from the original paper of Artetxe et al., (2018). The reproduced results have been
generated using their original codebase. We report the best accuracy (best), average accuracy (avg), success rate (s) and
average runtime in minutes (t). Bold values represent significant differences between the original and reproduced results.

Our results also showed great differences in the algorithm’s
runtimes, even though we used the same graphics card as
the original paper. We also point out that not all abla-
tion study configurations can be run with the same compute
power, i.e. when removing the vocabulary cutoff parameter,
the matrices no longer fit inside a GPU’s memory and we
have to prepare additional RAM space and CPU resources
to run the script. However, when we attempted to repro-
duce the frequency-based vocabulary cutoff ablation where
n is set to 100k, we were unable to obtain a single run to
complete even after 3 days of computations. This is why
we left this line dashed out in Table 2.

4.3. Reproduction Issues
While it may seem trivial to use an official implementation
to reproduce the results of a paper, the reality is that it often
requires a good amount of human effort to run a complete
reproduction of the results. The latter is what happened
with us when following the given instructions to obtain the
reported results. While the code did execute and complete
when using the ACL 2018 setting, we had accuracies below
the ones expected for each language pair (5 to 7 % below).
It is only after the further analysis that we found that the
provided setting did not include the CSLS procedure, ex-
plaining the different results. After eventually managing
to reproduce the reported full algorithm results, we hit an-
other breaking point: the ablation study was not included
in the source code. While almost all ablations (except the
random initialization, as per subsection 4.2.) could be run
from the provided implementation, no script was given to
sequentially execute all ablation tests and report the results.
We propose some key recommendations on how to address
these issues and facilitate reproducibility and reusability
when providing an official implementation with a paper in
the section 5.

5. Recommendations
Reproducing the model and the results of an original paper
can be quite a hassle. In this section, we provide a gen-
eral framework applicable to any Machine Learning project
that will help researchers deliver highly reproducible exper-
iments. We begin with minor recommendations regarding
the source code provided by the authors. We then propose
a way to host the dataset and a tool that handles the down-
load and the upload of it. Since another very important
thing to consider when running experiments is to log them
all, we hereby propose to automate the logging of the ex-
perimentations as well as the gathering of the results. These
steps considerably facilitate the automatic generation of ta-
bles and graphs as was required for this challenge. Finally,

we recommend to use a 100 % reproducible environment to
run the experiments, hence to Dockerize the whole project
(Cito and Gall, 2016; Hartmann et al., 2019).

5.1. Codebase Recommendations
One thing that every research codebase should have is
a list of the external libraries needed to execute the
code. In the case of a Python project, it should have a
requirements.txt file. This file holds all the python
dependencies needed to run the project’s main script. We
thus prepared such a file in our codebase since the original
codebase was missing one.
When running experiments, it is important to reduce the
number of actions a human needs to perform in order to
obtain the final results. We then made the training and the
evaluation of the algorithm, originally in two separate files,
into one single script. This also removes the writing of
the mapped embeddings on disk which vastly reduces the
amount of disk space needed.
In the same line of ideas, the default hyperparameters of
the algorithm should be the ones that reproduce the main
results of the paper (Table 2 in Artetxe et al. (2018b)).
This is why we proposed to explicitly code not only the
full algorithm but also every ablation configuration as
Experiment classes within our codebase. This abstrac-
tion in our source code enables us to easily provide scripts
that reproduce our ablation study as well as the hyperpa-
rameter grid search conducted in subsection 6.2.
Coordination between a paper’s key sections and its official
implementation is also a concern we wish to raise. When
reading a scientific paper, if one wishes to have a closer
look at the implementation of a particular algorithm step
or section, one should be able to do so without having to
understand the entire codebase. This is why we created
an exact correspondence between step names in the origi-
nal paper like ’CSLS Retrieval’ and ’Robust Self-Learning’
and function names in our source code. We argue this name
mapping should be easy to implement at the end of the de-
livery of a research project and that it contributes signifi-
cantly towards easier reusability of the delivered implemen-
tation.

