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Abstract
Despite the number of currently available datasets on video-question answering, there still remains a need for a dataset involving
multi-step and non-factoid answers. Moreover, relying on video transcripts remains an under-explored topic. To adequately address
this, we propose a new question answering task on instructional videos, because of their verbose and narrative nature. While previous
studies on video question answering have focused on generating a short text as an answer, given a question and video clip, our task aims
to identify a span of a video segment as an answer which contains instructional details with various granularities. This work focuses
on screencast tutorial videos pertaining to an image editing program. We introduce a dataset, TutorialVQA, consisting of about 6,000
manually collected triples of (video, question, answer span). We also provide experimental results with several baseline algorithms
using the video transcripts. The results indicate that the task is challenging and call for the investigation of new algorithms.
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1. Introduction
Video is the fastest growing medium to create and deliver
information today. Consequentially, videos have been in-
creasingly used as main data sources in many question an-
swering problems (Yang et al., 2003; Tapaswi et al., 2016;
Jang et al., 2017; Maharaj et al., 2017; Kim et al., 2017;
Jang et al., 2017; Zeng et al., 2017). These previous studies
have mostly focused on factoid questions, each of which
can be answered in a few words or phrases generated by
understanding multimodal contents in a short video clip.
However, this problem definition of video question answer-
ing causes some practical limitations for the following rea-
sons. First, factoid questions are just a small part of what
people actually want to ask on video contents. Especially
if a short video is given to users, most fragmentary facts
within the scope of previous tasks can be easily perceived
by themselves even before asking questions. Thus, video
question answering is expected to provide answers to more
complicated non-factoid questions beyond the simple facts.
For example, users may have “how to” type questions
where the answer involves many fragmented steps to com-
plete the task, as shown in Fig. 2.
Accordingly, the answer format needs to also be im-
proved towards more flexible ways besides multiple
choice (Tapaswi et al., 2016; Jang et al., 2017) or fill-in-
the-blank questions (Maharaj et al., 2017; Kim et al., 2017).
Although open-ended video question answering (Yang et
al., 2003; Jang et al., 2017; Zeng et al., 2017) has been ex-
plored, it still aims to generate just a short word or phrase-
level answer, which is not enough to cover the various gran-
ularities of non-factoid question answering.
The other issue is that many videos with sufficient amounts
of information, which a user is likely to pose questions on,
have much longer lengths than the video clips in the exist-
ing datasets. Therefore, in practice, the most relevant part
of a whole video needs to be determined prior to each an-

swer generation phase. However, this localization task has
been out of scope for previous studies.
In this work, we propose a new question answering prob-
lem for non-factoid questions on instructional videos. In
accord with the nature of the media created for instructional
purposes, we assume that many answers may already exist
within the given video contents. Under this assumption,
we formulate the problem as a localization task to specify
the span of a video segment as the direct answer to a given
video and question, as illustrated in Figure 1.
The remainder of this paper is structured as follows: Sec-
tion 2 goes over some related work. Section 3 introduces
TutorialVQA dataset as a case study of our proposed prob-
lem. The dataset includes about 6,000 triples, comprised
of videos, questions, and answer spans manually collected
from screencast tutorial videos with spoken narratives for
a photo-editing software. Section 4 presents the baseline
models and their experiment details on the sentence-level
prediction and video segment retrieval tasks on our dataset.
Then, we discuss the experimental results in Section 5 and
conclude the paper in Section 6.

2. Related Work
Most relevant to our proposed work is the reading compre-
hension task, which is a question answering task involving
a piece of text such as a paragraph or article. Such datasets
for the reading comprehension task, such as SQuAD (Ra-
jpurkar et al., 2016) based on Wikipedia, TriviaQA (Joshi et
al., 2017) constructed from trivia questions with answer ev-
idence from Wikipedia, or those from Hermann et al. based
on CNN and Daily Mail articles (Hermann et al., 2015) are
factoid-based, meaning the answers typically involve a sin-
gle entity. Differing from video transcripts, the structures
of these data sources, namely paragraphs from Wikipedia
and news sources, are typically straightforward since they
are meant to be read. In contrast, video transcripts origi-
nate from spoken dialogue, which can be verbose, unstruc-
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Figure 1: An illustration of our task, where the red in the timeline indicates where answers can be found in a video.

