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Abstract
Semantic matching measures the dependencies between query and answer representations, which is an important criterion for evaluating
whether the matching is successful. In fact, such matching does not examine each sentence individually, because the context information
between sentences should be considered equally important to the syntactic context inside a sentence. Considering the above, we propose
a novel QA matching model, built upon a cross-sentence context-aware architecture. Specifically, an interactive attention mechanism
with a pre-trained language model is presented to automatically select salient positional answer representations that contribute more
significantly to the answer relevance of a given question. In addition to the context information captured at each word position, we
incorporate a quantity of context jump dependencies to leverage the attention weight formulation. This can capture the amount of useful
information brought by the next word, is computed by modeling the joint probability between two adjacent word states. The proposed
method is compared with multiple state-of-the-art methods using the TREC library, WikiQA, and the Yahoo! community question
datasets. Experimental results show that the proposed method outperforms satisfactorily the competing ones.
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1. Introduction
Question answering (QA) is the task of enabling a ma-
chine to automatically answer questions posted by humans
in a natural language form. The selection of the best an-
swer from an existing pool of candidate answers is referred
to as community QA (cQA) (Shah and Pomerantz, 2010),
whereas enabling the computer to automatically generate
a novel answer, through some natural language models,
is also known as machine dialogue (Shen et al., 2017b).
In this paper, we focus on cQA by working on the se-
mantic matching between question and answer texts. In
general, semantic matching requires the accurate model-
ing of the relevance between two portions of text, and, in
addition to QA, is widely used for tasks, such as para-
phrase identification (Cheng and Kartsaklis, 2015), ma-
chine translation (Bahdanau et al., 2015), image caption
generation (Karpathy and Fei-Fei, 2015) and video hyper-
linking (Hao et al., 2019b).
In order to compute an accurate measure of relevance be-
tween the question and answer, it is beneficial to take the
lexical, syntactic and semantic information of the text pairs
into account. Traditional matching seeks effective ways of
extracting semantic features to improve a given similarity
metric (Meng et al., 2013). Recent advances have managed
to replace this manual feature engineering process with a
model that automatically learns distributed representations
of words and sentences via neural networks (Wan et al.,
2016; Hao et al., 2019a).
As previously mentioned, the goal of a cQA matching task
is to select the correct answers from a set of candidate an-
swers based on the content of a given question. One of
the key hindrances in this, is that the key lexical compo-
nents and information might not be shared between ques-
tion and answer texts. In some cases, ambiguous contents
in questions or answers may impede this process. Hence,

the question-answer matching process can become more ef-
fective when the sentence representations for questions and
answers are learned interactively, rather than in isolation.

Question Q1

• What is the color of that cat?

Candidate Answers: A31 and A32

• A11: The cat was sitting on a mat.

• A12: The cat that was sitting on a mat was red.

Answer Key Components
A11 The cat was sitting on a mat.
A12 The cat that was sitting on a mat was red.

Figure 1: cQA Example scenario 1 with ‘cat’ case.

Fig.1 shows a cQA scenario, where the aim is to answer
the question, each with their own pool of answers. We
highlight the key components for the answer in the fig-
ure. In both examples, these salient components in the an-
swers directly reflect or respond to the context of the ques-
tions, which contribute more significantly towards the rel-
evance of the given question. Such salient information or
the key components in sentences can be captured by an at-
tractive approach called attention mechanism (Bahdanau et
al., 2015). This mechanism has been mostly used in the
tasks related to translations (Bahdanau et al., 2015). Recent
findings, for example in (Tan et al., 2016; Hermann et al.,
2015), have demonstrated their applicability in assigning
degrees of importance, known as attention weights, to dif-
ferent word positions in a sentence. In the cQA community,
it has been of increasing interest to develop effective ways
of building attention mechanisms, so that the matching per-
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formance can be improved by learning from and paying
more attention to salient text (Tan et al., 2016; Xiong et
al., 2017).
In this paper, we address the aspects that have been high-
lighted above, and propose a novel approach to improve the
standard of the response accuracy. In particular, we make
the following key contributions:

1. We extend the notion of interactive learning by de-
veloping a cross-sentence context-aware bi-directional
LSTM model, where we generate the hidden represen-
tations for both the question and answer texts, thereby
making them aware of each other’s context. As such,
in the proposed model, the hidden representation for
the question text, and particularly the state values for
each word position, is affected not only by its previous
or next states, but also by the multi-positional repre-
sentations of the answer text.