5.2. Dataset Handling
Properly handling the benchmark dataset is often an un-
derestimated point. In an iterative and collaborative set-
ting, it is important to efficiently host (when possible) and
version the data. We thus recommend a tool designed to
handle those two elements flawlessly; Data Version Control
(DVC). Similar to standard Version Control Systems (VCS)

5550

EN-DE EN-ES EN-FI EN-IT

best avg s t best avg s t best avg s t best avg s t

Full System 48.5 48.2 1.0 7.3 37.6 37.3 1.0 9.1 33.5 32.6 1.0 12.9 48.5 48.1 1.0 8.9
Reproduced 48.6 48.3 1.0 35.0 37.9 37.3 1.0 36.2 33.8 32.9 1.0 26.7 48.3 48.1 1.0 30.0

- Unsup. Init. 0.0 0.0 0.0 17.3 0.1 0.0 0.0 15.9 0.1 0.0 0.0 13.8 0.1 0.0 0.0 16.5
Rand. Compl. 48.4 14.5 0.3 31.5 37.9 7.6 0.2 20.2 31.7 3.2 0.1 27.6 48.1 9.6 0.2 28.0
Rand. Cut. 48.1 14.4 0.3 25.7 38.1 7.6 0.2 24.5 30.0 3.0 0.1 46.1 48.1 19.1 0.4 27.8

- Stochastic 48.1 48.1 1.0 2.5 37.8 37.8 1.0 2.6 0.3 0.3 0.0 4.3 48.2 48.2 1.0 2.7
Reproduced 48.1 48.1 1.0 43.0 38.1 38.1 1.0 53.0 0.1 0.1 0.0 26.0 48.1 48.1 1.0 50.0

- Cutoff (n=100k) 48.3 48.1 1.0 105.3 35.5 34.9 1.0 185.2 31.9 30.8 1.0 162.5 46.9 46.5 1.0 114.5
Reproduced* - - - - - - - - - - - - - - - -

- CSLS† 0.0 0.0 0.0 13.8 0.0 0.0 0.0 14.1 0.0 0.0 0.0 13.1 0.0 0.0 0.0 15.0
Reproduced 43.1 42.8 1.0 36.9 32.9 32.7 1.0 30.2 28.0 26.9 1.0 21.9 42.9 42.5 1.0 15.0

- Bidrectional 48.3 48.0 1.0 5.5 36.2 35.8 1.0 7.3 31.4 24.9 0.8 7.8 46.0 45.4 1.0 5.6
Reproduced 49.1 48.6 1.0 36.9 37.3 37.0 1.0 31.2 33.1 32.0 1.0 25.5 47.5 47.2 1.0 31.9

- Re-weighting 48.1 47.4 1.0 7.0 36.0 35.5 1.0 9.1 32.9 31.8 1.0 11.2 46.1 45.6 1.0 8.4
Reproduced 47.6 47.2 1.0 35.9 37.1 36.5 1.0 37.0 32.0 31.5 1.0 27.5 47.8 47.3 1.0 31.0

Table 2: Ablation study of the algorithm proposed by Artetxe et al., (2018b) on the same four languages. We performed
seven ablations and report the original and reproduced best accuracy (best), average accuracy (avg), success rate (s) and
average runtime in minutes (t). Bold values represent significant differences between the original and reproduced results.
*We did not reproduce this ablation due to time constraints as more than three days per run would have been required to
reach convergence. †The authors reported a bug on the code they used for generating the CSLS values which made their
code only yield zero accuracies.

like Git8, DVC tracks the different state of the dataset dur-
ing development as well as in between the processing steps
before obtaining the final results of the model.
While there is no need in our particular reproducibility
challenge context to track the different states of the dataset
over time, it definitely requires an efficient collaboration
environment, hence our choice to use the Python DVC li-
brary 9 with Amazon S3 as the remote repository. DVC
was designed with large data files in mind, meaning giga-
bytes or even hundreds of gigabytes in file size. In our case,
the original dataset takes up to 6 Gigabytes. The previous
way of retrieving the dataset over the network with a stan-
dard 20 Mbits/sec internet connexion took up to an hour to
complete (including uncompressing the data). Using DVC
reduced the retrieval time of the dataset to 3 minutes over
the network with the same internet connexion. While re-
trieving the dataset may seem like a one-time effort during
the development of the model, when comes the time to dis-
tribute the computation over several machines, one can save
valuable time. We also made the dataset available as a pub-
lic archive10 since it was required by the challenge.

