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Abstract
Existing machine reading comprehension models are reported to be brittle for adversarially perturbed questions when optimizing
only for accuracy, which led to the creation of new reading comprehension benchmarks, such as SQuAD 2.0 which contains such
type of questions. However, despite the super-human accuracy of existing models on such datasets, it is still unclear how the model
predicts the answerability of the question, potentially due to the absence of a shared annotation for the explanation. To address
such absence, we release SQuAD2-CR dataset, which contains annotations on unanswerable questions from the SQuAD 2.0 dataset,
to enable an explanatory analysis of the model prediction. Specifically, we annotate (1) explanation on why the most plausible
answer span cannot be the answer and (2) which part of the question causes unanswerability. We share intuitions and experimen-
tal results that how this dataset can be used to analyze and improve the interpretability of existing reading comprehension model behavior.
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1. Introduction
The machine reading comprehension (MRC) task aims to
find useful information from unstructured text queried in
the form of natural language. To solve this task, a model
needs the ability to find the context associated with the
question and infer the correct answer. Recently, data-driven
learning methods are being actively studied, as many large-
scale benchmark data are released and various resources on
the web can be easily accessed and utilized.
Among MRC benchmarks, Stanford Question Answering
Dataset (SQuAD) is the most widely adopted for evalu-
ating the reading comprehension capabilities of a model,
which evaluates how well the model predicts the answer
span for a paragraph, given a natural language problem.
As it is a large-scale, high-quality set of annotations ob-
tained from crowdsourcing, many state-of-the-art methods
use this dataset to train their models and show their effec-
tiveness compared to previous approaches.
However, the first version of SQuAD was designed to have
an answer span for all problems, which trained models to
find the most relevant span regardless of whether the cor-
rect answer was actually inferred from the question. This
bias is reported to degrade the robustness of the model for
adversarial perturbed questions or paragraph. To solve this
problem, SQuAD 2.0 was released, to include unanswer-
able problems obtained by crowdsourcing human perturba-
tions, such as changing the word in a question or adding a
question that is not related to the problem.
Although pretrained contextualized embedding, obtained
through language modeling from large corpora, has en-
abled superhuman performance for both SQuAD 1.0 and
2.0, their robustness with respect to model behavior has
been understudied. To illustrate, Figure 1 shows an ex-
isting MRC model, that can find the most plausible an-
swer span (green span) and predict whether the question
is answerable. However, we cannot evaluate whether the
model identifies the right reason why green span cannot be
the answer, for which we add blue (cause) and red (ratio-

Article: Super Bowl 50

Passage (from Wikipdia): “Peyton Manning became 

the first quarterback ever to lead two different teams to 

multiple Super Bowls. He is also the oldest 

quarterback ever to play in a Super Bowl at age 39. 

The past record was held by John Elway, who led the 

Broncos to victory in Super Bowl XXXIII at age 38 and 

is currently Denver’s Executive Vice President of 

Football Operations and General Manager.

Question 1: “What is the name of the quarterback who

was 37 in Super Bowl XXXIII?”

Answerability for Q1: Unanswerable (Number Swap)

Question 2: “Who is the youngest quarterback ever to 

play in a Super Bowl?”

Answerability for Q2: Unanswerable (Antonym)

Figure 1: Two examples from the SQuAD 2.0 dataset. Each
green span shows the plausible answer to each question.
In SQuAD2-CR, Cause annotates the words as blue in the
question that explain unanswerability. Rationales anno-
tates fine-grained reason as red why the plausible answer
cannot be entailed by the question.

nale) annotations in our dataset. This would enable a new
analysis, such as Figure 2, comparing models in terms of
which cause of unanswerability leads to their best predic-
tions, examining six unanswerability causes we will explain
later. Although existing papers present partial statistics or
selected examples to show the robustness of the model over
samples, these results cannot be directly compared as in
Figure 2 because the number of samples is very small and
the examples used in each paper are not identical.
We find that the lack of such analysis stems from the ab-
sence of a shared dataset with gold standard annotations.
We thus build the extended dataset SQuAD2-CR (Cause
and Rationales) based on unanswerable questions in the
SQuAD 2.0 dataset to help researchers understand the RC
model’s behavior toward perturbed (thus unanswerable)
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Figure 2: Spidergram for analysis of four MRC models for
the aspect of question unanswerability.