2. As the interaction between question and answer texts
is bi-directional, the content of the question text
should also affect the way that the answer text is en-
coded or characterized. We propose an interactive at-
tention mechanism for answer representation learning,
and augment our proposed approach to consider the re-
lationship between adjacent words, instead of simply
concatenating the word representations. A new quan-
tity, referred to as the context jump dependencies, is
proposed to represent the joint probability between ad-
jacent words.

3. We perform an exhaustive evaluation for the proposed
approach using three community datasets, namely
TREC, Yahoo! and WikiQA, and share our findings.

The remaining of the paper is organized as follows: In the
Section 2., we present the proposed method, explaining the
structure of proposed model. This is followed by a detailed
discussion on the experimental results in Section 3.. We
finally conclude the paper in Section 4..

2. Proposed Method
One common matching strategy is to first learn represen-
tations for question and answer sentences separately based
on their content, and then compute a similarity score us-
ing the learned representations. Given, however, the fact
that sentence matching does not examine each sentence in-
dividually, context information between different sentences
should also be considered equally important to the syntactic
level of the context within a single sentence. This motivates
us to design a matching model built upon a cross-sentence
context-aware bi-directional LSTM architecture with inter-
active pre-trained attention mechanism, referred to as IAM.
The proposed model learns the sentence hidden represen-
tation at each state (word position) not only based on its
previous (or next) state, but also the multi-positional rep-
resentations of an other sentence. In this way, a context-
aware sentence representation that is self-adaptive to the
corresponding content is learned. Since the interaction be-
tween question and answer is mutual, we also introduce an
adaptive answer representation by taking into account the

question content to enhance the matching. In the following
subsections, we describe in detail the proposed model; its
overall architecture is illustrated in Fig.2.

2.1. Context-Aware Matching
We denote a sentence as x = {x1, x2, . . . , xT } where xt
is the t-th word in the sentence. A language model that
uses RNN to learn a sentence representation ht ∈ RK ,
and it contains word context information accumulated up
to the t-th word, computed from the current word represen-
tation wt. In this work, the Bi-LSTM architecture is used
for generating sentence representation, where the input is
a sequence of words in the sentence. We denote the hid-
den representation of the t-th word position in the forward
direction of Bi-LSTM by the column vector

−→
h t while the

vector
←−
h t for the reverse direction. We use the symbols

q and a to distinguish a question sentence and an answer
sentence respectively, for example, h(q)

t =
{−→
h

(q)
t ;
←−
h

(q)
t

}
for question representation, and h

(a)
t =

{−→
h

(a)
t ;
←−
h

(a)
t

}
for

answer representation, where t = 1, 2, . . . , T .
We use the contextual representations to encode the final
distributed matching degree vector s between the question
and answer sentences

s = tanh

(
Uq

[ −→
h

(q)
T←−

h
(q)
T

]
+Ua

T∑
t=1

α
(qa)
t

[ −→
h

(a)
t←−

h
(a)
t

]
+ bs

)
.