tured, and disconnected. Furthermore, the answers in in-
structional video transcripts can be longer, spanning multi-
ple sentences if the process is multi-step or even fragmented
into multiple segments throughout the video.
Visual corpora in particular have proven extremely valuable
to visual questions-answering tasks (Antol et al., 2015),
the most similar being MovieQA (Tapaswi et al., 2016)
and VideoQA (Yang et al., 2003). Similar to how our
data is generated from video tutorials, the MovieQA and
VideoQA corpus is generated from movie scripts and news
transcipts, respectively. MovieQA’s answers have a shorter
span than the answers collected in our corpus, because
questions and answer pairs were generated after each para-
graph in a movie’s plot synopsis (Tapaswi et al., 2016). The
MovieQA dataset also contains specific annotated answers
with incorrect examples for each question. In the VideoQA
dataset, questions focus on a single entity, contrary to our
instructional video dataset. Although not necessarily a vi-
sual question-answering task, the work proposed by Gupta
et al. involved answering questions over transcript data
(Gupta et al., 2018). Contrary to our work, Gupta et al.’s
dataset is not publically available and their examples only
showcase factoid-style questions involving single entity an-
swers.
Malmaud et al. focus on aligning a set of instructions to a
video of someone carrying out those instructions (Malmaud
et al., 2015). In their task, they use the video transcript to
represent the video, which they later augment with a vi-
sual cue detector on food entities. Their task focuses on
procedure-based cooking videos, and contrary to our task
is primarily a text alignment task. In our task we aim to
answer questions—using the transcripts—on instructional-
style videos, in which the answer can involve steps not
mentioned in the question.

3. TutorialVQA Dataset
In this section, we introduce the TutorialVQA dataset and
describe the data collection process.1

3.1. Overview
Our dataset consists of 76 tutorial videos pertaining to an
image editing software. All of the videos include spoken
instructions which are transcribed and manually segmented

1https://github.com/acolas1/TutorialVQAData

number of videos 76
number of segments 408
number of QA pairs 6,195
avg. length of answer (sec) 31.39
avg. length of transcript (sentences) 48
avg. length of question (words) 9
avg. length of answer (sentences) 6

Table 1: Statistics of TutorialVQA dataset.

Figure 2: An example of a QA annotation.

into multiple segments. Specifically, we asked the annota-
tors to manually divide each video into multiple segments
such that each of the segments can serve as an answer to
any question. For example, Fig. 1 shows example segments
marked in red (each which are a complete unit as an an-
swer span). Each sentence is associated with the starting
and ending time-stamps, which can be used to access the
relevant visual information.
The dataset contains 6,195 non-factoid QA pairs, where the
answers are the segments that were manually annotated.
Fig. 2 shows an example of the annotations. video id
can be used to retrieve the video information such as
meta information and the transcripts. answer start and
answer end denote the starting and ending sentence in-
dexes of the answer span. Table 1 shows the statistics of
our dataset, with each answer segment having on average
about 6 sentences, showing that our answers are more ver-
bose than those in previous factoid QA tasks.

3.2. Basis
We chose videos pertaining to an image editing software
because of the complexity and variety of tasks involved. In
these videos, a narrator is communicating an overall goal
by utilizing an example. For example, in 1 the video per-
tains to combining multiple layers into one image. How-
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ever, throughout the videos multiple subtasks are achieved,
such as the opening of multiple images, the masking of im-
ages, and the placement of two images side-by-side. These
subtasks involve multiple steps and are of interest to us in
segmenting the videos. Each segment can be seen as a sub-
task within a larger video dictating an example. We thus
chose these videos because of the amount of procedural in-
formation stored in each video for which the user may ask.
Though there is only one domain, each video corresponds
to a different overall goal.