questions. This dataset consists of two annotation sets for
unanswerable question instances from SQuAD 2.0 in two
contexts: Cause and Rationales. The former labels the
reason class capturing why the plausible span cannot be the
answer to the problem, and the latter offers the word-level
reason why the question is not answered in the paragraph
from the question. Some examples of SQuAD2-CR dataset
annotations are shown in Figure 1. In the case of Question
1, Number Swap and who was 37 becomes the cause and
rationales, respectively, of the question’s unanswerability.
Beyond the binary class, these fine-grained annotations en-
able quantitative comparison and analysis of the robustness
of models trained on the SQuAD 2.0, such as that in Fig-
ure 2, and can be useful indicators for tuning existing mod-
els. For example, one might notice the weakness of some
models in addressing the Entity Swap cause and decide to
augment training resources for such classes.
In this paper, we describe how we collect such annota-
tion from the SQuAD 2.0 dataset and from our annotation
and some preliminary experimental results show how our
dataset can be used to analyze the model results. We also
show how we can extend a dataset in scale for unlabeled
question answer pairs using a semi-supervised approach to
keep annotation overhead realistic. We release the dataset
in https://antest1.github.io/SQuAD2-CR/.

2. Background and Related Works
As described in the previous section, the SQuAD 2.0
dataset aims to test the performance and robustness of MRC
models by (a) understanding the question, (b) determin-
ing whether there is an answer span in the passage, and
(c) predicting the most plausible answer span if one exists.
This dataset consists of 97K answerable questions and 54K
unanswerable questions about passages in Wikipedia.
In addition to the answer span information, this dataset also
contains binary labels that indicate whether the question
is answerable or not for the given passage. Compared to

previous datasets such as (Clark and Gardner, 2017; Jia
and Liang, 2017), SQuAD 2.0 has advantages in evaluating
model robustness since it 1) contains rich adversarial per-
turbation made by humans, 2) pairs answerable and unan-
swerable questions in the same context, and 3) also marks
an answer candidate for unanswerable questions. Existing
works deal with the answerability of the model by adding
a special loss function (Levy et al., 2017; Clark and Gard-
ner, 2017) and/or extra classifier for answerability (Hu et
al., 2019; Sun et al., 2018) that is incorporated into ex-
isting answer span finding architectures. Recent state-of-
the-art works based on pretrained contextual embedding
BERT (Devlin et al., 2018) utilize a classification (CLS)
token to determine whether the question is answerable or
not that is inserted as the beginning of the input text.

One distinction of our dataset is that it extends binary la-
bels into the perturbation type. The authors of SQuAD
2.0 present seven categories of question unanswerability,
including answerable noise, from 100 randomly sampled
unanswerable questions to show the diversity of the dataset.
Some works (Hu et al., 2019; Zhu et al., 2019) follow or
modify these categories to analyze the robustness of their
model. (Yatskar, 2018) classifies 230 unanswerable ques-
tions with different categories to compare SQuAD 2.0 and
other question answering datasets. However, these are nei-
ther scalable nor reproducible since (1) the sample size is
too small, as they are all less than 1K, and (2) there is no
available public information on what instances they used
for their analysis.

In contrast, another distinction of our dataset lies in scale:
(1) SQuAD2-CR contains approximately 10K human-
labeled annotations about cause in total, and these are prop-
agated to all unanswerable questions on SQuAD 2.0 by
semi-supervised learning. Additionally, (2) SQuAD2-CR
shares the identifier information of SQuAD 2.0, making it
easy to reproduce existing results and to make comparisons
between models.