(1)
The weight matrices Uq,Ua ∈ RH×2K (K is the di-
mensionality of sentence representation) and bias vector
bs ∈ RH are the model variables to be learned. Here, the
answer representation is learned by considering query con-
tent. Particularly, the resulted embedding h(q)

T of Bi-LSTM
at last time T is for the question representation. While,
for the answer representation, we fuse the multiple posi-
tional representations of words by a weighted sum opera-
tion, where each weight α(qa)

t is used to control the impor-
tance degree of the combined representation contributing
to its relevance to a given question. Working with the dis-
tributed similarity vector s as obtained by Eq. (1), the sen-
tence matching task can be formulated as a binary classifi-
cation problem. The probability that an answer is related to
a question can be modeled using a two-way softmax func-
tion based on the computed similarity vector s, given as

p(y = 1|s) =
exp

(
sTϑ1

)
exp (sTϑ0) + exp (sTϑ1)

, (2)

where the two column vectors ϑ0 and ϑ1 are softmax pa-
rameters with the same dimensionality as s. Based on the
above formulation, model variables can be optimized by
minimizing a regularized cross-entropy cost by following
the logistic regression model (Bengio, 2009; Dreiseitl and
Ohno-Machado, 2002). We detail all the components be-
low, including the learning of standard Bi-LSTM, the ques-
tion representation learning, answer representation learning
and the computation of attention weight α(qa)

t .

2.2. Standard Bi-LSTM Learning
The column vectors h

(q)
t and h

(a)
t are initially computed

from two Bi-LSTMs, storing a hidden representation en-
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Figure 2: Illustration of the proposed IAM model architecture.

coding the question/answer content. These vectors are ob-
tained by training a standard Bi-LSTM over a sentence
generation task, assisted by the BERT model (Devlin et
al., 2018). Here, we pre-train the parameters of Bi-LSTM
by using the probabilistic language model (Bengio et al.,
2003), the probability of generating a question sentence
xq =

{
x
(q)
1 , x

(q)
2 , . . . , x

(q)
T

}
is modeled by

p(xq) =

T∏
t=1

exp

(
W

(q)
t

[ −→
h

(q)
t←−

h
(q)
t

]
+ b

(q)
t

)
∑T
i=1 exp

(
W

(q)
i

[ −→
h

(q)
i←−

h
(q)
i

]
+ b

(q)
i

) . (3)

The weight matrices
{
W

(q)
t

}T
t=1

and bias terms{
b
(q)
t

}T
t=1

are model variables to be optimized. Working
with the above probability function, model optimization
relies on maximizing the log-likelihood over a training
corpus of question sentences. Moreover, h

(q)
t further

considers its interaction with the answer, where the answer
hidden representation h

(a)
t is used in the attention module.

2.3. Question-aware Representation Learning
To compute a context-aware question sentence representa-
tion that is self-adaptive to the answer content, we modify
the Bi-LSTM activation function, so that the current state−→
h

(q)
t is computed not only from the previous state of the

current word, but also the answer content. This corresponds
to the following set of equations[ −→

h
(q)
t←−

h
(q)
t

]
= Bi-LSTM

(
φ

(qa)
t ,

[ −→
h

(q)
t−1←−

h
(q)
t−1

])
, (4)

where

φ
(qa)
t = tanh

(
Vqw

(q)
t +Va

T∑
t=1

α
(qa)
t

[ −→
h

(a)
t←−

h
(a)
t

]
+ bφ

)
.

(5)
The weight matrices Vq and Va and the bias vector bφ are
the variables to be optimized. The question word vector
w

(q)
t is pre-trained by the BERT. Through adding the an-

swer content, the input of the above model is changed from
the current word vector w(q)

t to a richer vector φ(qa)
t . For

notational convenience, let

ca =

T∑
t=1

α
(qa)
t

[ −→
h

(a)
t←−

h
(a)
t

]
. (6)

This vector ca is designed to be adaptive to the question

content controlled by its weights
{
α

(qa)
t

}T
t=1

. It has the
same function in Eqs. (1) and (5). The answer repre-
sentations

−→
h

(a)
t and

←−
h

(a)
t are computed from another Bi-

LSTM. Now, the remaining question is how to construct the
weightsα(qa)

t to allow the question content to affect the im-
portance of each positional answer representation. For this
we propose an interactive attention mechanism is explained
in Section 2.4. firstly.

