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Abstract
In this study, we propose a novel graph neural network called propagate-selector (PS), which propagates information over sentences to
understand information that cannot be inferred when considering sentences in isolation. First, we design a graph structure in which each
node represents an individual sentence, and some pairs of nodes are selectively connected based on the text structure. Then, we develop
an iterative attentive aggregation and a skip-combine method in which a node interacts with its neighborhood nodes to accumulate the
necessary information. To evaluate the performance of the proposed approaches, we conduct experiments with the standard HotpotQA
dataset. The empirical results demonstrate the superiority of our proposed approach, which obtains the best performances, compared to
the widely used answer-selection models that do not consider the intersentential relationship.
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1. Introduction
Understanding texts and being able to answer a question
posed by a human is a long-standing goal in the artificial
intelligence field. With the rapid advancement of neural
network-based models and the availability of large-scale
datasets, such as SQuAD (Rajpurkar et al., 2016) and Trivi-
aQA (Joshi et al., 2017), researchers have begun to concen-
trate on building automatic question-answering (QA) sys-
tems. One example of such a system is the machine-reading
question-answering (MRQA) model, which provides an-
swers to questions from given passages (Seo et al., 2016;
Xiong et al., 2016; Wang et al., 2017; Shen et al., 2017b).
Recently, research has revealed that most questions in ex-
isting MRQA datasets do not require reasoning across sen-
tences in the given context (passage); instead, they can
be answered by looking at only a single sentence (Weis-
senborn et al., 2017). Using this characteristic, a simple
model can achieve performance competitive with that of a
sophisticated model. However, in most real scenarios of
QA applications, more than one sentence should be utilized
to extract a correct answer.
To alleviate this limitation of previous datasets, another
type of dataset was developed in which answering the ques-
tion requires reasoning over multiple sentences in the given
passages (Yang et al., 2018; Welbl et al., 2018). Figure 1
shows an example of a recently released dataset, the Hot-
potQA. This dataset consists of not only question-answer
pairs with context passages but also supporting sentence
information for answering the question annotated by a hu-
man.
In this study, we build a model that exploits the relational
information among sentences in passages to classify the
supporting sentences that contain the essential informa-
tion for answering the question. To this end, we propose
a novel graph neural network model named propagate-
selector (PS), which can be directly employed as a sub-
system in the QA pipeline. First, we design a graph struc-
ture to hold information in the HotpotQA dataset by as-

Passage 1, 2015 Diamond Head Classic:
① The 2015 Diamond Head Classic was a mid-season eight-team
college basketball tournament… ② It was the seventh annual Diamond
Head Classic tournament … ③ No. 3-ranked Oklahoma defeated
Harvard to win the tournament championship... ④ Buddy Hield was
named the tournament's MVP.

Passage N, Buddy Hield:
① Chavano Rainier “Buddy” Hield is a Bahamian professional
basketball player for the Sacramento Kings of the NBA... ② …

Question: Which team does the player named 2015 Diamond Head
Classic’s MVP play for?

Supporting Sentences: 1-④, N-①

…

example

Figure 1: An example of dataset. Detecting supporting
sentences is an essential step being able to answer the ques-
tion.

signing each sentence to an independent graph node. Then,
we connect the undirected edges between nodes using a
proposed graph topology (see the discussion in the 4.2.).
Next, we allow PS to propagate information between the
nodes through iterative hops to perform reasoning across
the given sentences. Through the propagation process, the
model learns to understand information that cannot be in-
ferred when considering sentences in isolation.

Unlike the previous studies, this work does not use the exact
“answer span” information while detecting the supporting
sentences. It shows a different way of using the HotPotQA
dataset and provides researchers new opportunities to de-
velop a subsystem that is integrated into the full-QA sys-
tems (i.e., MRQA). Through experiments, we demonstrate
that compared with the widely used answer-selection mod-
els (Wang and Jiang, 2016; Bian et al., 2017; Shen et al.,
2017a; Tran et al., 2018; Yoon et al., 2019), the proposed
method achieves better performance when classifying sup-
porting sentences.
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2. Related Work
Previous researchers have also investigated neural network-
based models for MRQA. One line of inquiry employs
an attention mechanism between tokens in the question
and passage to compute the answer span from the given
text (Seo et al., 2016; Wang et al., 2017). As the task scope
was extended from specific- to open-domain QA, several
models have been proposed to select a relevant paragraph
from the text to predict the answer span (Wang et al., 2018;
Clark and Gardner, 2018). However, none of these methods
have addressed reasoning over multiple sentences.
To understand the relational patterns in the dataset, re-
searchers have also proposed graph neural network algo-
rithms. (Kipf and Welling, 2017) proposed a graph con-
volutional network to classify graph-structured data. This
model was further investigated for applications involving
large-scale graphs (Hamilton et al., 2017), for the effec-
tiveness of aggregating and combining graph nodes by em-
ploying an attention mechanism (Veličković et al., 2018),
and for adopting recurrent node updates (Palm et al., 2018).
These methods successfully demonstrated their potential
and effectiveness in understanding relational datasets, such
as entity linking in heterogeneous knowledge graphs, prod-
uct recommendation systems, and detecting side effects
in drug (Wu et al., 2019; Fan et al., 2019; Zitnik et al.,
2018). In addition, one trial involved applying graph neu-
ral networks to QA tasks; however, this usage was limited
to the entity level rather than sentence-level understand-
ing (De Cao et al., 2019).

