
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5282–5290
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5282

Recognizing Sentence-level Logical Document Structures with the Help of
Context-free Grammars

Jonathan Hildebrand1, Wahed Hemati2, Alexander Mehler3
1,2,3Text Technology Lab

1,2,3Goethe-Universität Frankfurt
1mail@jonathanhildebrand.de, 2hemati@em.uni-frankfurt.de, 3mehler@em.uni-frankfurt.de

Abstract
Current sentence boundary detectors, such as (Azzi et al., 2019; González-Gallardo and Torres-Moreno, 2018), split documents into
sequentially ordered sentences by detecting their beginnings and ends. Sentences, however, are more deeply structured even on this
side of constituent and dependency structure: they can consist of a main sentence and several subordinate clauses as well as further
segments (e.g. inserts in parentheses); they can even recursively embed whole sentences and then contain multiple sentence beginnings
and ends. In this paper, we introduce a tool that segments sentences into tree structures to detect this type of recursive structure. To this
end, we retrain different constituency parsers with the help of modified training data to transform them into sentence segmenters. With
these segmenters, documents are mapped to sequences of sentence-related “logical document structures” (cf. (Power et al., 2003)). The
resulting segmenters aim to improve downstream tasks by providing additional structural information. In this context, we experiment
with German dependency parsing. We show that for certain sentence categories, which can be determined automatically, improvements
in German dependency parsing can be achieved using our segmenter for preprocessing. The assumption suggests that improvements in
other languages and tasks can be achieved.

Keywords: sentence segmentation, logical document structure, constituency parsing, dependency parsing, CoNLL shared task

1. Introduction
Tools for sentence structure analysis, i.e. constituency and
dependency parsers (Chen and Manning, 2014; Dyer et
al., 2016a; Kiperwasser and Goldberg, 2016; Straka et al.,
2016; Nguyen and Verspoor, 2018), operate on sentence
units, the boundaries of which are recognized during pre-
processing. However, current sentence boundary detectors
(such as (Azzi et al., 2019; González-Gallardo and Torres-
Moreno, 2018)) operate sequentially; they detect sequences
of sentence beginnings and ends without their dependen-
cies. In contrast to this, natural language sentences are of-
ten more deeply structured: they can, for example, consist
of a main clause and several subordinate clauses or other
segments (e.g. inserts in parentheses). They can even em-
bed entire sentences recursively and then contain several
sentence beginnings and ends. This happens, for example,
when embedding direct speech into indirect speech, where
embedded sentences can even be interrupted and continued
later within the embedding sentence. This is illustrated by
the following sentence from Kafka’s The Metamorphosis,
in which the sentence beginning with Gregor is interrupted,
continued later, and followed by a second embedded sen-
tence:

“Gregor,” it cried – it was the mother –, “it is
three-quarter of seven. Weren’t you going some-
where?”

Even under the assumption that a boundary detector recog-
nizes this as a single sentence without terminating a sup-
posed first sentence with the point after seven, it would
not sufficiently recognize its inner structure, according to
which a matrix sentence in indirect speech contains two
sentences in direct speech. Our hypothesis is now that if
parsers are better informed about the latter type of logical

document structure (see (Power et al., 2003)), they can bet-
ter analyze syntactic structures. In particular, we assume
that a boundary detector that recognizes recursively struc-
tured sentence structures of this type is less error-prone
and thus better prepares for subsequent parsing. To this
end, we retrain constituency parsers to transform them into
segmenters for detecting the latter kind of sentence struc-
ture. With these segmenters, documents are mapped to se-
quences of sentence-related “logical document structures”
(cf. (Power et al., 2003)). We then use the segmenters to im-
prove German dependency parsing. We show that for cer-
tain sentence categories, which can be determined automat-
ically, improvements can be achieved using our segmenter
for preprocessing. The assumption suggests that improve-
ments in other languages and tasks can be achieved.
The paper is organized as follows: Section 2 gives an
overview of related work, Section 3 describes the gener-
ation of training data for detecting sentence-related logical
document structures. Section 4 deals with retraining con-
stituency parsers for detecting these structures and Section
5 with using the resulting segmenters for the downstream
task of dependency parsing. Section 6 contains our discus-
sion and error analysis and Section 7 gives a conclusion and
a prospect on future work.