Our work is also related to the existing efforts to make
MRC models that allow interpretation of their behavior. To
analyze model behavior, (Wallace et al., 2019) provides
gradient-based saliency maps and adversarial attacks for
instance-level model interpretation as well as a suite of var-
ious interpretation techniques. (Lee et al., 2019), which tar-
gets the SQuAD 2.0 dataset, provides information on how
the QA model contributes to the performance of the model
by integrating visualizations and analysis tools for an expla-
nation. (Wu et al., 2019) supports rule-based data grouping
and counterfactual error analysis for effective error analysis
of the model. These tools can provide some interpretable
hints as to why the model works well, but they still lack
an explicit explanation of the model’s robustness or require
manual definition.

Our dataset is complementary to these tools because it pro-
vides such explicit labels for explanations to extend their
functionality. It can be used as a metric for evaluating
model robustness with model attention and prediction re-
sults, as a training source to automatically perform data
grouping or as a source to create adversarial examples of
the desired type.

https://antest1.github.io/SQuAD2-CR/
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Table 1: Description, statistics, and examples for fine-grained unanswerable causes in SQuAD2-CR.
Name (Abbr.)

Number of instances
Description and Examples

Entity Swap (E)
Train 5818 / Dev 1122

(43.8% / 36.1%)

Entity replaced with other entity.
P: The USGS has released a California Earthquake forecast which models ...
Q: What did the UGSS release ?

Number Swap (#)
Train 1642 / Dev 254

(12.3% / 8.2%)

Number or date replaced with other number or date.
P: Internet2 announced a partnership ... boosting its capacity from 10 Gbit/s to 100 Gbit/s.
Q: Who did Internet2 partner with to boost their capacity from 100 Gbit/s to 1000 Gbit/s?

Negation (N)
Train 1860 / Dev 506

(14.0% / 16.3%)

Negation word inserted or removed.
P: The principles of European Union law are rules of law which have been developed by the
European Court of Justice, ...
Q: Which entity did not develop the principles of European Union law?

Antonym (A)
Train 2818 / Dev 593

(21.2% / 19.1%)

Antonym word for context is used in the question.
P: Within two months of the launch, BSkyB gained 400,000 new subscribers, ...
Q: How many subscribers were lost within two months of launch from BSkyB?

Mutual Exclusion (X)
Train 318 / Dev 256

(2.4% / 8.2%)

Word or phrase is mutually exclusive with something for which an answer is present.
P: CYP27B1, which is the gene responsible for converting the pre-hormone version of vitamin D,
calcidiol into the steroid hormone version, calcitriol. ...
Q: What gene converts calcitriol into calcidiol?

No Information (I)
Train 841 / Dev 375

(6.3% / 12.1%)

Asks for condition that is not satisfied by anything in the paragraph, or paragraph does
not imply any answer.
P: The state symbols include the pink heath (state flower), Leadbeater’s possum ...
Q: What is the Victoria state color?

3. Dataset Collection
SQuAD2-CR consists of two annotation sets for the cause
and rationale of unanswerability. These are based on the
questions that are marked as unanswerable.

3.1. Annotation on Cause
Description This annotation identifies why the question is
not answerable based on the question and the most plau-
sible answer span from passage. This is the common ap-
proach taken to offer examples demonstrating model ro-
bustness. Based on (Rajpurkar et al., 2018), we define six
unanswerable reasons as follows:

• Entity Swap changes the entity in the question to an-
other one, breaking the connection between the ques-
tion and the passage.

• Number Swap changes the number or date in the ques-
tion to another number or date. While the entity per-
turbation usually replaces one entity with another in
the paragraph, the number perturbation replaces num-
bers with other values that do not exist.

• Negation inserts or removes negation words such as
“not” in the question. This is the easiest example to
generate and thus can be most easily determined by
the model.

• Antonym replaces the word in the question with its
antonym. This approach has the same effect as Nega-
tion but is more challenging to address if the model
does not use a representation that can effectively sep-
arate the opposite words.

• Mutual Exclusion uses a word or phrase that is mutu-
ally exclusive with something for which the answer is

present. It is different from Antonym because it does
not simply use the opposite word but broadly changes
the expression used in the question.

• No Information asks for a condition that is not satisfied
by any information in the paragraph, or the paragraph
does not imply any answer. This category usually in-
dicates that the cause is not part of any other category,
and questions tend to be entirely new instead of exist-
ing answerable questions that have been perturbed.