3.3. Data Collection
We downloaded 76 videos from a tutorial website about an
image editing program.2 Each video is pre-processed to
provide the transcripts and the time-stamp information for
each sentence in the transcript. We then used Amazon Me-
chanical Turk3 to collect the question-answer pairs.4 One
naive way of collecting the data is to prepare a question list
and then, for each question, ask the workers to find the rel-
evant parts in the video. However, this approach is not fea-
sible and error-prone because the videos are typically long
and finding a relevant part from a long video is difficult.
Doing so might also cause us to miss questions which were
relevant to the video segment. Instead, we took a reversed
approach. First, for each video, we manually identified the
sentence spans that can serve as answers. These candidates
are of various granularity and may overlap. The segments
are also complete in that they encompass the beginning and
end of a task. In total, we identified 408 segments from
the 76 videos. Second we asked AMT workers to provide
question annotations for the videos.
Our AMT experiment consisted of two parts. In the first
part, we presented the workers with the video content of a
segment. For each segment, we asked workers to generate
questions that can be answered by the presented segment.
We did not limit the number of questions a worker can in-
put to a corresponding segment and encouraged them to in-
put a diverse set of questions which the span can answer.
Along with the questions, the workers were also required
to provide a justification as to why they made their ques-
tions. We manually checked this justification to filter out
the questions with poor quality by removing those ques-
tions which were unrelated to the video. One initial chal-
lenge worth mentioning is that at first some workers input
questions they had about the video and not questions which
the video could answer. This was solved by providing them
with an unrelated example. The second part of the ques-
tion collection framework consisted of a paraphrasing task.
In this task we presented workers with the questions gener-
ated by the first task and asked them to write the questions
differently while keeping the semantics the same. In this
way, we expanded our question dataset. After filtering out
the questions with low quality, we collected a total of 6,195
questions.
It is important to note the differences between our data col-
lection process and the the query generation process em-

2https://helpx.adobe.com/photoshop/tutorials.html
3https://www.mturk.com/
4We recruited workers who have completed at least 100 AMT

tasks and have at least a 95% approval rating.

Example Video ID
why might some alignment options
appear grey? 4051

how would i go about selecting
all the layers at once? 4051

what does the crop tool do? 4177
where is the crop tool located? 4177

Table 2: Examples of question variations

ployed in the Search and Hyperlinking Task at MediaEval
(Eskevich et al., 2014). In the Search and Hyperlinking
Task, 30 users were tasked to first browse the collection of
videos, select interesting segments with start and end times,
and then asked to conjecture questions that they would use
on a search query to find the interesting video segments.
This was done in order to emulate their thought process
mechanism. While the nature of their task involves queries
relating to the overall videos themselves, hence coming
from a video’s interestingness, our task involves users al-
ready being given a video and formulating questions where
the answers themselves come from within a video. By pre-
senting the same video segment to many users, we maintain
a consistent set of video segments and extend the possibility
to generate a diverse set of question for the same segment.

3.4. Dataset Details
Table 2 presents some extracted sample questions from our
dataset. The first column corresponds to an AMT gener-
ated question, while the second column corresponds to the
video ID where the segment can be found. As can be seen
in the first two rows, multiple types of questions can be
answered within the same video (but different segments).
The last two rows display questions which belong to the
same segment but correspond to different properties of the
same entity, ‘crop tool’. Here we observe different types
of questions, such as “why”, “how”, “what”, and “where”,
and can see why the answers may involve multiple steps.
Some questions that the worked paraphrased were in the
“yes/no” style, however our answer segments then provide
an explanation to these questions.
Each answer segment was extracted from an image editing
tutorial video that involved multiple steps and procedures
to produce a final image, which can partially be seen in 1.
The average number of sentences per video was approxi-
mately 52, with the maximum number of sentences con-
tained in a video being 187. The sub-tasks in the tutorial
include segments (and thus answers) on editing parts of im-
ages, instructions on using certain tools, possible actions
that can be performed on an image, and identifying the lo-
cations of tools and features, with the shortest and longest
segment having a span of 1 and 37 sentences respectively,
demonstrating the heterogeneity of the answer spans.

4. Baselines
Our video question answering task is novel and to our
knowledge, no model has been designed specifically for
this task. As a first step towards solving this problem, we
evaluated the performance of state-of-the-art models devel-
oped for other QA tasks, including a sentence-level predic-
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tion task and two segment retrieval tasks. In this section,
we report their results on the TutorialVQA dataset.5

4.1. First Baseline: Sentence-level prediction
Given a transcript (a sequence of sentences) and a question,
the first baseline predicts (starting sentence index, ending
sentence index). The model is based on RaSor (Lee et al.,
2016), which has been developed for the SQuAD QA task
(Rajpurkar et al., 2016). RaSor concatenates the embed-
ding vectors of the starting and the ending words to rep-
resent a span. Following this idea, the first baseline rep-
resents a span of sentences by concatenating the vectors of
the starting and ending sentences. The left diagram in Fig. 3
illustrates the first baseline’s model.
Model. The model takes two inputs, a transcript,
{s1, s2, ...sn}where si are individual sentences and a ques-
tion, q. The output is the span scores, y, the scores over all
possible spans. GLoVe (Pennington et al., 2014) is used
for the word representations in the transcript and the ques-
tions. We use two bi-LSTMs (Schuster and Paliwal, 1997)
to encode the transcript.