2. Related Work
In the field of logical document structure analysis, there
is already research in the form of Sentence Boundary De-
tection (SBD), where the task consists of recognizing the
beginning and end of a sentence. For an approach to text
classification that explores logical document structures, see
(Mehler et al., 2007).
Attempts were made to solve the task of SBD using differ-
ent approaches and methods for different languages, includ-
ing supervised and unsupervised methods. Among the su-



5283

pervised variants are maximum entropy (Reynar and Ratna-
parkhi, 1997; Choi, 2000; Wang and Huang, 2003; Agarwal
et al., 2005), rule-based (Wang and Huang, 2003), Markov
Models (Jurish and Würzner, 2013), conditional random
fields (Liu et al., 2005; Oba et al., 2006) and the ever in-
creasingly popular neural networks (Xu et al., 2014; Tre-
viso et al., 2017; González-Gallardo et al., 2018; Du et al.,
2019; Schweter and Ahmed, 2019). Another class of meth-
ods for the SBD are the unsupervised methods (Kiss and
Strunk, 2006; Strunk et al., 2006), which in contrast to the
supervised variants do not require any additional training
resources.
The methods presented here have in common that they op-
erate sequentially, whereby only the beginning and end of
a sentence are determined and thus it is assumed that sen-
tences have no hierarchy. It is neglected that natural lan-
guage sentences can be deeply nested by dependent clauses.
In this paper we approach this desideratum by developing a
tagger that recognizes recursively structured sentence struc-
tures. (Vogel and Fischer, 2019) retrain a Recurrent Neural
Network Grammar (RNNG) to detect sentence-level related
logical document structures. We follow this approach and
also retrain an RNNG and add a comprehensive evaluation
and error analysis.

3. Training Data
For detecting sentence-related logical document structures
we require training data that already divides sentences into
segments and displays these segments in a hierarchical re-
lationship to each other. We could not use a corresponding
gold standard corpus as a training database, as in classi-
cal dependency or constituency parsing, since there was no
such resource for the language addressed in this paper, that
is, German. Thus, we generated such a resource on our
own. On the basis of 17 works by the German-speaking
authors Franz Kafka and Thomas Mann, we first developed
a training data set using a rule-based system that separates
sentences into different sentence segments. This rule-based
system basically operates as a counting system of candi-
date sentence and phrase boundary markers (whether pair-
ing or not). In this way, it detects recursively nested (sub-
)sentence structures and thereby explores sets of training
data that can be used to train LDS detection systems. How-
ever, because of its rule-based nature, this system is not
robust so that it basically stops processing when encounter-
ing heretofore unseen logical document structures or if the
input document wrongly manifests these structures (e.g. by
missing parentheses). As a consequence, the kind of ma-
chine learning presented here is indispensable in order to
make the latter LDS annotation robust.
Each sentence segment of our training corpus is then
mapped onto a hierarchical structure consisting of the root
element (ROOT) as well as sentence (S), segment (SEG),
word (W) and character (C) elements. The main record is
the root element, to which possible subordinate clauses and
other insertions (e.g. insertions in parentheses) are hierar-
chically subordinated. As a result, we get a training set
consisting of 14,371 segmented sentences. The sentences
are stored in a format corresponding to a modified form of
the Penn Treebank (Marcus et al., 1993).

Parser F1 Ø Time (per sentence)
in % Training Parsing

PCFG (Stanford) 69.33 0.006 s 11.161 s
Shift-Red. (Stanford) 82.68 0.053 s 0.188 s
RNNG (Dyer et al.) 87.16 0.207 s 1.837 s

Table 2: F1-score and processing times of tested con-
stituency parsers.

Author Work Sent. Seg. Tok.
F. Kafka Auf der Galerie 2 54 288
F. Kafka Blumfeld ein älterer 382 1 249 8 641

Junggeselle
F. Kafka Briefe an den Vater 672 2 744 16 275
F. Kafka Das Schloss 5 837 21 915 109 025
F. Kafka Das Urteil 284 684 3 993
F. Kafka Der Bau 416 1 974 12 869
F. Kafka Der Gruftwaechter 490 960 4 004
F. Kafka Der Heizer 606 1 675 10 200

Ein Fragment
F. Kafka Der Heizer 5 599 15 905 89 139
F. Kafka Die Verwandlung 832 3 099 19 151
F. Kafka Ein Hungerkünstler 112 580 3 422
F. Kafka In der Strafkolonie 634 1 879 10 259
T. Mann Der Tod in Venedig 1 074 4 406 25 024
T. Mann Der kleine Herr 1 947 5 567 31 534