3. Task and Dataset
The specific problem we aim to tackle in this study is to
classify supporting sentences in the MRQA task. We con-
sider the target dataset HotpotQA, by (Yang et al., 2018),
which comprises tuples (<Q, Pn, Yi, A>) in which Q is the
question, Pn is the set of passages as the given context, and
each passage P ∈Pn further comprises a set of sentences
Si (Si ∈Pn). Here, Yi is a binary label indicating whether
Si contains the information required to answer the ques-
tion, and A is the answer. In particular, we call a sentence,
Ss ∈Si, a supporting sentence when Ys is true. Figure 1
shows an example of the HotpotQA dataset.
In this study, we do not use the answer information from
the dataset; we use only the subsequent tuples<Q, Pn, Yi>
when classifying supporting sentences. We believe that this
subproblem plays an important role in building a full QA
pipeline because the proposed models for this task will be
combined with other MRQA models in an end-to-end train-
ing process.

4. Methodology
Our objective in this study is to identify supporting sen-
tences, among sentences in the given text that contain in-
formation essential for answering the question. To tackle
this problem, we first introduce answer-selection models,
which are widely studied in the research community. These
models are considered strong baselines since they can be di-
rectly applied to our task with the same objective function.
Then we describe our proposed method.

4.1. Baseline approaches
We introduce baseline models for the answer-selection task,
which have been extensively studied and have proved their
efficacy to the research community. These models are de-
veloped to compute the matching similarity between any
pairs of text (the question and the target sentence in our
case).

4.1.1. Compare Aggregate Framework (CompAggr).
This model (Wang and Jiang, 2016) computes the match-
ing similarity between two texts (the question and the target
sentence). It consists of attention, comparison, and aggre-
gation parts.

Attention: The soft alignment of the question Q∈Rd×Q
and target sentence S∈Rd×S (where d is a dimensionality
of word embedding and Q and S are the length of the se-
quences in the question and sentence, respectively) is com-
puted by applying an attention mechanism over the column
vector in Q for each column vector in S. With the computed
alignment, we obtain a corresponding vector AQ ∈Rd×S as
follows:

AQ = Q · softmax((WQ)
ᵀS), (1)

where W is a learned model parameter matrix.

Comparison: An element-wise multiplication is em-
ployed as a comparison function to combine each pair of
AQ and S into a vector C∈Rd×S .

Aggregation: Kim (2014)’s CNN with n-types of filters
is applied to aggregate all information in the vector C. Fi-
nally, the model employs a fully connected layer to com-
pute the matching score between the question and the target
sentence as follows:

R = CNN(C), (R∈Rnd),
ŷc = softmax((R)ᵀ W + b ),

(2)

where ŷc is the predicted probability for the target class, c,
and W∈Rnd×c and bias b are learned model parameters.
The loss function for the model is cross-entropy between
predicted labels and true-labels as follows:

L = − log

N∑
i=1

C∑
c=1

yi,clog(ŷi,c), (3)

where yi,c is the true label vector and ŷi,c is the predicted
probability from the softmax layer. C is the total number
of classes (true and false for this task), and N is the total
number of samples used in training.

4.1.2. CompAggr-kMax.
This model (Bian et al., 2017) is an extension of the Com-
pAggr model. The only differences lie in applying atten-
tion (in equation (1)) to both the Q and S side and applying
k-max pooling before the softmax function as follows:

AQ = Q · softmax(kMax((WQ)
ᵀS)),

AS = S · softmax(kMax((WS)ᵀQ)).
(4)
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4.1.3. CompClip-LM-LC.
This model (Yoon et al., 2019) is an extension of the
CompAggr-kMax model. It employs the ELMo (Peters
et al., 2018) model to enhance the word embedding layer
for the question and target sentence by adopting the pre-
trained contextual language model. Additionally, it devel-
ops a latent clustering method to compute topic information
in texts automatically and to use it as auxiliary information
to improve the model performance.