2.4. Pre-trained Interactive Attention
The answer context vector ca in Eq. (6) is proposed to
fuse within-sentence and cross-sentence context, aiming at
serving better the task of question answer matching. The
syntactic level of context within the answer sentence is
encoded by its positional representations, which combine
−→
h

(a)
t and

←−
h

(a)
t computed by the standard Bi-LSTM, for

t = 1, 2, . . . , T . To automatically discover the keyword
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positions that capture better the answer relevance to a given
question, we construct the weight function as follows

α
(qa)
t =

exp
(
e
(qa)
t

)
∑T
i=1 exp

(
e
(qa)
i

) , (7)

where the energy function e(qa)t is formulated as

e
(qa)
t = tanh

(
uTh

[ −→
h

(q)
t←−

h
(q)
t

]
+ uTh

[ −→
h

(a)
t←−

h
(a)
t

]
+v1∇h(t,t+1)

a + uTa da + v2d
T
q Mda

)
.

(8)

The column u vectors with different subscript symbols,
the matrix M and the scalars v1,2 are model variables to

be optimized. These weight functions
{
e
(qa)
t

}T
t=1

select
salient positional representations more relevant to the ques-
tion context, and are referred to as attention weights (Bah-
danau et al., 2014). As seen in Eq. (8), there are differ-
ent types of information that contribute to the computation
of e(qa)t . The answer and question content jointly controls
the selection of the salient representation, and comprises
the interactive attention mechanism. Naturally, the char-

acteristic of each positional representation itself

[ −→
h

(a)
t←−

h
(a)
t

]
contributes to its own importance degree. Additionally, we
consider other quantities, such as∇h(t,t+1)

a , dq and da.
Specifically, the column vectors dq,da ∈ RD are bag-of-
word representations of the question and answer sentences,
with D denoting the size of the word vocabulary. Each di-
mension of the vector corresponds to the term frequency
- inverse document frequency (tf-idf) of the corresponding
word. The bilinear score dTq Mda examines relevance be-
tween sentences based on their shared words weighted by
a set of between-word interaction scores that are stored as
elements of the word similarity matrix M. The incorpora-
tion of basic word frequency information (via dq and da)
and word co-occurrence information (via dTq Mda) is mo-
tivated by the loss of specific information (such as years
and proper nouns), which may not be accounted for in the
distributed representation of the words, but is useful when
matching a query to an answer.

2.5. Local Context Jump Dependencies
In this section, we introduce the quantity ∇h(t,t+1)

a that
participates in the attention weight computation of Eq. (8).
When using a Bi-LSTM to learn the sentence representa-
tion, each obtained positional representation accumulates
context information up to the targeted word position in a
sentence. It is reasonable to assume that if the subsequent
word brings significant change to the sentence semantics,
it can directly affect the importance degree of the posi-
tional representation at the current word. Such a change in
sentence semantics could be indicated by the information
change contained within the learned hidden representations
between the current and next states.

Therefore, given an answer sentence, we aim to formulate
a quantity∇h(t,t+1)

a that can be potentially used as an indi-
cator of its information change between the current (t) and
the next (t + 1) word positions. It is known that the joint
entropy between the positional representations of two ad-
jacent states measures the uncertainty associated with the
two word positions. The amplitude of such uncertainty is
a good indicator of the amount of new information to be
brought by the next word. Thus, we attempt to estimate the
joint probability of the answer representations at the current
and next word positions, which fundamentally decides the
joint entropy between the two states.
Given a set of learned positional representations for an
answer sentence, denoted by h

(a)
t for t = 1, 2, . . . , T .