Friedemann
T. Mann Gladius Dei 372 908 5 175
T. Mann Königliche Hoheit 6 072 18 667 107 256
T. Mann Schwere Stunde 160 545 2 797

Table 1: Used works in training

4. Re-Training constituency parsers
Our sentence segmenter essentially examines recursively
embedded sentence segments, which are represented in hi-
erarchical parse trees. Obviously, parsers for syntactic con-
stituency structures fit this task. A central advantage of ma-
chine learning parsers is that they can be transferred (reuse)
to related tasks with the help of new training data without
having to change their source code. This approach is taken
up in this paper. Classical constituency parsers as given
by Recurrent Neural Network Grammars (RNNG) (Dyer
et al., 2016b) are trained with tree-like training data. Our
newly created training corpus (see Section 3) also consists
of tree-like structures. In order to obtain the desired seg-
menters for hierarchical sentence segment structures, it is
thus essentially sufficient to retrain existing parsers. To
this end, we experiment with three parsers: the (unlexical-
ized1) Stanford PCFG parser (Klein and Manning, 2003),
the Stanford Shift Reduce parser (Zhu et al., 2013) and the
RNNG parser (Dyer et al., 2016b) which was chosen as the
most promising parser due to its F1-scores. In order to eval-
uate these parsers, we use the evaluation tool evalb (Sekine
and Collins, 1997). Table 2 shows the corresponding re-
sults (training, validation and test sets were split according
to the 60/20/20 rule): RNNG is obviously the best perform-
ing parser; but it is also most time-consuming in terms of
training. The shift-reduce parser is the fastest in training
and parsing, while RNNG is in the middle of the rating.
From this point of view, RNNG is a top candidate for our
task.

1We also tested the lexicalized model (Klein and Manning,
2002) but it performed worse.



5284

1 2 3

40

50

60

Sentence structure depth

R
N

N
G

re
su

lt
(F

1
m

ea
su

re
)i

n
%

Figure 1: Result of RNNG-segmentation (F1-score) de-
pending on sentence structure depth.

4.1. Error analysis
We briefly analyze for which sentences the segmentation
using the RNNG parser is better or worse. The quality
of the segmentation is crucial, as it has a central influence
on whether improvements can be achieved in downstream
tasks. The dependence of the segmentation result on the
sentence structure depth (Figure 1) and on the number of
segments (Figure 2) is particularly noticeable. This anal-
ysis shows that more complicated sentences are processed
worse than simpler2. This observation was to be expected,
since more complicated sentences, e.g. with a sentence
structure depth of 3, occur less frequently in the training
data than simple sentences, which becomes clear in Fig-
ure 3.3

4.2. Differentiating authors through segment
analysis

We additionally parsed several works of different authors
using the RNNG-based segmenter. The resulting segmen-
tations show similarities, but also differences between the
authors. In Figure 4 the prose works (shown in Table 1)
of the authors Franz Kafka and Thomas Mann and 6 works
of Hermann Hesse and 4 works of Johann Wolfgang von
Goethe are compared by the average number of segments
manifested by them per sentence4. In Figure 5 we comple-
ment a comparison based on the average sentence structure
depth. The figures show strong similarities in writing style
between Kafka and Mann. Hesse and Goethe differ in the
use of fewer (Hesse) or more segments (Goethe) and in the

2The only exception is the value for sentences with 6 segments
in Figure 2, which, however, only applies to 2 sentences and is
therefore not significant.

3Complex sentences are also processed worse because the
number of parsing possibilities increases exponentially with the
number of segments. The probability of finding exactly the right
parse therefore decreases exponentially.

4For display reasons, statistical outliers of 40 segments per
sentence or more had to be truncated, as values of up to 400 seg-
ments per sentence were detected due to incorrect segmentations.

2 3 4 5 6

40

50

60

Number of segments

R
N

N
G

re
su

lt
(F

1
m

ea
su

re
)i

n
%

Figure 2: Result of RNNG-segmentation (F1-score) de-
pending on the number of segments.

634

249

88
6

Sentence depth 0
Sentence depth 1
Sentence depth 2
Sentence depth 3

Figure 3: Allocation of the 977 CoNLL test sentences.

(Hesse) smaller or greater (Goethe) nesting of sentences.