Some examples and statistics are described in Table 1.
There are two differences between these categories and
those in (Rajpurkar et al., 2018):

• We separated Number Swap from Entity Swap, since
numeric values have different semantics than entities,
as described above.

• We merge Contradiction and Other Neutral into a sin-
gle category No Information, since there was large dis-
agreement from annotators in the appropriate label be-
tween two classes.

Collection We manually annotate 16,403 questions with
three annotators. We provide a word difference between
the current question and the answerable question with the
same answer span if possible to easily determine the per-
turbation of the question. We use a majority vote to merge
the annotation results into a single annotation by taking the
label confirmed by more than two annotators. For instance,
when the same number is given different labels, the authors
manually checked them and assigned one of the three labels
based on the above definition. This usually occurred in the
No Information class.
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Table 2: Three types of examples for rationales annotation.
Simple Word Perturbation (Train 49.7% / Dev 52.4%)
What district of Warsaw chose the President between 1990 and 1993 ?
In what constituent country of the United Kingdom is Trevithick located ?
What is one not common example of a critical complexity measure ?
Phrase Perturbation (Train 16.2% / Dev 18.1%)
How many US Presidents once campaigned in Cambridge ?
What architecture type came after Early Gothic ?
When did the Sierra Sky Park fall out of use ?
Others: Complex Perturbation, Unrelated Question
(Train 34.1% / Dev 29.5%)
Where is Los Angeles a district of ?
When was the settlement which would become Boleslaw established ?
What service did BSkyB give away for free unconditionally ?

What is the least used type of reduction
What is the most frequently employed type of reduction

0 0 0 1 1 1 0 0 0

Figure 3: Example of automatic question annotation

3.2. Annotation on Rationales
Description This annotation assigns a binary label to each
word in the question to mark whether it contributes the
question being unanswerable for the given passage and is
inspired by the attention visualization of the neural network
model.
Table 2 shows some examples of question labels on unan-
swerable questions. The bold-faced words are labeled
as making questions unanswerable for the given passage.
These labels indicate that the words play a decisive role
when the MRC model determines whether the problem is
answerable or not. Some common patterns would be single
word replacement by other entities, antonym words or the
insertion of negation words such as “not”. More complex
cases partially or completely alter the expression present in
the paragraph, and these cases usually appear only in hu-
man perturbations.
Collection To generate such labels at scale, we first auto-
matically annotate questions by 1) extracting answerable
and unanswerable question pairs from SQuAD 2.0 sharing
the same context and answer span and then 2) marking their
intersection words as 0 and 1, with the assumption that
questions sharing the context and exact answer span tend
to contain similar intent regardless of answerability. While
these methods are efficient for labeling many easy cases,
some noise may exist, such as determiner changes, so we
extract common conversion patterns and then refine some
errors. We also manually annotate questions that do not
have such a pair. Three annotators independently evaluate
each question-answer pair. To merge annotation results into
a single annotation, we use a majority vote: for each word,
we label it as 1 only if more than two annotators mark the
word because it is the word or part of the phrase that make
the question unanswerable.
In this way, we annotate 24,771 and 3,695 instances from
the SQuAD 2.0 training and development set. The limita-
tion of this schema is that we cannot represent a removing
perturbation on the question, such as removing “not”. In
this case, we do not assign 1 to all words in the question.
One alternative way to represent word removal is adding

extra slots, but we observed that this information is not well
learned when expanding existing annotations.

4. Analysis of Existing MRC Models
Using our dataset, we analyze the output of the MRC
models: DocQA+ELMO (Clark and Gardner, 2017),
Read+Verifier (Hu et al., 2019), BERT (Devlin et al., 2018)
and ALBERT (Lan et al., 2019). We also visualize attention
from Read+Verifier and the ALBERT model for interpreta-
tion.
For the non-BERT models, DocQA utilizes the loss value
from the answer span prediction to check answerability,
while Read+Verifier introduces a new classifier for veri-
fying the question and answer pair. In contrast, BERT-
based models first pretrain deep bidirectional representa-
tions from large-scale unlabeled text without any explicit
modeling for a specific task.
ALBERT is one of the variants of the BERT models, and
it is currently the state-of-the-art model for various lan-
guage understanding tasks, including SQuAD 2.0. This
model uses two parameter-reduction techniques to reduce
the parameters of the model and introduces sentence-order
prediction loss to focus on modeling intersentence coher-
ence. We expect other variants, such as RoBERTa (Liu et
al., 2019), to show similar behaviors, as they share similar
structures and training methods.