The joint probability of the two adjacent states in a sen-
tence is estimated by following a similar model architecture
to RBM (LeCun et al., 2006; Salakhutdinov and Hinton,
2009). By treating the two adjacent states as the observable
units, their joint probability can be modeled as

p
(
h
(a)
t ,h

(a)
t+1|θ

)
=

1

Z(θ)
exp

(
−E

(
h
(a)
t ,h

(a)
t+1,θ

))
,

(9)
with

E
(
h
(a)
t ,h

(a)
t+1,θ

)
=
(
h
(a)
t

)T
Qh

(a)
t+1 + qT

1 h
(a)
t + qT

2 h
(a)
t+1,

(10)
where θ = {Q, q1, q2} is the set of hidden units to be es-
timated. The partition function Z(θ) is used to normal-
ize the joint probabilities, so that they sum to 1 over all
the state possibilities. Let h(ai)

t and h
(ai)
t+1 denote the t-th

and (t + 1)-th states of the i-th answer sentence. The log-
likelihood L(θ) of a set of observed example pairs of ad-
jacent states, constructed from a training corpus of answer
sentences {ai}Mi=1, is maximized, given as

L(θ) =
1

M

M∑
i=1

T−1∑
t=1

log
(
p
(
h
(ai)
t ,h

(ai)
t+1 |θ

))
. (11)

In the above, M denotes the total number of answer sen-
tences used for training, and maximization of the log-
likelihood involves computing the partition function Z(θ)
and its partial derivative. This is difficult due to the fact that
samples cannot be drawn directly from p

(
h
(ai)
t ,h

(ai)
t+1 |θ

)
as the value of the partition function is unknown. In-
stead, we employ the contrastive divergence method (Hin-
ton, 2002), and estimate the variable change in each update
according to

4θk+1 ∝
∂E
(
h
(a)
t ,h

(a)
t+1,θk

)
∂θ

−
E

(
ĥ
(a)
t , ĥ

(a)
t+1,θk

)
∂θ

,

(12)
where θk denotes the estimated model variables at the k-
th iteration, and 4θk+1 denotes the approximated vari-
able change for the update in the next iteration. The re-

constructed representations ĥ(a)
t and ĥ

(a)
t+1 are obtained by

following multiple cycles of Markov chain Monte Carlo
(MCMC) sampling (Andrieu et al., 2003) based on the cur-
rent variable estimate θk. Given the final estimated model
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variables θ∗, we define the quantity∇h(t,t+1)
a as

∇h(t,t+1)
a = exp

(
−E

(
h
(a)
t ,h

(a)
t+1,θ

∗
))

. (13)

Because this quantity is used as an indicator of the degree
by which new information is conveyed by the next word
between two adjacent states of an answer sentence, we refer
to it as context information jump.

2.6. Model Training and Initialization
In this section, we briefly provide some implementation de-
tails for the model training and initialization phases. Given
a training corpus for question answer matching, we first
train the Bi-LSTM model using the question sentences and
answer sentences, independently. The model is trained to
solve the language generation task via log-likelihood maxi-
mization based on the sentence generation probabilities, as
formulated by Eq. (3). Sentence representations are learned

by the language model, such as
{
h
(q)
t

}T
t=1

and
{
h
(a)
t

}T
t=1

,
acting as fixed input of the proposed matching model. By
minimizing a regularized cross-entropy cost, the matching
model is trained to solve a binary classification problem
that decides the relevance. Instead of random initialization,
we initialize all the distributed word representation vectors
(w(q)

t and w
(a)
t ) by the word vectors trained by the BERT

language model (Devlin et al., 2018). Cosine similarities
computed from these word vectors are also used to initial-
ize the word similarity matrix M. The LSTM variables used
to compute the sentence representation is initialized by the
previously trained Bi-LSTM model. The remaining vari-
ables in the matching model are initialized randomly.

3. Experimental Results and Analysis
We have proposed a cross-sentence context-aware Bi-
LSTM architecture with interactive pre-trained attention
mechanism, referred to as IAM. In this section, it is com-
pared and evaluated with various state-of-the-art neural
matching models using three benchmark cQA datasets. In
addition to the performance comparisons in Table 1, we
provide various examples in Tables 2-4 to offer insights on
the intermediate results learned by different models.