5. Dependency Parsing with prior
Segmentation

The segmentation applied here provides additional infor-
mation about the structure of sentences. This information
can now be used for downstream tasks such as dependency
parsing. To this end, we take the CoNLL shared task on
dependency parsing from 2018 (Zeman and Hajic, 2018)
as an example to improve state-of-the-art parsers, trained
with state-of-the-art training data within a current shared
task. First we had to choose a suitable dependency parser,
which is used in this shared task, whereby we decided for
the TurkuNLP parser of (Kanerva et al., 2018). The rea-
son for choosing this parser is its performance (LAS of
80.08%) and the simple implementation as a docker con-
tainer. Building on this, we implemented the following
parsing procedure: Initially, all input sentences were seg-
mented by the RNNG-segmenter. The dependency parser
then analyzed the sentence segments individually and re-
assembled the analysis results at the end. We pursued sev-
eral strategies for the composition of the parsing results of
the individual segments, which are presented in the follow-
ing subsections.



5285

Kafk
a

Man
n

Hes
se

Goe
the

0

10

20

30

40

S
eg

m
en

ts
pe

rs
en

te
nc

e

Figure 4: Comparing authors based on the number of seg-
ments per sentence.

Kafk
a

Man
n

Hes
se

Goe
the

0

2

4

6

8

10

S
en

te
nc

e
st

ru
ct

ur
e

de
pt

h

Figure 5: Comparing authors based on sentence structure
depth.

5.1. General Procedure
The general procedure for splitting (segments) and assem-
bling (parsing results) is carried out in three steps:

1. Segment the sentence
2. Parse and join segments individually (but do not link

them yet!)
3. Link segment results to obtain a contiguous sentence.

Example: Step 1: The sentence “After the house is re-
newed, I can move in.” is segmented as follows:

(S
(SEG

(W After) (W the) (W house) (W is) (W renewed) (C ,)
)
(W I) (W can) (W move) (W in) (C .)

)

Step 2: The resulting CoNLL rows of the subordinate
clause are then inserted into the entire clause at the point

where they appear in the original sentence (i.e. unseg-
mented sentence). The CoNLL-rows are only inserted cor-
rectly one below the other, but there is no link yet, that is,
no change in the HEAD and DEPREL values. Thus the
sentence appears correct at first, since all words follow one
another in the correct order. However, the words only have
relationships to words from their own segment (words in
the main sentence are interdependent and words in the sub-
ordinate sentence are interdependent), but words of differ-
ent segments are not linked as is expected for a correctly
parsed sentence. In addition, commas removed before the
segmentation are added again, but first with processing the
head “?”, since this head is only determined in the next step.
According to the CoNNL-U format5, the result of step 2
looks as follows:

ID FORM LEMMA UPOS HEAD DEPREL

1 After after SCONJ 5 mark

2 the the DET 3 det

3 house house NOUN 5 nsubj:pass

4 is is AUX 5 aux:pass

5 renewed renew VERB 0 root

? , , PUNCT ? punct

1 I I PRON 3 nsubj

2 can can AUX 3 aux

3 move move VERB 0 root

4 in in ADV 3 advmod

5 . . PUNCT 3 punct

In the third step, the main and subordinate clauses must
be connected to build a coherent sentence. For instance:
If a subordinate clause is inserted in the middle of a main
clause, the relationship of a word at the beginning of the
main clause must be ”extended” to a word at the end of the
main clause, i.e. offset must be added to the head element
which is as large as the number of words in the subordinate
clause. That is, in a first sub-step, we store for each word
which other word it referred to before the segmentation.
Then, all IDs are numbered as in the original parse (in our
example from 1 to 11). Question marks as values of the
IDs of commas (see the example above) are overwritten
and correctly set. As a result, all IDs are determined, but
the dependencies do not necessarily match anymore. For
example, the word “can” (ID: 2) is originally linked to
“move” (ID: 3). After the IDs are renumbered from 1-11,
the head of “can” has still the ID 3, but this ID now refers
to “house”. Therefore, we store for each word in Step 2
to which other word it referred within its segment before
the link. The IDs are then adjusted to the new values. In
our example, “can” is linked to “move” again, which now
has ID 9, so that we have to add the offset 6 to get the
correct head ID (3 + 6 = 9). Finally, we get a sentence

