
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5474–5480
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5474

Chat or Learn: a Data-Driven Robust Question-Answering System

Gabriel Luthier and Andrei Popescu-Belis
HEIG-VD / HES-SO

Route de Cheseaux 1, CP 521
1401 Yverdon-les-Bains, Switzerland

{gabriel.luthier, andrei.popescu-belis}@heig-vd.ch

Abstract
We present a voice-based conversational agent which combines the robustness of chatbots and the utility of question answering (QA)
systems. Indeed, while data-driven chatbots are typically user-friendly but not goal-oriented, QA systems tend to perform poorly
at chitchat. The proposed chatbot relies on a controller which performs dialogue act classification and feeds user input either to a
sequence-to-sequence chatbot or to a QA system. The resulting chatbot is a spoken QA application for the Google Home smart speaker.
The system is endowed with general-domain knowledge from Wikipedia articles and uses coreference resolution to detect relatedness
between questions. We present our choices of data sets for training and testing the components, and present the experimental results
that helped us optimize the parameters of the chatbot. In particular, we discuss the appropriateness of using the SQuAD dataset for
evaluating end-to-end QA, in the light of our system’s behavior.

Keywords: question answering, dialogue acts, chatbots, SQuAD, Wikipedia, movie subtitles.

1. Introduction
The multiplication of voice-based virtual assistants avail-
able on mobile phones or smart speakers has made conver-
sational systems familiar to the general public. Commer-
cial assistants from large technology companies focused
initially on tasks related to the main offerings of these
companies: controlling a smartphone (Apple’s Siri), pur-
chasing goods or services (Amazon’s Alexa), or searching
for information over the Web (Google Assistant). Beyond
these functionalities, which can in principle be achieved
with large finite-state dialogue models, commercial assis-
tants were not intended to support extended conversations
on topics in the general domain, although their capacities
for chitchat have been gradually increasing (Fang et al.,
2018). On the contrary, the systems known as chatbots were
intended from the start to offer robust conversational ca-
pacities, although with a thin and often implicit knowledge
base. Such chatbots are often trained on large dialogue cor-
pora from movies or social media. However, giving them
task-oriented capabilities is difficult, at least when using the
sequence-to-sequence neural models on which most recent
chatbots rely.
In this paper, we present a simple yet effective solution
to design a conversational agent that combines the robust-
ness of chatbots with the utility of task-oriented systems –
here, question answering (QA). The system supports task-
oriented dialogues, to answer factual questions over a doc-
ument set such as Wikipedia, but has also the capacity to
reply to non-task-oriented questions, for managing the so-
cial aspects of the conversation including chitchat (or small
talk). Ahead of the two components supporting these func-
tionalities, which are implemented using state-of-the-art
technologies, the system relies on a controller, which per-
forms dialogue act recognition and routes user utterances
to one of the components. The system operates using the
Google Home smart speaker for speech-based interaction,
or using a text-based interface.
The paper is organized as follows. We first review the main

existing technologies and the limitations we attempt to ad-
dress with our architecture (Section 2). Then, we present
the main design and implementation choices for our sys-
tem (Section 3): question answering, including the manage-
ment of follow-up questions thanks to pronoun resolution,
chitchat with sequence-to-sequence models, and dialogue
control using dialog act recognition. Evaluation results are
given in Section 4 for the three components. We examine
in particular the relevance of the SQuAD data set for test-
ing document-based end-to-end QA, as opposed to answer
extraction from paragraphs only, and discuss the data and
parameters required to train the components for best per-
formance.