4.1.4. IWAN.
This model (Shen et al., 2017a) is a variation model based
on the compare aggregate framework. Unlike CompAggr,
it employs RNNs to encode a sequence of the words in the
text (question and target sentence independently). At the
same time, it computes an inter-alignment weight between
the question and the target sentence. The matching score is
computed by aggregating this information (question, target
sentence, and inter-aligned representation).

4.1.5. sCARNN.
This model (Tran et al., 2018) is an extension of the IWAN
model. It proposes a novel recurrent unit to regulate the
flow of the input (sequence of words in a text) and then re-
places the RNNs in the IWAN model of the proposed unit.

4.2. Propagate-Selector
To build a model that can perform reasoning across mul-
tiple sentences, we propose a graph neural network model
called Propagate-selector (PS). PS consists of four parts
as follows (topology, node representation, aggregation, and
update):
Topology: The topology of the graph determines the con-
nections among the nodes in the graph. These connections
will be used as a path that allows the information to flow
from one node to another. Figure 2 depicts the topology
of the proposed model. In an offline step, we organize the
content of each instance in a graph, where each node repre-
sents a sentence from the passages and the question. Then,
we add edges between nodes using the following topology:

• we fully connect nodes that represent sentences from
the same passage (dotted-black);

• we fully connect nodes that represent the first sentence
of each passage (dotted-red);

• we add an edge between the question and every node
for each passage (dotted-blue).

In this way, we enable a path by which sentence nodes can
propagate information between both inner and outer pas-
sages. Furthermore, we investigate different strategies for
connecting those nodes in the graph and examine their cor-
responding effectiveness for detecting supporting sentences
in the text (see the discussion in section 5.4.).
Node representation: Question Q∈Rd×Q and sentence
Si ∈Rd×Si (where d is the dimensionality of the word
embedding and Q and Si represent the lengths of the se-
quences in Q and Si, respectively) are processed to acquire
the sentence-level information. Recent studies have shown
that a pretrained language model helps the model capture

topology

𝑠

𝑠
𝑠

𝑠

𝑠
𝑠

𝑠

q

Passage 1

Passage N

Figure 2: Topology of the proposed model. Each node
represents a sentence from the passage and the question.

the contextual meaning of words in the sentence (Peters et
al., 2018; Devlin et al., 2019). Following this study, we se-
lect an ELMo (Peters et al., 2018) language model for the
word-embedding layer of our model as follows:

LQ = ELMo(Q), (LQ∈Rd×Q),
LS = ELMo(S), (LS∈Rd×S).

(5)

Using these new representations, we compute the sentence
representation as follows:

hQt = fθ(hQt−1,L
Q
t ),

hSt = fθ(hSt−1,L
S
t ),

NQ = hQlast, NS = hSlast,

(6)

where fθ is the RNN function with the weight parameters
θ and NQ ∈Rd′ and NS ∈Rd′ are node representations for
the question and sentence, respectively (where d′ is the di-
mensionality of the RNN hidden units).
As computing the node representation is an essential pro-
cess for acquiring information from a text, we investigate
various approaches for encoding sentences, such as replac-
ing the ELMo word representations using different methods
(the GloVe (Pennington et al., 2014) or the BERT (Devlin et
al., 2019)) and replacing the RNN function in equation (6)
with the pooling method. Furthermore, we adopt the uni-
versal sentence encoding method based on the recently de-
veloped transformer model (Cer et al., 2018). Detailed in-
formation will be given in the section 5.5.