5Here we have chosen a condensed format, which just shows
ID, FORM, LEMMA, UPOS (universal PoS tag), HEAD and
DEPREL (dependency relation). The CoNLL-U format also
knows XPOS (language specific PoS tag), FEATS (morphologi-
cal features), DEPS (enhanced dependencies) and MISC (miscel-
laneous), which we do not use and which also does not get mea-
sured by LAS. See https://universaldependencies.org/format.html.

https://universaldependencies.org/format.html


5286

with linked (main and subordinate) clauses, which is ready
for evaluation:

ID FORM LEMMA UPOS HEAD DEPREL

11 After after SCONJ 5 mark

12 the the DET 3 det

13 house house NOUN 5 nsubj:pass

14 is is AUX 5 aux:pass

15 renewed renew VERB 9 advcl

16 , , PUNCT 9 punct

17 I I PRON 9 nsubj

18 can can AUX 9 aux

19 move move VERB 0 root

10 in in ADV 9 advmod

11 . . PUNCT 9 punct

For some words, however, there are different strategies for
how to link them with the rest of the sentence, which will
be presented below.

5.2. Strategies for dealing with root elements
The final result must contain only one root element. For
sentences with segments of different hierarchy levels, how-
ever, the segments are parsed individually, resulting in mul-
tiple root elements. The root element of the segment with
the highest hierarchy level is always selected as the “main”
root element. The other root elements must lose their root
status and must be changed. Two different strategies have
been developed for this purpose:

1. SubRootsLikeOrgParseIfPossible: The root elements
of the subordinate clauses are linked to the entire
clause as in the original parse, that is, in the parse
before the segmentation, wherever possible. In some
cases this leads to loops, that is, mutual or circular re-
lations over 3 or more words that are not allowed. In
these cases, the following strategy is chosen:

2. SubRootToUpperRoot: The head of a child root ele-
ment is set to the root element of the parent segment.
This strategy is guaranteed loop-free, but performed
-3.02% worse than the first strategy.

5.3. Strategies for dealing with commas
Before the sentences are parsed, the commas are removed
and when the segments are rejoined, they are inserted back
into the sentence and structurally integrated. There are two
strategies for this integration:

1. AllCommaToMainRoot: An analysis of randomly se-
lected sentences showed that commas usually refer to
the root element of the sentence. In the evaluation, this
strategy achieved the best result.

2. AllCommaLikeOrgParse: This strategy is similar to
the AllCommaToMainRoot strategy, because also in
the original parse, most commas referred to the root
element of the sentence as head. Nevertheless, this
strategy performs worse (-0.09%).

Category Strategy Result
Root SubRootsLikeOrgParseIfPossible Ref./±0
Elements SubRootToUpperRoot -3.02%

Commas AllCommaToMainRoot Ref./±0
AllCommaLikeOrgParse -0.09%

Relative RelPronLikeOrgParse Ref./±0
Pronouns ChangeNothing -0.11%

Table 3: Results of segment assembling strategies

5.4. Strategies for dealing with relative pronouns
In the case of relative pronouns, a disadvantage of segmen-
tation that can occur in German must be compensated. In
German there are the relative pronouns der, die, das, which
are all translated to the and which are identical in form to
the German article. If a relative sentence is processed sep-
arately, it no longer “knows” that a token like der in the
original sentence was a relative pronoun (though it should
recognize this by examining the word order). The parser
therefore recognizes it in rare cases as an article and not as
a relative pronoun. To deal with this problem, we distin-
guish two strategies:

1. RelPronLikeOrgParse: Words that are relative pro-
nouns in the original sentence are replaced by the val-
ues UPOS, XPOS and FEATS to the values of the orig-
inal sentences. Note that only the above 3 values are
changed, but not HEAD and DEPREL. The word type
is therefore changed, but not the dependencies, since
only the wrong detection of the article is to be avoided,
while the sentence structure remains unchanged.

2. ChangeNothing: Here, the result of the segment-
related parsing is adopted and the risk of incorrect
recognition of a relative pronoun as an article is ac-
cepted, resulting in a deterioration of -0.11% com-
pared with the first strategy.

Table 3 summarizes our evaluation of all strategies de-
scribed so far.

6. Results and Error Analysis
All results of dependency parsing are presented in the fol-
lowing section. According to section 4 we selected the
RNNG parser was preferred over the other two parsers.
Therefore, only results obtained either by manual segmen-
tation (called gold segmentation) or by segmentation using
RNNG are presented.