2. Motivation
Task-oriented dialogue systems have been extensively stud-
ied in the past decades (Rieser and Lemon, 2011), but de-
spite significant achievements in their training, the design
or adaptation of such systems remains very costly. This is
mostly due to their highly structured nature, with dedicated
modules for language processing, dialogue modeling, and
task management. This is the case, for instance, when the
dialogue management component relies on explicit finite-
state representations of dialogue states, with dialogue poli-
cies based on Partially Observable Markov Decision Pro-
cesses (POMDP); such models must be trained with rein-
forcement learning, possibly using simulations of human
users (Rieser and Lemon, 2011, Chapter 3).
The advent of deep learning has opened new possibilities
for end-to-end training of conversational agents, typically
with neural sequence-to-sequence models (Li et al., 2016).
This is mainly successful for generating fluent and plausi-
ble responses when chatting, and has been essentially ap-
plied to chatbots for non-task-oriented dialogues, such as
Cleverbot.com or TockTock (Zhou et al., 2016).
Dhingra et al. (2017) have proposed a solution for end-to-
end training of a recurrent neural network intended for task-
oriented dialogue, by converting probabilities in the final



5475

layer of the network into discrete entities, and thus allowing
a movie database to be queried. However, the system did
not generate utterances and its task was limited to attribute-
based search in a data table.
Several large technology companies have designed robust
smart assistants and put them in production. Such assis-
tants rely on cloud-based solutions for speech recognition
and synthesis, and on undisclosed dialogue management ar-
chitectures, likely inspired from finite-state models. These
assistants were initially tailored to offer services related to
the main business of their provider (e-commerce, control
of smartphone and apps, or Web search), although recent
extensions have enabled some of them to support several
turns of chitchat. At least two providers enable the connec-
tion of third-party systems to their smart speakers (Google
Home and Amazon Echo) while another one supports writ-
ten interactive applications (Facebook). To this end, spe-
cific frameworks offer basic NLP functions and models for
defining dialogue policies: the Alexa Skills Kit (for Ama-
zon Echo), DialogFlow (connected to Google Home via
Actions), or WIT.AI (related to Facebook Messenger).1

Traditional QA systems operate in two phases (Harabagiu
et al., 2003). First, they identify the document or paragraph
that potentially contains the answer to the given question,
typically using methods pertaining to information retrieval.
Second, they extract the specific answer using NLP tech-
niques, relying in particular on the estimation of the type of
the expected answer. Interactive QA systems are more chal-
lenging to design than non-interactive (single turn) ones, as
dialogue states and policies are difficult to define in the case
of open questions (Rieser and Lemon, 2009).
Neural systems have recently demonstrated impressive QA
capabilities (Chen et al., 2017), more specifically on the
second part of the QA task, i.e. extracting answers given
a question and a paragraph. Recent progress has been
made using BERT, i.e. Bidirectional Encoder Representa-
tions from Transformers (Devlin et al., 2018). For QA,
or more exactly for answer extraction, the BERT model is
post-trained with a final layer dedicated to this task, and
various systems using it with various strategies, including
ensemble models, have recently reached nearly human-like
levels on the SQuAD benchmark (Rajpurkar et al., 2016;
Rajpurkar et al., 2018).2

SQuAD 1.1 contains 100,000 questions derived by human
workers from about 500 paragraphs from Wikipedia. Each
question is accompanied by the correct answer, and by the
paragraph on which it is based. It is thus possible to test
answer extraction, but also end-to-end QA by hiding the
paragraphs, though this method has several limitations (dis-
cussed in Section 4.1 below). SQuAD 2.0 adds 50,000
“unanswerable” questions, which systems should tag as
such. Their role is to penalize systems that would aggres-
sively search for answers in paragraphs. Our system aug-
ments with paragraph retrieval a system based on BERT,
and uses SQuAD scores as a criterion to tune the system’s
parameters.

1developer.amazon.com/alexa-skills-kit,
wit.ai, dialogflow.com, developers.google.com/
actions.

2rajpurkar.github.io/SQuAD-explorer/

Finally, in our system, the controller that conveys utterances
either to the chatbot or to the QA component uses dialogue
act recognition, which we envisage here as a simple clas-
sification task. More complex sequence models (Stolcke et
al., 2000) as well as neural models (Zhao and Kawahara,
2017) have been proposed and could be used in the future
to improve performance.