5.3. Automatic Experiment Logging
When doing research, it is easy to enter the experiment’s
hurry loop; as soon as we have an idea, we code it and we
launch our main script without committing the modifica-
tions. Grossly keeping track of an architecture and its cor-
responding results in our head or a spreadsheet is good for

8https://git-scm.com/
9https://dvc.org

10https://vecmap-submission.s3.amazonaws.
com/dataset.tar.gz

nothing when it comes to the time to retrieve and analyze
past experiments.
We thus propose to automate the process of logging as well
as retrieving the results of every experiment in order to re-
duce the risk of losing experiment information. To this end,
we used a flexible yet emergent tool that beautifully solves
this problem; MLflow11,12. MLflow provides a model ag-
nostic Python API that lets you track not only the results of
a given configuration but also the associated source code,
the dataset used, and much more. It has been of great use
for the automatic generation of tables and graphs in this ac-
tual paper as it is required by the challenge. We also believe
it is vital to use such a framework for any scientific team
doing serious research to reduce the overhead and stress of
manually logging and keeping the information about ex-
perimentations, especially considering the low effort it re-
quires to setup.

5.4. Dockerization
Docker13 is a software that provides an abstraction of the
system libraries, tools, and runtime. A Docker container is
essentially a lightweight executable package that can run on
every14 environment. In this project, we did face a depen-
dencies problem between the Cupy python library and its
associated CUDA drivers. In fact, even with a Docker con-

11https://mlflow.org
12One can find numerous alternatives such as Sacred,

Comet.ml or Weights and Biases for example.
13https://www.docker.com/
14As long as the environment provides the necessary hardware

specifications.

https://git-scm.com/
https://dvc.org
https://vecmap-submission.s3.amazonaws.com/dataset.tar.gz
https://vecmap-submission.s3.amazonaws.com/dataset.tar.gz
https://mlflow.org
https://sacred.readthedocs.io/en/stable/
https://www.comet.ml/
https://www.wandb.com/
https://www.docker.com/

5551

tainer and the nvidia-docker15 library, we had to make
sure that the Cupy compiled library matched the actual
host’s CUDA drivers. This issue brings the reproducibil-
ity of the project at stake when the hardware of the host’s
machine differs from the original one. We thus assume that
the host machine running our codebase within our provided
docker image16 has the requirements such as the CUDA
drivers to fulfill the experiments.

6. Assessing the Algorithm’s Robustness
Vulić et al. (2019) showed that completely unsupervised
word translation approaches tend to fail when language
pairs are distant. They however identify Artetxe et al.
(2018b)’s algorithm as the current most robust among com-
pletely unsupervised approaches. Hence, in order to assess
ourselves the algorithm’s robustness, we decided to apply
it on other languages that have fewer similarities with the
English language. We also conduct a grid search over key
hyperparameters which enlightens us on the stability of the
whole procedure.

6.1. More Languages
We carefully selected four new languages that are charac-
terized by very different roots than the one used in the orig-
inal paper. We used Estonian (ET) which is a language that
gets its root from Finno-Ugric, the same as Finnish. We
also selected Persian (FA), Latvian (LV) and Vietnamese
(VI). We can see in Table 3 that the results on Estonian cor-
roborate the results from the initial paper where the stochas-
tic dictionary induction step is crucial for proper conver-
gence. We observed similar behavior for the Persian lan-
guage. Interestingly, even with the full system, the al-
gorithm poorly performs on Latvian and Vietnamese lan-
guages. We conducted the same ablation study as with the
original languages. We can see that the algorithm does not
converge without an unsupervised initialization and with-
out the stochastic procedure. It also struggles to converge
on three languages out of four when the CSLS component
is turned off. These results clearly show that the proposed
method may become brittle when the target language shares
fewer commonalities with the source language.