4.1. Cause Analysis
For all models, we classify the prediction results for unan-
swerable questions and then calculate no-answer accuracy
(how well did the model identify the question’s answerabil-
ity) for each question. Table 3 and Figure 2 summarize the
results of the models described above. Note that we used
only human-labeled annotation for evaluation.

Table 3: Prediction accuracy for each unanswerability class
evaluated by SQuAD2-CR (cause).

Model
(EM / F1 / NoAns Acc)

NoAns Acc in each class
E # N A X I

DocQA+ELMo
65.1 / 67.6 / 71.0 58.5 59.4 93.7 65.1 62.9 61.6

Read+Verifier
72.3 / 74.8 / 74.6 49.2 79.9 87.9 68.0 62.1 48.0

BERT (large)
71.7 / 81.9 / 84.7 72.5 89.4 98.4 84.7 80.5 71.7

ALBERT (xxlarge)
86.8 / 89.8 / 92.4 88.2 91.9 99.2 93.7 94.5 83.2

We can see that the DocQA+ELMo and Read+Verify have
a significant performance degradation due to their failure in
some cases. In BERT and ALBERT, the gap in the overall
accuracy is significantly reduced in all unanswerable cases.
This result indicates that the contextual representation from
the pretrained BERT model plays an important role in deter-
mining not only the answer span but also the answerability
of the question.
For Negation and Number Swap, both BERT and non-
BERT models perform classifications relatively well, sug-
gesting that these types of perturbation are an easy problem
to solve with the model.
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Figure 4: Rationale annotation in SQuAD2-CR and attention visualization for the Read+Verifier and ALBERT.

For Antonym and Mutual Exclusive, one possible source
of the difference between the BERT and non-BERT models
is the embedding space the model uses. Context-free word
representations, trained with unsupervised learning such as
GloVE, assume that semantically similar or related words
appear in similar contexts– This may contribute to the fail-
ure to distinguish antonym words from synonyms (Moham-
mad et al., 2008; Hill et al., 2015). Using existing embed-
dings mixed with other embeddings considering antonyms,
such as (Mrkšić et al., 2016), may solve this issue, espe-
cially in non-BERT models. The contextual representations
used in BERT naturally solve this problem by using a mul-
tilayer architecture with a high capacity and training on a
large corpus.
For Entity Swap, low performance can be associated with
the limited discernment of the representation, resulting in
the model mismatching the perturbed word in the ques-
tion with the corresponding text in the passage. In non-
BERT models, this problem would be alleviated by chang-
ing the tokenization method to cover more words, increas-
ing vocabulary size, or increasing the dimension or the
embedding size. The contextual representation performed
by BERT will naturally solve this issue, as the representa-
tion of the word dynamically changes depends on the other
words in the context.
For No Information, low performance indicates that the ar-
chitecture in non-BERT models failed to capture the mean-
ingful signature of contradiction or classify neutral rela-
tions to entailment. We guess that BERT has potentially
learned to do this well when pretraining on two language
modeling tasks. Its state-of-the-art performance in vari-
ous natural language inference tasks, such as MNLI-m and
QNLI, supports this conjecture.