3. Design and Implementation
The main components of our conversational agent are
shown in Figure 1. The input utterance obtained from a
smart speaker with speech recognition or from a text-based
interface is passed to the dialogue act recognizer. This com-
ponent routes task-related inputs (i.e. genuine information-
seeking questions) to the QA component, and other inputs
(including greetings, politeness or non-goal-directed chat)
to the chatbot. The answers from the respective component
are then sent back to the smart speaker using speech syn-
thesis or to the text-based interface.
This structure offers a simple solution for designing a
robust agent for accessing information that can be found in
documents, and reduces the risk of failure when presented
with non-information-seeking questions. Although these
components are reminiscent of the traditional ones –
respectively dialogue management, task management, and
user interaction – they are organized in a quite different
manner.

Response 
generation

Controller

Device

Setting

Voice-based front-end: 
smart speaker + actions

Dialogue act recognition: 
task vs. social

Question 
answering: task

management

Chatbot: social
interaction 

management

Figure 1: Architecture of our conversational agent.

3.1. Question Answering Component
While our agent is intended as a general solution for mixing
task-oriented dialogue with chatting, in its current version
the task under consideration is specifically a QA one, as-
suming answers to a user’s questions can be found in the
English Wikipedia pages. Given the outstanding recent re-
sults of the BERT model applied to QA on the SQuAD
dataset, we selected this model for our QA component.
However, the model is designed for answer extraction from
a specific paragraph – with provision for the cases when the
paragraph does not contain the answer – while we need to
develop an end-to-end solution, starting directly from the

developer.amazon.com/alexa-skills-kit
wit.ai
dialogflow.com
developers.google.com/actions
developers.google.com/actions
rajpurkar.github.io/SQuAD-explorer/


5476

document repository, without prior knowledge of the para-
graphs relevant to each question.
To retrieve from the document set the paragraphs that are
likely to contain the answer to a given question, we use
the Elasticsearch information retrieval system,3 itself based
on Apache Lucene. The document set providing knowl-
edge to our system is made of Wikipedia pages, which we
retrieve from a Wikipedia dump in an appropriate format
for Elasticsearch, named Cirrussearch.4 Given a question,
the system retrieves from Wikipedia one or more relevant
paragraphs, transforming the question into a query, with the
parameters presented below. The paragraphs are then pro-
cessed by the answer extraction component using BERT.

3.1.1. Design Options
For integrating paragraph search (ElasticSearch) with an-
swer extraction (BERT), we experimented with various
combinations of the following options.

Question preprocessing: filter out stop words or not.

Elasticsearch: perform the search either over the full text
of each Wikipedia page, or over the opening para-
graph(s) only (i.e. the initial text before the first sec-
tion, which is stored in a specific field in the Cir-
russearch Wikipedia dump), or over the title only.

Search results: keep 1-best or up to 5-best results; in the
latter case, the answer extraction method examines the
results by decreasing Elasticsearch scores and stops as
soon as it finds an answer.

Answer extraction with BERT: applied to the opening
text of the page, or to the entire page.

We selected the optimal options based on the SQuAD
scores shown in Table 1 of Section 4– we also discuss the
impact of unanswerable questions in Section 4. The best
options we found are: (a) to consider the unfiltered ques-
tions; (b) to search with Elasticsearch only over the titles
of Wikipedia pages; and (c) to give BERT only the opening
paragraphs of the 1-best result.
We do not perform any other form of fine-tuning of BERT-
base to our task, as we do not have a more specific question
set than SQuAD at this stage of the project.