6.2. Robustness to Hyperparameters
In order to correctly assess the algorithm’s robustness to
variations in one key hyperparameter’s values, we con-
ducted experiments where we fixed all of the parameter
values to the default ones and only varied the tested hyper-
parameter, ensuring adequate conclusions could be drawn.
The key parameters we chose to examine are (1) the num-
ber of considered neighbors in the CSLS procedure, (2) the
number of retained words in the frequency-based vocabu-
lary cutoff and (3) the initial value of p and its growing
factor in the stochastic dictionary induction. We then as-
sess each hyperparameter’s impact on both the performance
and the execution time (in terms of the number of iterations
and/or iteration duration) of the algorithm in order to pro-
vide well-informed recommendations.

15https://github.com/NVIDIA/nvidia-docker
16registry.gitlab.com/nicolasgarneau/vecmap

CSLS
We conducted experiments where we varied the k num-
ber of neighbors considered in the CSLS procedure from
1 to 20, with results reported on Figure 1. For all language
pairs, we denote a variation of approximately 1 % between
the highest and lowest accuracy obtained over the evalu-
ated range. These variations are however well in between
the 95 % confidence interval region for most of the tested
values, suggesting the correlation between the performance
and the number of neighbors considered in CSLS is loose.
Furthermore, when taking into account that iteration dura-
tion only slightly grows with the growth of k, the author’s
suggested universal value of k = 10 neighbors considered
in the CSLS retrieval procedure appears like a legitimate
compromise.

Frequency-based vocabulary cutoff
For this experiment, we only retained the n most frequent
words of both languages before launching the self-learning
iterative procedure (subsection 3.3.), with values of n rang-
ing from 10k to 30k, with increments of 1k. When in-
creasing the value of n, our results show the system’s ac-
curacy decreasing on Spanish, increasing on both Finnish
and Deutsch and attaining a stable range for Italian. While
the accuracy difference is very different from one target
language to another, the variation on all the tested range
is between 1 and 2 %. Regarding the iteration duration’s
correlation with the number of retained words, our exper-
iments show a quadratic growth of an iteration’s duration
as well as an overall increase in the number of iterations
before convergence when increasing n, in line with the
original paper’s conclusion. Pairing the highly language-
dependent impact of this hyperparameter on the algorithm’s
performance with its major impact on its execution time, we
conclude that the number of most frequent words retained
before the self-learning procedure should be the target of
careful finetuning for each target language.

Stochastic dictionary induction
For the tests on the stochastic dictionary induction, we con-
sidered a linear space of 5 values between 0.05 and 0.3 for
the initial keep probability (p0) and a linear space of 4 val-
ues between 1.5 and 3 for p’s growth factor (pfactor) and
ran tests for each of the 20 total combinations. Our re-
sults only show a slight performance difference between
all tested value pairs, with all language pairs only varying
for less than 1 % and three of the four language pairs vary-
ing for less than 0.5 %. One important to note however is
that making the algorithm greedier (with a higher value of
p0) does not lead to any performance loss: the best perfor-
mances are rather found when using those high p0 values.
Considering the number of iterations only decreases when
p0 grows, it appears the original paper’s p0 = 0.1 value
only increases the number of iterations without a significant
impact on performance. No such conclusion can be drawn
for the pfactor hyperparameter, which appears very weakly
correlated to overall performance.

7. Conclusion
In this paper, we studied the reproducibility of the model
proposed by Artetxe et al. (2018b). We found out that their