Aggregation: An iterative attentive aggregation function
to the neighbor nodes is utilized to compute the amount of
information to be propagated to each node in the graph as
follows:

A(k)
v = σ(

∑
u∈N(v)

a(k)vu W(k) · N(k)
u ),

a(k)vu =
exp(Svu)∑
kexp(Svk)

,

S(k)
vu = (N(k)

v )ᵀ ·W(k) · N(k)
u ,

(7)

where Av ∈Rd
′

is the aggregated information for the v-
th node computed by attentive weighted summation of its
neighbor nodes, avu is the attention weight between node
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v and its neighbor nodes u (u∈N(v)), Nu ∈Rd
′

is the u-
th node representation, σ is a nonlinear activation function,
and W∈Rd′×d′ is the learned model parameter. Because
all the nodes belong to a graph structure in which the iter-
ative aggregation is performed among nodes, the k in the
equation indicates that the computation occurs in the k-th
hop (iteration).
Update: The aggregated information for the v-th node, Av
in equation (7), is combined with its previous node repre-
sentation to update the node. We apply a skip connection
to allow the model to learn the amount of information to be
updated in each hop as follows:

N(k)
v = σ(W′ · {N(k−1)

v ;A(k)
v }), (8)

where σ is a nonlinear activation function, {;} indicates
vector concatenation, and W′ ∈Rd′×2d′ is the learned
model parameter.

4.3. Optimization
Because our objective is to classify supporting sentences
(Si ∈Pn) from the given tuples <Q, Pn, Yi>, we define
two types of loss to be minimized. One is a rank loss that
computes the cross-entropy loss between a question and
each sentence using the ground-truth Yi as follows:

lossrank = −log
N∑
i=1

Yi log(Si),

S = [score1, ..., scorei],

scorei = gθ(NQ,NSi ),

(9)

where gθ is a feedforward network that computes a simi-
larity score between the final representation of the question
and each sentence. The other is attention loss which is de-
fined in each hop, to reward the model when it correctly
attends the supporting sentences, as follows:

lossattn = −log
k∑
i=1

N∑
i=1

Yi log(a(k)qi ), (10)

where a(k)qi indicates the relevance between the question
node q and the i-th sentence node in the k-th hop as com-
puted by equation (7).
Finally, these two losses are combined to construct the final
objective function:

L = α lossrank + lossattn, (11)

where α is a hyperparameter.

5. Experiments
We regard the task as the problem of selecting the support-
ing sentences from the passages to answer the questions.
Similar to the answer-selection task in the QA literature,
we report the model performance using the mean average
precision (MAP) and mean reciprocal rank (MRR) metrics.
To evaluate the model performance, we use the HotpotQA
dataset, which is described in section 3. Table 1 shows the
properties of the dataset. We conduct a series of exper-
iments to compare baseline methods with the newly pro-
posed models. All source code developed to obtain the

properties train dev

# questions 90,447 7,405
# sentences 3,703,344 306,487

passages / question 9.95 9.95
sentences / passage 4.12 4.16
sentences / question 40.94 41.39
supporting sentences /
question

2.39 2.43

avg tokens (question) 17.92 15.83
avg tokens (sentence) 22.38 22.41

Table 1: Properties of the dataset

empirical results will be made available via a public web
repository along with the dataset1.

5.1. Implementation Details
To implement the propagate-selector (PS) model, we first
use a small version of ELMo (13.6 M parameters) that pro-
vides 256-dimensional context embedding. This choice
was based on the available batch size (50 for our exper-
iments) when training the complete model on a single
GPU (GTX 1080 Ti). Then, we further experiment with
the original version of ELMo (93.6 M parameters, 1024-
dimensional context embedding). In this case, we were able
to increase the batch size only up to 20, which results in
excessive training time (approximately 90 hours). For the
sentence encoding, we used a GRU with a hidden unit di-
mension of 200. The hidden unit weight matrix of the GRU
is initialized using orthogonal weights (Saxe et al., 2013).
Dropout (Srivastava et al., 2014) is applied for regulariza-
tion purposes at a ratio of 0.7 for the GRU (in equation (6))
to 0.7 for the attention weight matrix (in equation (7)). For
the nonlinear activation function (in equation (7) and (8)),
we use the tanh function.
Regarding the vocabulary, we replaced vocabulary with
fewer than 12 instances in terms of term-frequency with
“UNK” tokens. The final vocabulary size was 138,156. We
also applied Adam optimizer (Kingma and Ba, 2014), in-
cluding gradient clipping by norm at a threshold of 5.

5.2. Comparisons with Other Methods
Table 5.3. shows the model performances on the Hot-
potQA dataset. Because the dataset only provides train-
ing (trainset) and validation (devset) subsets, we report
the model performances on these datasets. While train-
ing the model, we implement early termination based on
the devset performance and measure the best performance.
To compare the model performances, we choose widely
used answer-selection models such as IWAN (Shen et al.,
2017a), sCARNN (Tran et al., 2018), CompAggr (Wang
and Jiang, 2016), CompAggr-kMax (Bian et al., 2017),
and CompClip-LM-LC (Yoon et al., 2019), which were
primarily developed to rank candidate answers for a given
question (refer to the section 4.1. for detailed information
on the models). In addition to the main proposed model,
PS-rnn-elmo, we also report the model performance with a

1http://github.com/david-yoon/propagate-selector
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(a) hop-1 (b) hop-2 (c) hop-3 (d) hop-4

Figure 3: Attention weights between the question and sentences in the passages. As the number of hops increases, the
proposed model correctly classifies supporting sentences (ground-truth index 4 and 17).