3.1.2. Pronoun Resolution
Series of questions targeting the same entity are fairly com-
mon, and in this case pronouns are typically used to refer
to the entity on subsequent mentions, rather than repeating
a full description of it. We handle this phenomenon within
the QA component only, rather than across the two com-
ponents (QA and chatbot). We assume that if an utterance
was classified as chitchat, co-reference is no longer possi-
ble across it, as topics may change quite unpredictably.
We incorporated the NeuralCoref pronoun resolution mod-
ule5 to the QA component, making it capable of handling
follow-up questions. When a third person pronoun (per-
sonal or possessive) is detected in a question from the user,
NeuralCoref is called on the utterance, with the latest two

3www.elastic.co
4dumps.wikimedia.org/other
5github.com/huggingface/neuralcoref

Figure 2: Sample conversation with the agent.

question-answer pairs as context. If NeuralCoref finds an
antecedent, then our system replaces the pronoun in the
user’s question with this antecedent, and passes the result-
ing question to Elasticsearch and then BERT. The substi-
tution of a pronoun by its antecedent may degrade the flu-
ency of the question, but the substituted result is only used
by the search components, and is never seen by the user.
This use of pronoun resolution keeps it separate from the
search component, enabling independent experiments with
each component. Such a simple logic can accommodate
other knowledge sources without changing the search algo-
rithm.
A sample text-based conversation with three information-
seeking questions is shown in Figure 2. In conditions with
moderate audio noise, the Google Home device is able to
recognize this input without errors. The pronouns appear-
ing in the second and third questions are correctly solved,
and the answers are correctly found, though the first one
appears to be imperfectly truncated by BERT from a longer
Wikipedia sentence.

3.2. Chatbot Component
The chatbot component is designed to answer the user’s
questions that are not requests for information, without at-
tempting to perform a search, but providing a fluent and so-
cially acceptable reply. The utterances routed to this com-
ponent include dialogue openings and closings, politeness-
related utterances, and more generally any utterances which
may come from users who want to play with the system,
possibly for entertainment, by pushing it off-task. Sev-
eral types of non-task utterances can be recognized by the
DialogFlow toolkit to which the Google Assistant is con-
nected, but we do not rely on this functionality, as we do
not want to tie our system strongly tied to this framework.
To handle non-task-oriented utterances with a robust and
unified mechanism, without investing a large effort in pro-
cessing each sub-type of off-task utterance, we decided to

www.elastic.co
dumps.wikimedia.org/other
github.com/huggingface/neuralcoref


5477

train a neural sequence-to-sequence model based on recur-
rent neural networks with LSTMs, proposed by Vinyals and
Le (2015) and for which a PyTorch implementation is avail-
able.6 A second implementation of the same model, pro-
vided by Yuan-Kuei Wu,7 has also been tested for com-
parison purposes. As already observed by Vinyals and
Le (2015), this seq2seq model cannot ensure consistency
across several turns, but here it allows rapid development
of a system for handling non-task-related utterances.
The chatbot component was trained over a small subset (the
first 25 MB of a total of 25 GB) of the English part of the
OpenSubtitles corpus,8 with the set of subtitles for each
movie counting as one dialogue.

3.3. Dialogue Controller
Our proposal for switching between the chatbot and the
QA components relies on a dialogue act recognizer im-
plemented as an utterance classifier. Its goal is to distin-
guish the requests for information, which are sent to the
QA system, from all other utterances including greetings
and chitchat, which are sent to the chatbot. Therefore, in-
stead of a using a complex dialogue act hierarchy (Bunt et
al., 2012), our controller only needs to make a binary de-
cision, which can be carried out using context-free classi-
fiers (Clark and Popescu-Belis, 2004). For this, it uses an
utterance classifier that is trained on a labeled data set con-
structed by joining SQuAD questions and movie dialogues
(about 10,000 lines of each type), which all come directly
from the original training data of each component.

3.4. Software and Hardware Platforms
We use the Google Home smart speaker as a speech-based
front-end to our conversational agent. Agents called ‘Ac-
tions’ can be created on a platform dedicated to develop-
ers,9 which is wired to the DialogFlow platform offering
several out-of-the-box NLP tools. It is also possible to con-
nect an Action to a remote server which can handle the dia-
logue, as our system does to a server located in our institute.
Our server is an endpoint that reads the payload containing
the user’s input words, triggers the conversational agent,
and sends back the output words, which are then uttered by
the smart speaker. The entire computation of the answer
given an utterance is performed on our local server with a
high-end single GPU board. In practice, the observed time
interval between a user’s utterance and the reply is accept-
able for natural spoken interaction (0.5–2 seconds).