4.2. Rationale Analysis
While disagreement exists about whether the standard
attention modules provide meaningful explanations for
model output (Jain and Wallace, 2019; Wiegreffe and Pin-
ter, 2019), visualization of the attention layer output is still
a common approach for explaining the model behavior. Our
rationale annotations can guide an evaluation of whether a

model places weight on the critical parts of a question as
humans do when predicting the answerability of a question.
For Verifier, we extract the attention weights, since each
attention value matches the corresponding word from the
question. For ALBERT, we follow (Tang et al., 2018) and
visualize model attention. Specifically, we compare the
scaled dot-product attention on the CLS token with that
from each transformer layer of the model. We aggregate
attention from each head with an element-wise average.
As BERT-based models frequently use byte-pair encod-
ing (Sennrich, 2016) or sentencepiece tokenizer (Kudo and
Richardson, 2018) instead of word tokenizer for model in-
put and are sometimes does not matched with a word-level
token, we average the values from the subword tokens. We
only consider the tokens from the question to obtain the
word-level attention value.
Figure 4 visualizes the result for attention from the model
and the corresponding rationale label. Read+Verifier pre-
dicted the answerability of the question correctly for (a)
and (b) and incorrectly for (c), while ALBERT correctly
predicted answerability for all problems.
In general, attention follows the rationale annotation for
cases when the model is correct, as in (a). However, even if
the answer is correct, Read+Verifier often does not follow
the rationale, such as (b), and similar trends were observed
in the early layers of BERT. This tendency suggests that
it is difficult to predict unanswerability with single context
matching; thus, the use of multilayer attention rather than
single attention is crucial for such reasoning. In ALBERT,
we can see this tendency, especially in the latter layers close
to the final prediction, except for the last layer.
In ALBERT, the model gives high attention to structural
words such as ? (question mark) since the model receives
the concatenation of the question and the context as the in-
put. While not shown in the figure, we can observe that
special tokens such as [CLS] and [SEP] have the strongest
attention value in the entire input. (Clark et al., 2019) Rel-
ative clauses such as What or Where also receive relatively
high attention, which indicates that these words affect the
prediction of both answer span (Palangi et al., 2018) and
question answerability.
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Although not all examples follow exactly the above obser-
vations, we can assume that the attention mechanism, when
compared with the annotated rationale, helps to explain that
the model actually concentrates well where the question is
perturbed or makes the question unanswerable.

5. Semi-supervised Dataset Expansion
This section discusses an automated way to expand our
annotation to cover all remaining unanswerable questions
in SQuAD 2.0 or other benchmarks containing different
passages. An intuitive way is to provide pseudolabels to
unlabeled data using our annotations and semi-supervised
approaches. Specifically, we apply tri-training (Zhou and
Li, 2005), which is one of the strong baselines for neu-
ral semi-supervised learning for natural language process-
ing (Ruder and Plank, 2018). In this algorithm, each initial
unanswerable reason classifier is trained independently on
bootstrapped samples (random sample with replacement);
then, these classifiers are refined in the tri-training process,
leveraging the agreement of three independent models for
the final hypothesis to reduce the bias of predictions on un-
labeled data.
Classifier Architecture Inspired by the recent success of
the BERT, we employ existing MRC model layers as the
base layer (pretrained layer) to obtain contextual represen-
tations from the question and passage pair, followed by
feed-forward task-specific layers, e.g., cause prediction and
rationale labeling. We observed that pretraining the base
layer with the question answerability classification task be-
fore fine-tuning the model can lead to significant perfor-
mance improvement compared to training from scratch.
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Figure 5: Brief overview of the interaction-based verifier.
For more details on this model, please refer to (Hu et al.,
2019).

In this paper, we show the result when using an interaction-
based verifier model1 as a base layer. Any other MRC mod-
els can be used as well if the model produces the probability
of answerability when the question is given. For example,
we can use the final embedding of the classification (CLS)
token when using BERT (Devlin et al., 2018) fine-tuned on
SQuAD 2.0, which is expected to have higher performance.
We also release the extended dataset from the classification
model described in later sections. This dataset covers all
questions in the SQuAD 2.0 dataset. While these are more
noisy than human annotation, we expect these can be used

1We use our implementation of the model. The “no answer
accuracy” (NoAns ACC) of our verifier implementation is 73.6%,
while the reported performance is 74.6%. We neither use ELMo
representation nor data augmentation for training the base verifier
model.

Table 4: Unanswerable reason classification result given
various settings, measured by micro-F1 score.