hi = biLSTMlast(si) for i = 1..n (Sent Encoding)
pi = biLSTMall({h1, .., hn}) (Psg Encoding)

where n is the number of sentences.6 The output of
Passage-level Encoding, p, is a sequence of vector, pi,
which represents the latent meaning of each sentence.
Then, the model combines each pair of sentence embed-
dings (pi, pj) to generate a span embedding.

rij = [pi, pj ] for i, j = 1..n (Span Generation)

where [·,·] indicates the concatenation. Finally, we use a
one-layer feed forward network to compute a score between
each span and a question.

hq = biLSTMlast(q) (Span Scoring)
yij = Softmax(FFN([rij , h

q]))

In training, we use cross-entropy as an objective function.
In testing, the span with the highest score is picked as an
answer.
Metrics. We use tolerance accuracy (Tsunoo et al., 2017),
which measures how far away the predicted span is from
the gold standard span, as a metric. The rationale behind
the metric is that, in practice, it suffices to recommend a
rough span which contains the answer – a difference of a
few seconds would not matter much to the user.
Specifically, the predicted span is counted as correct if
|predstart − gtstart| + |predend − gtend| <= k, where
predstart/end and gtstart/end indicate the indices of the
predicted and ground-truth starting and ending sentences,
respectively. We then measure the percentage of correctly
predicted questions among the entire test questions.

5For the baselines, we considered only the transcript informa-
tion, since it was non-trivial to include the other modalities such
as video. In the future we plan to develop a multi-modal approach.

6biLSTMlast produces only the last hidden vector while
biLSTMall produces all hidden vectors along the sequence.

4.2. Second baseline: Segment retrieval
We also considered a simpler task by casting our problem
as a retrieval task. Specifically, in addition to a plain tran-
script, we also provided the model with the segmentation
information which was created during the data collection
phrase (See Section. 3). Note that each segments corre-
sponds to a candidate answer. Then, the task is to pick the
best segment for given a query. This task is easier than the
first baseline’s task in that the segmentation information is
provided to the model. Unlike the first baseline, however, it
is unable to return an answer span at various granularities.
The second baseline is based on the attentive LSTM (Tan et
al., 2016), which has been developed for the InsuranceQA
task. The right diagram in Fig. 3 illustrates the second base-
line’s model.
Model. The two inputs, s and q represent the segment text
and a question. The model first encodes the two inputs.

hs = biLSTMall(s) (Sentence Encoding)
hq = biLSTMlast(q) (Question Encoding)

hs is then re-weighted using attention weights.

a = FFN([hs, hq]) (Attention)
h′s = a� hs

where � denotes the element-wise multiplication opera-
tion. The final score is computed using a one-layer feed-
forward network.

y = Softmax(FFN([hs, hq])) (Scoring)

During training, the model requires negative samples. For
each positive example, (question, ground-truth segment),
all the other segments in the same transcript are used as
negative samples. Cross entropy is used as an objective
function.
Metrics. We used accuracy and MRR (Mean Reciprocal
Ranking) as metrics. The accuracy is

# of questions where the top answer is correct
the total # of questions

We split the ground-truth dataset to train/dev/test into the
ratio of 6/2/2. The resulting size is 3,718 (train), 1,238
(dev) and 1,239 QA pairs (test).