4. Evaluation
The end-to-end evaluation of our system is nontrivial. A
theoretical option, which comes at a high cost, is to define
a context of use, select a specific document repository, and
ask users to test the system. Another option is to use a large
set of questions that jointly test the performance of the con-
troller, the QA component and the chatbot – however, to the

6pytorch.org/tutorials/beginner/chatbot_
tutorial.html

7github.com/ywk991112/pytorch-chatbot
8opus.nlpl.eu/OpenSubtitles-v2018.php
9developers.google.com/actions

best of our knowledge, such a data set does not exist. There-
fore, we use several component-level evaluation methods
along with our own subjective testing, to assess the overall
system’s performance.

4.1. Evaluating QA with SQuAD: Results and
Limitations

We optimized several parameters of the QA component by
attempting to increase its scores on the SQuAD devset. The
options described in Section 3.1 above have been evaluated,
and the obtained scores are presented in Table 1. The anal-
ysis of the scores enabled us to make several design choices
for our component.

4.1.1. Global Scores
We use the same metric as the one from the official SQuAD
website (see footnote 2), namely Exact Match, i.e. “the per-
centage of predictions that match any one of the ground
truth answers exactly” (Rajpurkar et al., 2016). In our case,
the paragraph from which BERT extracts the answer is not
provided with the question, but must be found by searching
Wikipedia. This explains the lower scores of our system,
which answers correctly only about half of the SQuAD 2.0
questions.
To quantify the role of Elasticsearch vs. BERT-base, we
also evaluated locally the BERT-base stage using the para-
graphs provided with SQuAD, and obtained 72.5% accu-
racy. This is similar to published BERT-base scores, though
it is considerably lower than systems using the full BERT
model or other language representation models, as well as
ensembles of models, which have very recently reached the
90% mark.
We infer that the main weakness of our method is the para-
graph retrieval component, and confirm this below by ex-
amining separately the performance on SQuAD questions
that have an answer vs. the performance on the “unanswer-
able” questions (5,928 versus 5,945, for a total of 11,873),
as shown in Table 2. We relaxed the Exact Match metric
to allow for case-independent matching and a Levenshtein
distance of at most 3. While our system identifies correctly
a large proportion of unanswerable questions, it fails to find
answers to many questions that actually have an answer in
the SQuAD paragraph.

4.1.2. Scores for Answerable Questions
The detailed analysis of our system’s performance on an-
swerable questions, in the upper part of Table 2, shows that
for our correct as well as incorrect answers, only a small
proportion of the actual SQuAD paragraphs were retrieved:
19 out of 300 for questions answered correctly (6.3%),
and 26 out of 1,614 (1.6%) for those answered incorrectly.
Moreover, for a very large proportion of these questions
(3,924 out of 5,928 i.e. 66%), no page was retrieved at all
by Elasticsearch.
One reason explaining this finding is that many SQuAD
questions target minor facts in the source paragraph (e.g.
“Who was Robert’s son?”or “Who kicked Ethelred out?”)
or are highly non-specific (e.g. “ What are two examples
of different types of reduction?” or “Political disadvantage
is an attribute of which state policies?”) Hence, when we

pytorch.org/tutorials/beginner/chatbot_tutorial.html
pytorch.org/tutorials/beginner/chatbot_tutorial.html
github.com/ywk991112/pytorch-chatbot
opus.nlpl.eu/OpenSubtitles-v2018.php
developers.google.com/actions


5478

Raw questions Filtered questions
Search on
titles

Search on
openings

Search on
full texts

Search on
titles

Search on
openings

Search on
full texts

BERT on 1st answer 47.8 46.1 46.1 46.6 42.8 46.3
openings 5 answers 42.5 38.6 39.6 38.1 32.7 34.2
BERT on 1st answer 45.1 41.4 40.4 39.2 38.2 37.6
full texts 5 answers 39.1 30.2 27.9 28.0 24.7 23.5

Table 1: Accuracy of QA for SQuAD 2.0 exact matches, without using the paragraph provided for each question.