Model
dev train

MAP MRR MAP MRR

IWAN [1] 0.526 0.680 0.605 0.775
sCARNN [2] 0.534 0.698 0.620 0.792
CompAggr [3] 0.659 0.812 0.796 0.911
CompAggr-kMax [4] 0.670 0.825 0.767 0.901
CompClip-LM-LC [5] 0.702 0.848 0.757 0.884

PS-rnn-elmo-s 0.716 0.841 0.813 0.916
PS-rnn-elmo 0.734 0.853 0.863 0.945

Table 2: Model performance on the HotpotQA dataset (top
scores marked in bold). Models [1-5] are from (Shen et al.,
2017a; Tran et al., 2018; Wang and Jiang, 2016; Bian et al.,
2017; Yoon et al., 2019), respectively.

small version of ELMo, PS-rnn-elmo-s.
As shown in Table 5.3., the proposed PS-rnn-elmo shows
a significant MAP performance improvement compared
to the previous best model, CompClip-LM-LC (0.702 to
0.734 absolute).

5.3. Hop Analysis
Table 3 shows the model performance (PS-rnn-elmo) as the
number of hops increases. We find that the model achieves
the best performance in the 4-hop case but starts to degrade
when the number of hops exceeds 4. We assume that the
model experiences the vanishing gradient problem under
a larger number of iterative propagations (hops). Table 4
shows the model performance with the small version of
ELMo.
Figure 3 depicts the attention weight between the question
node and each sentence node (hop-4 model case). As the
hop number increases, we observe that the model properly
identifies supporting sentences (in this example, sentences
#4 and #17). This behavior demonstrates that our proposed
model correctly learns how to propagate the necessary in-
formation among the sentence nodes via the iterative pro-
cess.

5.4. Impact of Various Graph Topologies
The topology of the graph determines the path by which
information flows and is aggregated. To see the quantitative
contributions of each connection in the graph, we perform
ablation experiments as follows:

• Type-1: We reduce the connections between sentences

# hop
dev train

MAP MRR MAP MRR

1 0.651 0.794 0.716 0.842
2 0.653 0.797 0.721 0.850
3 0.698 0.830 0.800 0.908
4 0.734 0.853 0.863 0.945
5 0.700 0.827 0.803 0.906
6 0.457 0.606 0.467 0.621

Table 3: Model performance with original (5.5B) version
of ELMo (top scores marked in bold) as the number of hop
increases.

# hop
dev train

MAP MRR MAP MRR

1 0.648 0.790 0.708 0.842
2 0.655 0.801 0.720 0.853
3 0.681 0.816 0.768 0.886
4 0.706 0.834 0.796 0.906
5 0.716 0.841 0.813 0.916
6 0.441 0.596 0.452 0.600

Table 4: Model performance with small version of ELMo
(top scores marked in bold) as the number of hop increases.

within the same passage. Only the previous and next
sentences are connected to their neighbor sentence
(see figure 4(a)).

• Type-2: We remove the connections between the pas-
sages, which reveals the contribution of the infor-
mation flow among independent passages (see fig-
ure 4(b)).

• Type-3: We remove the connections between each
sentence node and the question node (see figure 4(c)).

Figure 4 illustrates different types of connection strategies,
and Table 5 shows their corresponding performances. To
reach the best performance, we conduct experiments mul-
tiple times by changing the number of hops in the model
from 1 to 6 for each case (Type-1 to Type-3). From the ex-
periment, hop-4 is selected as the best-performing hyper-
parameter. However, all the model variations undergo per-
formance degradation compared to the original topology
(PS-rnn-elmo-s).
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Figure 4: Different typologies for the graph. Type-1 reduce connection within the passage, type-2 remove connection
between the passages and type-3 remove connection between each sentence node and the question node.

Model
dev train

MAP MRR MAP MRR

PS-rnn-elmo-s 0.716 0.841 0.813 0.916

Type-1 (rnn-elmo-s) 0.694 0.834 0.807 0.915
Type-2 (rnn-elmo-s) 0.705 0.836 0.792 0.903
Type-3 (rnn-elmo-s) 0.658 0.796 0.729 0.857

Table 5: Model performance with different typologies.
The connection strategies between nodes for each type are
illustrated in figure 4.