3.1. Datasets and Experimental Setup
The dataset TREC is generated from TREC QA tracks 8-
13, containing a set of factoid queries and candidate an-
swers (Wang et al., 2007). The correct answers for each
query are manually labeled and ranked in the dataset. Three
partitions of TRAIN, DEV and TEST are provided in the
data. Following the benchmark evaluation scheme as used
in existing work, two experiments are conducted in which
the TRAIN is used to train separate models. In both ex-
periments, DEV is used for model validation and TEST to
report the answer selection performance.
The Yahoo! answer collection is a large-scale dataset col-
lected through Yahoo! Webscope Program1 based on com-
munity service. It includes approximately 4 million ques-
tions and answers, and each question is associated with a

1http://webscope.sandbox.yahoo.com

best answer and a category. The BM25 retrieval algorithm2

is used to retrieve the top 100 answers for each question.
These retrieved answers are also labeled as the correct ones
for each corresponding question, ranked after its best an-
swer provided by the collection (Zhou et al., 2016).
WikiQA is a new released question answering dataset on
open-domain area. All questions in dataset are sampled
from query logs of Bing website, which are posted by users.
Each question is related to a Wikipedia website that poten-
tially has correct answers. The candidate answers are col-
lected from Wikipedia website (Yang et al., 2015).
To process the datasets, a special end-of-sentence symbol
〈EOS〉 is added to the end of each sentence, and the out-
of-vocabulary words are mapped to a special token sym-
bol 〈UNK〉. We follow the same text pre-processing pro-
cedure as in (Severyn and Moschitti, 2015). The used Bi-
LSTM architecture contains two layers each with 100 hid-
den units. Dimensionality of each word embedding vec-
tor is set to K = 100. To initialize the word embedding
vectors for the TREC data, a wor2vec model (Mikolov et
al., 2013) is trained using the Wikipedia dumps3 containing
approximately 3 million words (after removing words that
appear less than 5 times in the corpus). The learning rate
is set to 0.025. To initialize the word embedding vectors
for the Yahoo! cQA dataset, the Glove model4 is trained
using the 2B Tweets corpus containing approximately 1.2
million words after removing the infrequent ones (Penning-
ton et al., 2014). For words do not appear in Wikipedia (or
Tweeter), a random value uniformly sampled from the in-
terval [−0.3, 0.3] is assigned to each embedding dimension.
For other model variables to be initialized, random values
uniformly sampled from the interval [−0.05, 0.05] are used.
Stochastic gradient descent is used for model optimization
with a mini-batch containing 50 training examples, a learn-
ing rate of 0.1, and a dropout rate of 0.5 (Srivastava et al.,
2014). The learning rate is decreased by a factor of 0.5 after
10 epochs. Gradient clipping (Pascanu et al., 2013) is used
to scale the gradient when the norm of gradient exceeds a
threshold of 5. The performance of existing methods is re-
ported using the implementation settings provided in their
corresponding published papers, and with the same train-
ing, validation and test data split as the proposed method.

3.2. Results and Analysis
To report model performance using the test set, we use
three performance metrics, namely mean reciprocal rank
(MRR), mean average precision (MAP). We collected the
reported results from the published works of the compared
models, wherever possible. Wherever this was not feasible,
we implemented them to match with the reported specifi-
cation and experimental evaluation. Performance compari-
son between the proposed IAM and multiple compared neu-
ral matching models are reported in Table 1 for the TREC,
Wiki and Yahoo! datasets. It can be seen that IAM achieves
the best performance for both datasets in terms of multiple
performance measures. There is a significant performance

2https://lucene.apache.org/
3http://dumps.wikimedia.org/backup-index.

html
4http://nlp.stanford.edu/projects/glove/

webscope.sandbox.yahoo.com
lucene.apache.org/
dumps.wikimedia.org/backup-index.html
dumps.wikimedia.org/backup-index.html
nlp.stanford.edu/projects/glove/
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Table 1: Performance comparison of different models across a range of datasets. The best results are highlighted and the
second best results are underlined.