Reference Our system
Correct Incorrect No answer
answers answers (no page)

Answerable 300 1,614 3,924
· same wiki page 19 26
· different page 281 1,598
Unanswerable N/A 1,115 4,830
· same wiki page 31
· different page 1,084

Table 2: Analysis of end-to-end question answering with
SQuAD 2.0 questions, without using the paragraph pro-
vided for each question. Correct cases are those in bold
numbers.

use such questions as queries, it is impossible for Elastic-
search to retrieve the paragraph from which they were ac-
tually constructed. This points to an intrinsic weakness of
SQuAD for end-to-end QA evaluation.
In fact, most of the correct answers scored by our system
were actually found in different Wikipedia paragraphs than
the source ones in SQuAD. This shows that our method is
able to extract knowledge if it is available somewhere in the
document repository. Our method sometimes even provides
better answers than those found in SQuAD. For instance,
for the question “How many campuses does the University
of California have?”, our method finds the correct answer
(10) from the Wikipedia page on the ‘University of Cali-
fornia’, while SQuAD indicates a wrong answer (5) from a
paragraph on ‘Southern California’. Assessing the number
of wrong answers in SQuAD should be a priority for the
future.
A final issue with SQuAD was detected by examining the
paragraphs that our system correctly found, but from which
the answer was not extracted correctly by our version of
BERT (26 cases). While some mistakes are due to BERT,
most of the problems come from the fact that some arti-
cles are substantially different between SQuAD and our
Wikipedia dump (footnote 4). This was the case for 63
SQuAD questions based on ‘Warsaw’ and 27 based on
‘Rhine’, most of which were absolutely not answerable and
for this reasons are removed from the counts in Table 2.
The other articles in this case were: ‘Imperialism’ (15 ques-
tions), ‘Ctenophora’ (11), ‘Oxygen’ (7), ‘Normans’ (3), ‘Is-
lamism’ (2), and ‘Construction’ (1), which we all kept in
our statistics because they still contained the correct an-
swers despite substantial changes in the Wikipedia text.
The wrong answers for these paragraphs are simply due to
BERT mistakes.

4.1.3. Scores for Unanswerable Questions
Interpreting our scores on unanswerable questions is more
difficult. For a very large proportion of these questions,
Elasticsearch finds no relevant paragraph, and thus our sys-
tem’s empty answer is scored as correct. However, when
actually finding a paragraph and an answer (1,115 questions
out of the 5,945 unanswerable ones), our system sometimes
finds a correct answer from a different paragraph, but this
doesn’t increase its SQuAD score as the question is consid-
ered unanswerable from its original paragraph.
For instance, the question “What is France a region of?”
cannot be answered from the SQuAD paragraph on ‘Nor-
mandy’, but our system provides a correct answer from the
opening text of the page on ‘France’, namely “Western Eu-
rope”. Similarly, our system answers correctly the question
“Who married Cnut the Great?”, which is unanswerable
from ‘Normans’ but is answered based on “Cultural depic-
tions of Cnut the Great”, with the correct answer ‘Emma of
Normandy’. Of course, none of these contribute positively
to our SQuAD score, as they are marked as unanswerable
in SQuAD.
Finally, some unanswerable questions are so poorly for-
mulated that they rule out the possibility of finding an an-
swer even if they had one in the data set. Some examples
are: “when did Nors encampments ivolve into destructive
incursions?” (where ‘Nors’ and ‘ivolve’ are misspelled)
or “What is Las Vegas one of in the United States?” or
“Whose value was know in Newton’s life?”