Model Ratio of Answerable Questions (O)
0% 10% 20% 33% 50%

Majority 37.6 34.1 30.1 33.0 50.0
Scratch 64.1 58.3 55.7 50.9 52.8
FixBase 60.1 55.0 56.4 57.0 61.5

FixBase+ 62.1 56.6 60.4 59.2 63.4
TuneBase 70.9 67.8 60.6 61.9 60.3

TuneBase+ 72.7 69.2 64.6 62.9 62.9

P: PREDICTED RESULT
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OP EP #P NP AP XP IP

OG 50.7 34.0 2.0 1.3 4.7 2.7 4.7

EG 10.7 78.2 1.3 0.9 4.7 0.4 3.8

#G 6.5 8.7 71.7 0.0 6.5 0.0 6.5

NG 1.0 0.0 0.0 97.9 0.0 1.0 0.0

AG 9.2 10.8 1.5 3.1 64.6 7.7 3.1

XG 21.1 15.8 0.0 13.2 26.3 13.2 10.5

IG 20.5 28.2 7.7 5.1 9.0 0.0 29.5

Figure 6: Confusion matrix for reason classification

in distant learning. We are planning to update the extended
dataset with the better model when available.

5.1. Reason Classification for Cause Annotation
This task extends a binary question classification in SQuAD
2.0, which distinguishes only whether the question is an-
swerable or not, by providing the cause label if the question
is not answerable. To evaluate performance, we calculate
the micro-F1 score to measure how well the model allocates
an appropriate label to the question. We also randomly add
answerable (O) questions from the original dataset to as-
sess whether each unanswerable case is easily distinguished
from the answerable cases.
We adopt majority selection as a baseline and compare rea-
son classification models trained on the following settings:

• Scratch: Initialize only the word embedding layer
with GloVe (Pennington et al., 2014) and train the
model from scratch.

• FixBase: initialize the weights of the base layers with
the pretrained model in the SQuAD 2.0 dataset and
freeze weight.

• TuneBase: Similar to FixBase, but do not fix the base
layer weights and keep whole layers trainable.

• FixBase+: same as FixBase but trained on extended
dataset by semi-supervision.

• TuneBase+: same as TuneBase but trained on ex-
tended dataset by semi-supervision.
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Table 4 shows the evaluation results for all methods de-
scribed above. We observe an overall improvement in per-
formance when using the semi-supervised method, indi-
cating that incorporating unlabeled data can help to ex-
pand the small labeled data effectively. Additionally, better
performance was achieved with a pretrained MRC model
(TuneBase) for representation, but simply using the repre-
sentation as an embedding is not effective (FixBase). When
setting the portion of the answerable questions as half of the
instances, the performance tendency was reversed, but we
observe that there exists a bias toward predicting all ques-
tions as answerable due to a heavy class imbalance.
Figure 6 shows a confusion matrix on the model trained
with 20% answerable questions. Simple pattern matching
categories, such as number swap, negation, and antonym,
are classified relatively well (high numbers in diagonals),
while the other cases such as Mutual Exclusion (abbrevi-
ated as X) are relatively confused with some other cases.
In particular, we can observe that answerable questions and
no information questions are frequently misclassified as en-
tity swap. While the other unanswerable causes can be
solved by finding a mismatching context between the ques-
tion and passage, Entity Swap (especially when other enti-
ties in the passage are used) and No Information case need
more than word matching to figure out since the important
words in the question usually can be aligned to the words in
passage, thus hard to be detached if the base model lacks the
ability of textual entailment over simple matching. As En-
tity Swap is the majority label of the dataset, some border-
line cases may be misclassified for this cause. This result
is consistent with Section 4.1., which shows the importance
of the performance of the base model.