6.1. Results
The manual segment analysis (gold segmentation) of the
sentences from the CoNLL Shared Task showed that 351
out of 977 sentences have a hierarchical structure, so that
they can be divided into a main and a subordinate clause,
for example. Sentences that hypotactically link main
clauses or consist of a single clause remain unchanged; they
are treated as if they were not segmented.



5287

Content Origi-
nal(%)

Gold
∆in%

RNNG
∆in%

Start
word

Ra-
te?

Das einzige
was nervt ist,
dass man sich
sein Hand-
tuch selbst
mitbringen
muss.

86.67 +06.66 +06.66 dass Yes

“So sicher sind
wir uns heute
nicht mehr”,
sagt Braun.

78.57 +14.29 ±00.00 So No

Zwei Geiseln
seien nach
Angaben der
Entführer
leicht erkrankt,
würden aber
behandelt,
erklärte ein
Behördensprecher

83,33 ±00.00 -22,22 wür-
den

No

Table 4: Parsing results of two sentences (extract).

Table 4 shows two German678 sample sentences which, ac-
cording to the gold segmentation, have a hierarchical struc-
ture and, therefore, if the RNNG-based segmentation de-
tects this hierarchy, can achieve different results as a result
of our segmentation. The first column of Table 4 shows the
sentences and the second column the original parsing re-
sult (LAS; without segmentation). The third column shows
the result (delta compared to the original parsing result) ob-
tained using the gold segmentation and the fourth column
the result obtained using the RNNG-segmentation. The
fifth column shows the start word of the subordinate clause.
Now we made the following observation: If a sentence has
a simple structure (e.g. consisting of a main and a subordi-
nate clause) and if the start word is “der” (the), “die” (the),
“das” (the), “dass” (that) or “weil” (because), the sentence
belongs to a small group of sentences for which significant
improvements in dependency parsing can be achieved by
using the RNNG-segmenter. For these sentences, the last
column “Rate?” in Table 4 is set to “Yes” and they are con-
sidered separately below. Gold segmentation could also im-
prove sentences with other segment starts, but RNNG seg-
mentation could on average only improve sentences with
the latter start words because they are often included in
training data and can therefore be learned well.
To compute an overall evaluation, we processed all sen-

6English translation of the 1st sentence: The only thing that
sucks is that you have to bring your own towel.

7English translation of the 2nd sentence: “We are not that sure
of ourselves today,” says Braun.

8English translation of the 3rd sentence: According to the kid-
nappers, two hostages were slightly ill, but were being treated, a
spokesperson for the authorities explained.
Due to the more complex sentences structure, this is an example
of a sentence, where the segmentation approach fails.

Parsing Ø LAS change with regard to ...
method processed considered

sentences (359) sentences (69)
Original 79.02% (reference) 80.57% (reference)
Gold +0.95% +2.26%
RNNG -2.63% +0.94%

Table 5: Average parsing results: original versus gold seg-
mentation and RNNG-segmentation.

tences according to the form of Table 4. Table 5 summa-
rizes our findings: the original parsing results (without seg-
mentation) are displayed in the first line – it is used as a
reference. This relates to 359 sentences9 (i.e. all sentences
which have a hierarchical structure) and the 69 special sen-
tences for which the last column in Table 4 is set to “Yes”.
The third row in table 5 shows the parser results for gold
segmentation, that is, the theoretically achievable best val-
ues in the event that the RNNG parser achieved an F1-
score of 100.00%. As shown in Table 2, however, it only
reaches an F1-score of 87.16%. The parser results obtained
by means of the RNNG-segmentation are displayed in the
last row. The value of +0.94% is particularly noteworthy,
as actual improvements were achieved for the correspond-
ing sentence class, whose members can be determined au-
tomatically. Therefore, we created a simple rule based pre-
dictor tool, which selects our desired group of sentences
(here: sentence is separated by exactly one or two com-
mas and the subordinate clauses starts with ‘der”, “die”,
“das”, “dass” or “weil”). We do not adjust our tool to this
specific group of sentences (which could cause a risk of
overfitting), instead, we predict (rule-based), which have a
chance of improving and will therefore be segmented by
RNNG before they get dependency-parsed. All other sen-
tences should be dependency-parsed without segmenting
them before, as they will probably worsen the result.