TREC WikiQA Yahoo!
Models MRR MAP MRR MAP MRR MAP
QA-LSTM (Tan et al., 2016) 0.8322 0.7111 0.7045 0.6821 0.6468 0.6157
AP-CNN (Santos et al., 2016) 0.8511 0.7530 0.6957 0.6886 0.6489 0.6047
Ab-CNN (Yin et al., 2016) 0.8539 0.7741 0.7108 0.6921 0.6530 0.6325
KV-MemNNs (Miller et al., 2016) 0.8523 0.7857 0.7265 0.7069 0.6749 0.6431
IARNN (Wang et al., 2016) 0.8208 0.7369 0.7418 0.7341 0.6687 0.6275
BiMPM (Wang et al., 2017) 0.8750 0.8020 0.7310 0.718 0.6892 0.6353
IWAN (Shen et al., 2017a) 0.8890 0.8220 0.7500 0.7330 0.7010 0.6521
CAM (Wang and Jiang, 2017) 0.8659 0.8145 0.7545 0.7433 0.7035 0.6630
ELMo (Peters et al., 2018) 0.8810 0.8247 0.7430 0.7369 0.7163 0.6758
BERT-based (Devlin et al., 2018) 0.8827 0.8263 0.7592 0.7457 0.7218 0.6792
IAM+BERT 0.8951 0.8426 0.7631 0.7520 0.7362 0.6831

Table 2: Comparison of the top three answers returned by
the proposed and the existing architecture for the first ex-
ample question.

Example 1
Question What can I do with fresh banana peppers

and habanero peppers?
Top 3
answers
by
proposed

No.1: Dry them and use then through out
the year. You can also use them raw or
cooked, but I would dry them and then
when you need one or two then just rehy-
drate in water.
No.2: As for the habaneros, be careful
when handling them, these are some of
the hottest peppers known and they make
great jellies.
No.3: I’ve been growing peppers in my
garden this year. I’ve just got a good crop
of them.

Top 3
answers
by BERT-
based (De-
vlin et al.,
2018)

No.1: I’ve been growing peppers in my
garden this year. I’ve just got a good crop
of them.
No.2: Dinner that will go good with pasta
salad. Any of your favourite meats: ribs,
chicken, pork chops.
No.3: As for the habaneros, be careful
when handling them, these are some of
the hottest peppers known and they make
great jellies.

improvement of more than 7% over the CNN-based match-
ing models, and an improvement of around 1-2% improve-
ment over the state-of-the-art BERT-based transformer ar-
chitecture. In Table 2, we compare the top three answers of
the example question returned by the proposed model and
the BERT-based transformer model (Devlin et al., 2018).
The two models return two same sentences in their top three
list in the first example of Table 2. For the example, the
rankings produced by IAM are more accurate.
Compared to the existing attention mechanism used by the

Table 3: Comparison of the top three salient word posi-
tions in answer captured by the proposed method and the
attention Bi-LSTM . The salient words are highlighted in
bold with their corresponding attention weights indicated
in parenthesis next to the words.

Example 1
Question How do I know when steamed salmon is

done?
Proposed I steamed the salmon (0.367) as directed.

A fillet maybe under a pound for 18
mins (0.431) and it has white liquid spots
(0.586) on top of the fish.

Attention
Bi-LSTM
(Tan et al.,
2016)

I steamed the salmon (0.373) as directed.
A fillet maybe under (0.302) a pound for
18 mins and it has white liquid spots on
top of the fish (0.462).

Example 2
Question How do glass touchscreens work?
Proposed I’m not sure but I think there’s a huge

chip (0.578) beneath the layer of glass
(0.513) that sends waves of information
about where you touched. The glass, be-
ing an electric insulator (0.475), repels it
toward the huge chip inside.