4.3. Third baseline: Pipeline Segment retrieval
We construct a pipelined approach through another seg-
ment retrieval task, calculating the cosine similarities be-
tween the segment and question embeddings. In this task
however, we want to test the accuracy of retrieving the seg-
ments given that we first retrieve the correct video from our
76 videos. First, we generate the TF-IDF embeddings for
the whole video transcripts and questions. The next step
involves retrieving the videos which have the lowest cosine
distance between the video transcripts and question. We
then filter and store the top ten videos, reducing the num-
ber of computations required in the next step. Finally, we
calculate the cosine distances between the question and the
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Figure 3: Baseline models for sentence-level prediction and video segment retrieval tasks.

segments which belong to the filtered top 10 videos, mark-
ing it as correct if found in these videos. While the task is
less computationally expensive than the previous baseline,
we do not learn the segment representations, as this task is
a simple retrieval task based on TF-IDF embeddings.
Model. The first two inputs are are the question, q, and
video transcript, v, encoded by their TF-IDF vectors: (Tata
and Patel, 2007):

vTF−IDF = TF − IDF (v) (Video Encoding)
qTF−IDF = TF − IDF (q) (Question Encoding)

We then filter the top 10 video transcripts(out of 76) with
the minimum cosine distance, and further compute the TF-
IDF vectors for their segments, Stop10

n, where n = 10. We
repeat the process for the corresponding segments:

sTF−IDF = TF − IDF (s) (Segment Encoding)

selecting the segment with the minimal cosine distance dis-
tance to the query.
Metrics. To evaluate our pipeline approach we use overall
accuracy after filtering and accuracy given that the segment
is in the top 10 videos. While the first metric is similar
to 4.2, the second can indicate if initially searching on the
video space can be used to improve our selection:

# of questions where the top answer is correct
the total # of questions answerable by top 10 videos

4.4. Results
Tables 3, 4, 5 show the results. First, the tables show that
the two first baselines under-perform for our task. Even
with a tolerance window of 6, the first baseline merely
achieves an accuracy of .14. The second baseline, despite
being a simpler task, has only an accuracy of .23. Second,
while we originally hypothesized that the segment selection
task should be easier than the sentence prediction task, Ta-
ble 4 shows that the task is also challenging. One possible
reason is that the segments contained within the same tran-
script have similar contents, due to the composition of the
overall task in each video, and differentiating among them
may require a more sophisticated model than just using a

k Train Dev Test
0 .0506 .0541 .0523
2 .0825 .0645 .0667
4 .1143 .1129 .1133
6 .1412 .1348 .1443

Table 3: Sentence-level prediction results for the first base-
line with different tolerance window sizes k.

Model MRR ACC
Attentive LSTM .4689 .2341

Table 4: Video segment retrieval results for the second
baseline

sequence model for segment representation. Table 5 shows
the accuracy of retrieving the correct segment, for baseline
both overall and given that the video selected is within the
top 10 videos. While the overall accuracy is only .16, by
reducing the search space to 10 relevant videos our accu-
racy increases to .6385. In future iterations, it may then be
useful to find better approaches in filtering large paragraphs
of text before predicting the correct segment.

5. Discussion and Future Work
We performed an error analysis on the first baseline’s re-
sults. We first observe that, in 92% of the errors, the pre-
dicted span and the ground-truth overlap. Furthermore, in
56% of the errors, the predicted spans are a subset or su-
perset of the ground-truth spans. This indicates that the
model finds the rough answer regions but fails to locate the
precise boundaries. To address this issue, we plan on ex-
ploring the Pointer-network (Vinyals et al., 2015), which
finds an answer span by selecting the boundary sentences.
Unlike the first baseline which avoids an explicit segmen-
tation step, the Pointer-network can explicitly model which
sentences are likely to be a boundary sentence. Moreover,
the search space of the spans in the Pointer-network is 2n
where n is the number of sentences, because it selects only
two boundary sentences. Note that the search space of the
first baseline is n2. A much smaller search space might
improve the accuracy by making the model consider fewer
candidates.
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Overall Given the video is in top 10
.1579 .6385

Table 5: Segment level prediction for the third baseline,
both overall and given that the video is in the top 10.

In future work, we also plan to use multi-modal informa-
tion. While our baselines only used the transcript, com-
plementing the narratives with the visual information may
improve the performance, similarly to the text alignment
task in (Malmaud et al., 2015).

6. Conclusion
We have described the collection, analysis, and baseline re-
sults of TutorialVQA, a new type of dataset used to find an-
swer spans in tutorial videos. Our data collection method
for question-answer pairs on instructional video can be fur-
ther adopted to other domains where the answers involve
multiple steps and are part of an overall goal, such as cook-
ing or educational videos. We have shown that current
baseline models for finding the answer spans are not suf-
ficient for achieving high accuracy and hope that by releas-
ing this new dataset and task, more appropriate question
answering models can be developed for question answer-
ing on instructional videos.
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