5.5. Impact of Node Representation
To see the effectiveness of the various approaches for com-
puting sentence representation, we investigate combina-
tions of well-studied methods.

5.5.1. Word Representation
Vector representations of the words in each sentence are
computed from the original version of the ELMo model
(-elmo), a small version of the ELMo model (-elmo-s),
BERT (Devlin et al., 2019) model (-bert), or mapped to
GloVe word embedding (-glove).

5.5.2. Node Representation
Each node representation is computed by employing three
general methods for encoding the sequence of word repre-
sentations as follows:

• We employ an RNN model (-rnn) to encode sequential
information in the sentence. The final representation
of the RNN’s hidden status is considered as a node
representation (see equation (6)).

• We apply a pooling method (-avg) that averages all
the word representations in the sentence to compute
the node representation as follows: NQ= average(Q),
NS= average(S). These new representations-NQ and
NS-are substituted for the node representations in
equation (6).

• We adopt the pretrained universal sentence-encoding
method (-USD T), which is based on the recently de-
veloped transformer model (Cer et al., 2018). This
model computes sentence representation directly from
the sequence of words in any text.

Model
dev train

MAP MRR MAP MRR

PS-USD T 0.651 0.795 0.693 0.830

PS-avg-glove 0.617 0.753 0.876 0.945
PS-avg-elmo-s 0.471 0.611 0.483 0.625

PS-rnn-glove 0.700 0.822 0.919 0.971
PS-rnn-elmo-s 0.716 0.841 0.813 0.916
PS-rnn-elmo 0.734 0.853 0.863 0.945
PS-rnn-bert 0.667 0.806 0.708 0.841

Table 6: Model performance with the different method for
computing node representation.

Table 6 depicts the model performance with different node
representation methods. In all cases, the RNN encoding
skims (-rnn) performs better than that of the average pool-
ing (-avg). Interestingly, average pooling with ELMo rep-
resentation (PS-avg-elmo-s) performs worse than in the
GloVe representation (PS-avg-glove) case. From this re-
sult, we find that averaging ELMo does not produce proper
node representations. For the PS-rnn-bert case, we do not
fine-tune the BERT model and only use its computing word
representation. We expect there exists a possibility to en-
hance model performance by fine-tuning the BERT with the
end-to-end training process.

6. Discussion
In this study, we focus on a model that can detect sup-
porting sentences to answer a question. We do not con-
sider competing against the full QA systems, i.e., machine
reading QA (MRQA) models, which are jointly trained
with two objectives, “extracting answer span” and “de-
tecting supporting sentence.” Note that we do not use the
exact “answer span” information when detecting the sup-
porting sentences. We think “answer-span” supervision
allows the model to track the supporting sentences from
simple word matching. Therefore, our investigations are
focused on evaluating and analyzing the effectiveness of
the proposed graph neural network-based model for clas-
sifying supporting sentences compared to the well-known
answer-selection QA models. To evaluate the performance
of the proposed model from a different perspective, we
adopt other traditional measures for the QA system (i.e.,
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Figure 5: Model performance with various measure. The x-axis shows a threshold value that is used for determining the
label of the question-supporting sentence pair by the confidence score.

precision, recall, and f1), and evaluate our methods. These
measures require a specific label (true or false) for each
pair of data (the question and the supporting sentence can-
didate). As our model computes the confidence scores for
each pair of data, we give a true-label when the confidence
scores are greater than a predefined threshold value (other-
wise, we give the pair a false-label). Figure 5 shows the
model performances (PS-rnn-elmo vs CompAggr) in re-
gards to the variation of the threshold value (0.3 to 0.6).
In future research directions, we will investigate the best
way to combine our proposed model with existing MRQA
algorithms to build a full QA system. It would also be pos-
sible to link the current graph to another graph (i.e., knowl-
edge graph) to engage external knowledge information in
the question-answering system. We also hope that our work
inspires future works aiming to perform multihop reasoning
on the free-form text.

7. Conclusion
In this paper, we propose a graph neural network that finds
the sentences crucial for answering a question. The exper-
iments demonstrate that the model correctly classifies sup-
porting sentences by iteratively propagating the necessary
information through its novel architecture. We believe that
our approach will play an important role in building a QA
pipeline in combination with other MRQA models trained
in an end-to-end manner.
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