4.2. Evaluating the Seq2seq Component

For the chatbot component, evaluation is harder since it
cannot be easily automated, while user-oriented evaluation
is beyond our resources and scope. Hence, in order to
get a sense of the system’s behavior, we tested the sys-
tem with around twenty elementary utterances – such as
“Hello”, “Good bye”, “Are you a robot?”, “What’s your
favourite food?” – for several values of a variety of parame-
ters. We tested the two implementations of the sequence-
to-sequence model presented above, and the first one (from
the PyTorch tutorial) appeared to outperform the second
one. Although we noticed some fluctuation of the replies,
the different parameters for training and testing both im-
plementations did not lead to systematic improvements or
degradations. The main problem was the generation of
replies that seemed unrelated to the input utterance, as well
as the rather low variations of the answers’ quality with the
parameters.
Other training sets were tested, such as the Cornell Movie-



5479

Dialogs Corpus10 and the dialogue section of the British
National Corpus11 which led to more perceptible changes
than when modifying the chatbot’s parameters, but not suf-
ficient to select these as final training sets.

4.3. Performance of the Dialogue Controller
The evaluation of the dialogue controller component was
made using held-out data. Our data set contained the
same amount of SQuAD questions and of movie dialogues:
11,873 lines of each type. We randomly divided the corpus
into training, validation and test subsets (80%, 10% and
10%) and used the test subset to assess the performance of
the model. The classifier reached 90% accuracy, and obser-
vation of its predictions while using the system confirmed
this high quality.

5. Conclusion and Future Work
We presented a conversational agent implemented as an Ac-
tion on Google Home, which can answer questions in the
general domain based on Wikipedia, but can also manage
greetings and chitchat thanks to the integration of two dedi-
cated components. Interaction with the system appears to
be reasonably fluent and entertaining, as long as the user
maintains her initiative and interest in the interaction.
We intend in fact to use this system as front-end to corpo-
rate information available in documents, which will require
us to design a self-contained system with fully-controlled
speech recognition and synthesis, as in our prototype of
document recommender for conversations (Popescu-Belis
et al., 2011). One project under way is to embody it into a
humanoid robot such as Aldebaran’s Nao or Pepper. Eval-
uation methods will also change with the domain, the doc-
uments, and the hardware.
A weakness of the dialogue controller implemented as a bi-
nary classifier is it difficulty to handle follow-up utterances
such as requests for clarification. A way to address the issue
is to train the classifier to recognize more types of dialogue
acts, such as requests for answer refinement, indications of
misunderstanding, or requests for additional answers (Bunt
et al., 2012). Another strategy is to submit each utterance
to both components, and learn to decide which answer to
show based on the question and the two answers.
Expanding the system to other languages is also part of
our future plans. The main difficulty resides in fine-tuning
a language-specific BERT model with a SQuAD-like data
set. If a model is not available,12 a costly option is to create
such a data set in the new language. A cheaper variant is
to automatically translate the SQuAD data set into the new
language, if MT systems are available. Another tractable
option (Carrino et al., 2020) is to translate automatically the
user’s question into English, then align the answer found in
the English Wikipedia page with the equivalent Wikipedia
page from the other language, and return the aligned an-
swer, which should thus be fluent and grammatically cor-
rect since it comes from an actual Wikipedia page.

10www.cs.cornell.edu/˜cristian/Cornell_
Movie-Dialogs_Corpus.html

11github.com/Phylliida/Dialogue-Datasets
12See a sample list at bertlang.unibocconi.it.

Acknowledgments
We thank the University of Applied Sciences of Western
Switzerland (HES-SO) for the PLACAT grant that sup-
ported this work (AGP n. 82681).

6. Bibliographical References
Bunt, H., Alexandersson, J., Choe, J.-W., Fang, A. C.,

Hasida, K., Petukhova, V., Popescu-Belis, A., and
Traum, D. (2012). ISO 24617-2: A semantically-based
standard for dialogue annotation. In Proceedings of the
Eighth International Conference on Language Resources
and Evaluation (LREC-2012), pages 430–437, Istan-
bul, Turkey. European Language Resources Association
(ELRA).

Carrino, C. P., Costa-jussà, M. R., and Fonollosa, J. A. R.
(2020). Automatic Spanish translation of the SQuAD
dataset for multilingual question answering. In Pro-
ceedings of the 12th International Conference on Lan-
guage Resources and Evaluation (LREC-2020), Mar-
seille, France. European Language Resources Associa-
tion (ELRA).