5.2. Binary Question Labeling for Rationales
Annotation

We treat this task similarly to a POS tagging problem with
the binary label. With this setting, the feed-forward net-
work predicts the binary label of each word, so the output is
the sequence of probabilities that the word will be labeled
as true (1). We provide word- and question-level evalua-
tion: word-level accuracy checks whether word-level labels
are correct, and the false negative rate (FNR) measures the
ratio of true labels predicted as false (0). It is desirably for
a model to have high accuracy and low FNR. We set the
threshold as 0.5 for each word and apply similar settings
with Section 5.1. to evaluate the model.
As the output of the question labeling model is the sequence
of probabilities, the existing agreement schema used in tri-
training is not applicable. We therefore calculate agreement
by calculating the Euclidean distance instead of the major-
ity vote and define agreement when two outputs have dis-
tances less than the threshold. We then make binary labels
from the averaged output with the same threshold.
Table 5 shows the evaluation results for all methods de-
scribed above. Similar to reason classification, initializ-
ing with a pretrained verifier gives better accuracy and a
better FNR score than training from scratch, and the semi-
supervised approach contributes to the overall accuracy of
the model.
We illustrate prediction examples from the best model on

Table 5: Results with question labeling network
Model Acc. FNR Model Acc. FNR

Majority (0) 73.3 100 Scratch 78.5 37.0
FixBase 79.8 51.6 TuneBase 80.1 38.6

FixBase+ 81.5 47.2 TuneBase+ 82.3 36.7

[#] .. include John Myhill's definition of linear bounded automata (Myhill 1960), ..

Who provided a definition of linear bounded automata In 1970 ?
0.12 0.13 0.10 0.11 0.11 0.17 0.19 0.19 0.48 1.00 0.12 

[N] .. matter has extended structure and forces that act on one part of an object ..

Forces that act on one part of an object do not act on what ?
0.16 0.06 0.04 0.04 0.04 0.05 0.05 0.06 0.10 0.31 1.00 0.20 0.07 0.03 0.05 

[X] Deforestation is the conversion of forested areas to non-forested areas.

The process of growing more trees in the forest is known as what ?
0.19 0.25 0.24 0.81 0.71 0.60 0.34 0.24 0.24 0.20 0.23 0.22 0.09 0.11 

[X] .. with Toyota's statement in February 2014 outlining a closure year of 2017.
When has Toyota said it will change its Victoria plant into a plane factory ?

0.14 0.16 0.25 0.40 0.27 0.22 0.29 0.29 0.26 0.21 0.36 0.38 0.83 0.52 0.17 

[E] It is uncertain how ctenophores control their buoyancy, but experiments have shown that ..

How do mesoglea control how brackish body fluids are ?
0.11 0.13 0.26 0.16 0.18 0.93 0.69 0.74 0.33 0.14 

[A] system of government created by Kublai Khan was the product of a compromise between ..

What Mongolian system did Kublai 's government uncompromise with ?
0.14 0.25 0.17 0.22 0.48 0.42 0.31 0.44 0.43 0.08 

Figure 7: Visualization of question labeling prediction

the test set with various unanswerable reasons in Figure 7
to verify that this information can be used as a proxy label
for the rationale behind question unanswerability. We can
observe that the question labeling model can find both (a)
simple patterns such as negation word insertion or number
swap and (b) complex mutual exclusion. All of the ques-
tions in the first group were correctly predicted as unan-
swerable, while the prediction for the second group is rel-
atively low. The example of mutual exclusion is a pair of
questions and answer spans that disagree semantically but
consist of words of similar meaning: “give away for free”
and “charged additional subscription fees”.

6. Conclusion
In this paper, we release SQuAD2-CR, the largest dataset to
our knowledge, which is annotated causes of and rationales
for question unanswerability in the SQuAD 2.0 dataset. We
annotate to indicate why the question is not answerable for
the given passage considering two aspects: sentence-level
cause and word-level rationale. Using these annotations,
we interpreted how the existing MRC model predicts the
answerability of the question with the output and attention
weights. We also present some baseline classifier models
for expanding annotations to unlabeled passage-question
pairs using semi-supervised learning.
We think using a better MRC model (such as ALBERT
in Section 4.) as a base layer or dealing with imbalanced
classes will play a major role in further improving the per-
formance of the model, and we left this as future work.
Another possible future research direction is using this re-
source for training through the targeted augmentation of
training resources for weak causes or by providing atten-
tion supervision to minimize the gap between the model
and user desired attention (Das et al., 2017; Liu and Zhang,
2017). We hope that SQuAD2-CR can help to promote
research on the explainability of reading comprehension
models.
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