https://github.com/NVIDIA/nvidia-docker

5552

EN-ET EN-FA EN-LV EN-VI

best avg s t best avg s t best avg s t best avg s t

Vecmap 28.5 26.7 1.0 20.5 35.6 34.5 1.0 28.7 23.4 2.6 0.1 41.5 0.0 0.0 0.0 35.8
- Unsup. (Rand.) 0.1 0.0 0.0 33.0 0.1 0.0 0.0 19.5 0.1 0.0 0.0 29.6 0.1 0.0 0.0 34.7
- Unsup. (Rand. Cut.) 0.1 0.0 0.0 35.4 0.3 0.0 0.0 31.5 0.1 0.0 0.0 27.7 0.0 0.0 0.0 33.9
- Stochastic 0.1 0.1 0.0 56.3 0.1 0.1 0.0 20.0 0.0 0.0 0.0 32.0 0.0 0.0 0.0 28.0
- CSLS 19.7 2.0 0.1 30.5 28.0 27.5 1.0 43.7 0.1 0.0 0.0 24.1 0.0 0.0 0.0 33.2
- Bidirectional 28.1 26.9 1.0 31.7 34.7 33.9 1.0 28.7 0.3 0.1 0.0 28.8 0.1 0.0 0.0 32.5
- Reweighting 28.5 26.3 1.0 22.1 34.9 33.8 1.0 30.5 23.0 2.5 0.1 27.9 0.0 0.0 0.0 36.4

Table 3: Best accuracy (best), average accuracy (avg), success rate (s) and average runtime in minutes (t) of the full system
on four other languages, Estonian (ET), Persian (FA), Latvian (LV) and Vietnamese (VI). These languages have been
carefully selected to illustrate the robustness of the algorithm. They have very different roots then the English language.
We also conducted an ablation study to illustrate the stability of the algorithm on such languages.

5 10 15 20
47.5

48.0

48.5

49.0

English-Deutsch

5 10 15 20

36.0

37.0

38.0

English-Spanish

5 10 15 20
30.0

32.0

34.0

English-Finnish

5 10 15 20

47.0

48.0

49.0

English-Italian

Figure 1: Average accuracy percentage results per number of considered neighbors in the CSLS procedure on the various
language pairs. All reported results are obtained after a total of 10 runs per value and the shaded region represents a 95 %
confidence interval on the accuracy mean.

1 1.5 2 2.5 3
46.0

47.0

48.0

49.0

English-Deutsch

1 1.5 2 2.5 3

36.0

37.0

38.0

39.0

English-Spanish

1 1.5 2 2.5 3

30.0

32.0

34.0

English-Finnish

1 1.5 2 2.5 3
47.0

47.5

48.0

48.5

49.0

English-Italian

Figure 2: Average accuracy percentage results per number of retained words (in tens of thousands) in the frequency-based
vocabulary cutoff method on the various language pairs. All reported results are obtained after a total of 10 runs per value
and the shaded region represents a 95 % confidence interval on the accuracy mean.

method of mapping embeddings between two languages is
robust when the languages share commonalities. Other-
wise, the approach struggles to learn proper mapping. We
also assessed the robustness of the hyperparameters of the
algorithm in many languages.

We introduced several recommendations regarding the
guidelines every researcher should follow in order to de-
liver fully reproducible research. It is often said that repli-
cability (reproducing the results of a model from a new
implementation) is more complicated than reproducibility
(reproducing the results from an existing implementation).
However, we found out that reproducing the results may
become an issue if there are hardware or time constraints
as we faced during our experimentations. Indeed, we were
able to perform a grid-search on the hyperparameter and

validate the robustness of the algorithm thanks to the 64
GPUs we had in hand, otherwise, it would have taken
months to run. That being said, reproducibility is an issue
when hardware and time constraints come into play.

8. Acknowledgements

This research was enabled in part by support provided by
Calcul Québec (https://www.calculquebec.ca/) and Com-
pute Canada (www.computecanada.ca). We also acknowl-
edge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC). Finally, we wish to
thank Anders Søgaard for his precious advice and the re-
viewers for their insightful comments regarding our work
and methodology.