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017).
Reading Wikipedia to answer open-domain questions.
In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1870–1879, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Clark, A. and Popescu-Belis, A. (2004). Multi-level dia-
logue act tags. In Proceedings of the 5th SIGdial Work-
shop on Discourse and Dialogue at HLT-NAACL 2004,
pages 163–170, Cambridge, MA, USA. Association for
Computational Linguistics.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018).
BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR, abs/1810.04805.

Dhingra, B., Li, L., Li, X., Gao, J., Chen, Y.-N., Ahmed,
F., and Deng, L. (2017). Towards end-to-end reinforce-
ment learning of dialogue agents for information access.
In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 484–495, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Fang, H., Cheng, H., Sap, M., Clark, E., Holtzman, A.,
Choi, Y., Smith, N. A., and Ostendorf, M. (2018).
Sounding Board: A user-centric and content-driven so-
cial chatbot. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Demonstrations, pages 96–100,
New Orleans, Louisiana. Association for Computational
Linguistics.

Harabagiu, S., Maiorano, S. J., and Paşca, M. (2003).
Open-domain textual question answering techniques.
Natural Language Engineering, 9(3):1–38.

Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., and
Gao, J. (2016). Deep reinforcement learning for dia-
logue generation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing,
pages 1192–1202, Austin, Texas. Association for Com-
putational Linguistics.

www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
github.com/Phylliida/Dialogue-Datasets
bertlang.unibocconi.it


5480

Popescu-Belis, A., Yazdani, M., Nanchen, A., and Garner,
P. N. (2011). A speech-based just-in-time retrieval sys-
tem using semantic search. In Proceedings of the ACL-
HLT 2011 System Demonstrations, pages 80–85, Port-
land, Oregon. Association for Computational Linguis-
tics.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
SQuAD: 100,000+ questions for machine comprehen-
sion of text. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing,
pages 2383–2392, Austin, Texas. Association for Com-
putational Linguistics.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what
you don’t know: Unanswerable questions for SQuAD.
CoRR, abs/1806.03822.

Rieser, V. and Lemon, O. (2009). Does this list contain
what you were searching for? Learning adaptive dia-
logue strategies for interactive question answering. Nat-
ural Language Engineering, 15(1):55–72.

Rieser, V. and Lemon, O. (2011). Reinforcement learning
for adaptive dialogue systems: a data-driven methodol-
ogy for dialogue management and natural language gen-
eration. Springer-Verlag, Berlin/Heidelberg, Germany.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R.,
Jurafsky, D., Taylor, P., Martin, R., Ess-Dykema, C. V.,
and Meteer, M. (2000). Dialogue act modeling for auto-
matic tagging and recognition of conversational speech.
Computational Linguistics, 26(3):339–374.

Vinyals, O. and Le, Q. V. (2015). A neural conversational
model. CoRR, abs/1506.05869.

Zhao, T. and Kawahara, T. (2017). Joint learning of dialog
act segmentation and recognition in spoken dialog using
neural networks. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 704–712, Taipei, Tai-
wan. Asian Federation of Natural Language Processing.

Zhou, Y., Ziyu, X., Black, A. W., and Rudnicky, A. I.
(2016). TickTock Re-Wochat 2016 shared task chatbot
description report. In Proceedings of the REWOCHAT
Workshop at LREC 2016, Portoroz, Slovenia. European
Language Resources Association (ELRA).


	Introduction
	Motivation
	Design and Implementation
	Question Answering Component
	Design Options
	Pronoun Resolution

	Chatbot Component
	Dialogue Controller
	Software and Hardware Platforms

	Evaluation
	Evaluating QA with SQuAD: Results and Limitations
	Global Scores
	Scores for Answerable Questions
	Scores for Unanswerable Questions

	Evaluating the Seq2seq Component
	Performance of the Dialogue Controller

	Conclusion and Future Work
	Bibliographical References