Attention
Bi-LSTM
(Tan et al.,
2016)

I’m not sure but I think there’s a huge
chip beneath the layer of glass (0.385) that
sends waves of information (0.436) about
where you touched. The glass, being an
electric insulator, repels it toward the huge
(0.329) chip inside.

attention Bi-LSTM baseline model (Tan et al., 2016), the
proposed one provides better matching performance. In
Table 3, we illustrate the learned salient word positions
of two example answer sentences, which are interactively
controlled by both question and answer content. Atten-
tion weights learned by the proposed and existing attention
mechanisms are compared for the same pair of question
and answer. It can be seen from Table 3, that the proposed
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Table 4: Illustration of extreme word positions in the an-
swer with either the largest two values of ∇h(t,t+1)

a in-
dicated by T@K for K=1,2 (highlighted by bold), or the
smallest two values of ∇h(t,t+1)

a indicated by B@K for
K=1,2 (underlined). We use Q, A+ and A− to distin-
guish the question, correct answer and incorrect answer
sentences.

Example 1
Q: How do I remove tag the tag names on Facebook?
A+: View (T@2) video
and click the “remove
(T@1) tag” link next
(B@1) to that person’s
name. It will no longer
be linked (B@2) to their
profile.

A−: It allows (T@2)
scientists to trace (T@1)
evolution of species
(B@2) based on the
mutations of their genetic
code, as well as looking
for new (B@1) ones.

Example 2
Q: What percentage of alcohol freezes?
A+: Vodka is num (T@2)
ethanol (and num water).
When (B@1) a substance
is dissolved in water, it
lowers the freezing (T@1)
point of (B@2) the solu-
tion.

A−: Well I was watching
a cooking (T@1) show,
(jamies family christmas)
and he cut the top off
(B@2) of a plastic (T@1)
bottle and put a bottle of
vodka inside it, he then
filled the remaining space
with water, then he put it
in (B@1) the freezer.

method is able to capture more accurately the salient word
positions that are important for the matching task.
To examine the importance of incorporating the quantity of
context information jump ∇h(t,t+1)

a to the attention calcu-
lation, the proposed model is trained on TRAIN-ALL set
with ∇h(t,t+1)

a removed for the TREC data. This leads to
a performance drop of 1.2%-1.55%, compared to the com-
plete IAM as shown in Table 1. This indicates that it is
effective to take into account information change at the tar-
geted word position when evaluating its contribution to the
whole sentence semantics. To illustrate the effect of this
quantity, we highlight some word positions possessing ei-
ther very high or very low values of∇h(t,t+1)

a in one correct
and one incorrect answer of a given question. Two such ex-
amples are displayed in Table 4. It is interesting to observe
that some highlighted word positions indeed contribute sig-
nificantly to the question/answer relevance.

4. Conclusion
We have proposed the question answer sentence match-
ing model IAM, based on a cross-sentence context-aware
bi-directional LSTM architecture with interactive attention
mechanism. It improves semantic matching between sen-
tences by taking into account context information, in ad-
dition to the syntactic level of context within the sentence.
IAM learns the hidden representation at each word posi-
tion for a question, not only based on the previous (or next)

state, but also the multi-positional representations of the
answer sentence. This results in a context-aware question
representation, self-adaptive to the answer content. A novel
attention mechanism is designed to generate an answer rep-
resentation adaptive to the question content. In addition to
the positional answer and question representations as used
in most existing attention mechanisms, we include word
frequency and co-occurrence information to the attention
weight computation. More importantly, we propose the
new quantity of context information jump to improve the
attention computation by taking into account information
changes at different word positions. The proposed model
is compared to various neural matching models, based on
CNN or RNN architectures. IAM outperforms all the com-
peting ones for both TREC and Yahoo cQA datasets, as ev-
idenced by multiple matching performance measures. We
also provide illustrating examples, such as the top selected
answers and automatically learned salient word positions,
to demonstrate the effectiveness of the proposed method.
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