6.2. Error Analysis
The effect of sentence structure depth on parsing accuracy
is shown in Figure 1. This depth also affects dependency
parsing, that is, not only the segmenter but also the Turku
parser has problems parsing deeply nested sentences. This
dependency is illustrated in Figure 6. There is a second de-
pendency between the original parsing results and the ones
obtained by means of the gold and RNNG-segmentation,
respectively, which is shown in Figure 7. On average, im-
provements by means of gold or RNNG-segmentations can
only be achieved if the original result is below 80% (but
since this is a mean value, there are counterexamples). If
the original result is above 80%, it is rather difficult to im-
prove the result further. This connection is obvious. If
the original result is already good, it is more difficult to
improve it – on the contrary, it is usually not changed or
worsened, as the right side of the diagram shows. In sum-
mary, particularly complex sentences and sentences where

9The number 359 is composed of 351 sentences that have
a hierarchical structure after gold segmentation and 8 sentences
in which RNNG erroneously recognizes a hierarchical structure
(false positives).



5288

1 2 3

72

74

76

78

80

82

Sentence structure depth

L
A

S
(O

ri
gi

na
l/G

ol
d/

R
N

N
G

)i
n

%

Original (without segmentation)
Gold-segmentation

RNNG-segmentation

Figure 6: Parsing results (original, gold segmentation and
RNNG-segmentation) (LAS) as a function of sentence
depth.

10+ 20+ 30+ 40+ 50+ 60+ 70+ 80+ 90+ 100

−40

−20

0

Original result (LAS) without segmentation in %

C
ha

ng
es

(G
ol

d/
R

N
N

G
)i

n
%

Changes (Gold-segmentation)
Changes (RNNG-segmentation)

Figure 7: Changes induced by gold and RNNG-
segmentation as a function of the original parsing result
(LAS).

the original result is already good or very good are difficult
to improve by segmentation. However, if the original pars-
ing is worse and the sentence structure is simpler, then we
find worthwhile candidates whose parsing can be improved
by our approach.

7. Conclusion
We presented a segmenter for detecting sentence structures
whose preprocessing can in certain cases help to improve
dependency parsing. The segmenter was chosen in an

experiment in which we retrained parsers of constituency
structure by means of gold standard data that was created
for detecting sentence structures on the level of clauses
and related segments (i.e. sentence-related logical docu-
ment structure). We selected the RNNG-based segmenter
because it performed best and tested it as a preprocessor
for dependency parsing based on the TurkuNLP parser.
Though the segmentation-based preprocessing did not gen-
erally help to improve dependency parsing, we neverthe-
less identified a subclass of sentences for which it did. In
this result, we recognize a potential for improving down-
stream tasks with the help of our segmentation approach.
In addition, our segmenter recognizes much more complex
structures than classic sentence boundary detectors. This
concerns context-free structures of sentence segments that
are overlooked by linearly operating detectors. Here, too,
we see a potential for future work when it comes to de-
termining the complexity of sentences more precisely than
before. In future work we plan exactly this, the analysis of
the sentence structure using the example of a large corpus
of literature.

8. Open Source
The code of this paper and partly also
the data is available on GitHub under
https://github.com/texttechnologylab/LDS. Also, our
web interface which implements the three different
sentence segmenters is online via the TextImager
https://textimager.hucompute.org/LDS/ (Hemati et al.,
2016).

9. Bibliographical References
Agarwal, N., Ford, K. H., and Shneider, M. (2005). Sen-

tence boundary detection using a maxent classifier. In
Proceedings of MISC, pages 1–6.

Azzi, A. A., Bouamor, H., and Ferradans, S. (2019). The
finsbd-2019 shared task: Sentence boundary detection in
pdf noisy text in the financial domain. In Proceedings of
the First Workshop on Financial Technology and Natural
Language Processing, pages 74–80.

Chen, D. and Manning, C. D. (2014). A fast and accu-
rate dependency parser using neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, Octo-
ber 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 740–750.

Choi, F. Y. Y. (2000). Advances in domain indepen-
dent linear text segmentation. In 6th Applied Natural
Language Processing Conference, ANLP 2000, Seattle,
Washington, USA, April 29 - May 4, 2000, pages 26–33.