5553

0.05

0.11

0.17

0.24

0.30

48.33 48.3 48.28 48.27

48.33 48.27 48.25 48.27

48.29 48.14 48.16 48.2

48.35 48.33 48.3 48.41

48.39 48.41 48.37 48.4

p
0

English-Deutsch

48.1

48.2

48.3

48.4

48.5

37.31 37.21 37.18 37.11

37.39 37.56 37.46 37.11

37.64 37.52 37.4 37.57

37.34 37.55 37.51 37.57

37.51 37.47 37.59 37.68

English-Spanish

37.0

37.2

37.4

37.6

37.8

1.5 2.0 2.5 3.0

0.05

0.11

0.17

0.24

0.30

32.76 32.74 32.58 32.37

33.36 33.31 32.99 32.66

32.59 32.44 32.4 32.61

33.37 33.32 33.35 33.14

33.03 33.05 33.04 33.05

pfactor

p
0

English-Finnish

32.0

32.5

33.0

33.5

1.5 2.0 2.5 3.0

48.15 48.07 48.29 48.01

48.17 48.17 48.1 48.01

48.33 48.28 48.05 47.99

48.17 48.25 48.21 48.22

48.26 48.21 48.19 48.15

pfactor

English-Italian

48.0

48.2

48.4

Figure 3: Average accuracy percentage results per initial value of p (p0) and its growing factor (pfactor) in the stochastic
dictionary induction on the various language pairs. All reported results are obtained after a total of 10 runs per (p0, pfactor)
pair.

9. References
Artetxe, M., Labaka, G., and Agirre, E. (2018a). Gener-

alizing and improving bilingual word embedding map-
pings with a multi-step framework of linear transfor-
mations. In AAAI Conference on Artificial Intelligence,
pages 5012–5019.

Artetxe, M., Labaka, G., and Agirre, E. (2018b). A robust
self-learning method for fully unsupervised cross-lingual
mappings of word embeddings. In ACL, pages 789–798.

Cito, J. and Gall, H. C. (2016). Using docker containers
to improve reproducibility in software engineering re-
search. In IEEE/ACM, pages 906–907.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and
Jégou, H. (2017). Word translation without parallel data.
ArXiv, 1710.04087.

Dinu, G. and Baroni, M. (2014). Improving zero-shot
learning by mitigating the hubness problem. ArXiv,
1412.6568.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Ben-

gio, Y. (2014). Generative adversarial networks. ArXiv,
1406.2661.

Gouws, S. and Søgaard, A. (2015). Simple task-specific
bilingual word embeddings. In HLT-NAACL.

Hartmann, M., Kementchedjhieva, Y., and Søgaard, A.
(2019). Comparing unsupervised word translation meth-
ods step by step. In NeurIPS.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploit-
ing similarities among languages for machine transla-
tion. ArXiv, 1309.4168.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In NIPS.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. (2018). Advances in pre-training distributed
word representations. In LREC.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
EMNLP.

Radovanović, M., Nanopoulos, A., and Ivanović, M.

5554

(2010). Hubs in space: Popular nearest neighbors in
high-dimensional data. JMLR, 11:2487–2531, Decem-
ber.

Ruder, S., Vuli’c, I., and Sogaard, A. (2019). A survey of
cross-lingual word embedding models. Journal of Artifi-
cial Intelligence Research, 65:569–631, Aug.

Vulić, I., Glavaš, G., Reichart, R., and Korhonen, A.
(2019). Do we really need fully unsupervised cross-
lingual embeddings? In EMNLP-IJCNLP, pages 4398–
4409.

Yang, P., Luo, F., Wu, S., Xu, J., Zhang, D., and Sun, X.
(2018). Learning unsupervised word mapping by maxi-
mizing mean discrepancy. ArXiv, 1811.00275.

Zhang, M., Liu, Y., Luan, H., and Sun, M. (2017). Adver-
sarial training for unsupervised bilingual lexicon induc-
tion. In ACL, pages 1959–1970.

	Introduction
	Problem Statement
	The Proposed Algorithm
	Step 1: Embedding Normalization
	Step 2: Fully Unsupervised Initialization
	Step 3: Robust Self-Learning
	Step 4: Symmetric Re-Weighting

	Reproducing the Results
	Original Results
	Ablation Study
	Reproduction Issues

	Recommendations
	Codebase Recommendations
	Dataset Handling
	Automatic Experiment Logging
	Dockerization

	Assessing the Algorithm's Robustness
	More Languages
	Robustness to Hyperparameters

	Conclusion
	Acknowledgements
	References