Du, J., Huang, Y., and Moilanen, K. (2019). AIG Invest-
ments.AI at the FinSBD task: Sentence boundary detec-
tion through sequence labelling and BERT fine-tuning.
In Proceedings of the First Workshop on Financial Tech-
nology and Natural Language Processing, pages 81–87,
Macao, China.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith,
N. A. (2016a). Recurrent neural network grammars. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computational

https://github.com/texttechnologylab/LDS
https://textimager.hucompute.org/LDS/


5289

Linguistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 199–209.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith,
N. A. (2016b). Recurrent neural network grammars. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 199–209.

González-Gallardo, C. and Torres-Moreno, J. (2018). Sen-
tence boundary detection for french with subword-level
information vectors and convolutional neural networks.
CoRR, abs/1802.04559.

González-Gallardo, C., Pontes, E. L., Sadat, F., and Torres-
Moreno, J. (2018). Automated sentence boundary de-
tection in modern standard arabic transcripts using deep
neural networks. In Fourth International Conference
On Arabic Computational Linguistics, ACLING 2018,
November 17-19, 2018, Dubai, United Arab Emirates,
pages 339–346.

Hemati, W., Uslu, T., and Mehler, A. (2016). TextImager:
a distributed UIMA-based system for NLP. In Proc. of
COLING 2016: System Demonstrations, pages 59–63.

Jurish, B. and Würzner, K. (2013). Word and sentence tok-
enization with hidden markov models. JLCL, 28(2):61–
83.

Kanerva, J., Ginter, F., Miekka, N., Leino, A., and
Salakoski, T. (2018). Turku neural parser pipeline: An
end-to-end system for the conll 2018 shared task. In Pro-
ceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, Brus-
sels, Belgium, October 31 - November 1, 2018, pages
133–142.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and
accurate dependency parsing using bidirectional LSTM
feature representations. TACL, 4:313–327.

Kiss, T. and Strunk, J. (2006). Unsupervised multilingual
sentence boundary detection. Computational Linguis-
tics, 32(4):485–525.

Klein, D. and Manning, C. D. (2002). Fast exact infer-
ence with a factored model for natural language parsing.
In Advances in Neural Information Processing Systems
15 [Neural Information Processing Systems, NIPS 2002,
December 9-14, 2002, Vancouver, British Columbia,
Canada], pages 3–10.

Klein, D. and Manning, C. D. (2003). Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meeting
of the Association for Computational Linguistics, 7-12
July 2003, Sapporo Convention Center, Sapporo, Japan.,
pages 423–430.

Liu, Y., Stolcke, A., Shriberg, E., and Harper, M. P. (2005).
Using conditional random fields for sentence boundary
detection in speech. In ACL 2005, 43rd Annual Meeting
of the Association for Computational Linguistics, Pro-
ceedings of the Conference, 25-30 June 2005, University
of Michigan, USA, pages 451–458.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of en-
glish: The penn treebank. Computational Linguistics,
19(2):313–330.

Mehler, A., Geibel, P., and Pustylnikov, O. (2007). Struc-
tural classifiers of text types: Towards a novel model
of text representation. Journal for Language Technology
and Computational Linguistics (JLCL), 22(2):51–66.

Nguyen, D. Q. and Verspoor, K. (2018). An improved neu-
ral network model for joint POS tagging and dependency
parsing. In Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal Depen-
dencies, Brussels, Belgium, October 31 - November 1,
2018, pages 81–91.

Oba, T., Hori, T., and Nakamura, A. (2006). Sentence
boundary detection using sequential dependency anal-
ysis combined with crf-based chunking. In INTER-
SPEECH 2006 - ICSLP, Ninth International Conference
on Spoken Language Processing, Pittsburgh, PA, USA,
September 17-21, 2006.

Power, R., Scott, D., and Bouayad-Agha, N. (2003). Doc-
ument structure. Computational Linguistics, 29(2):211–
260.

Reynar, J. C. and Ratnaparkhi, A. (1997). A maximum
entropy approach to identifying sentence boundaries. In
5th Applied Natural Language Processing Conference,
ANLP 1997, Marriott Hotel, Washington, USA, March
31 - April 3, 1997, pages 16–19.

Schweter, S. and Ahmed, S. (2019). Deep-eos: General-
purpose neural networks for sentence boundary detec-
tion. In Proceedings of the 15th Conference on Natural
Language Processing, KONVENS 2019, Erlangen, Ger-
many, October 9-11, 2019.

Sekine, S. and Collins, M. (1997).
Evalb bracket scoring program.
http://www.cs.nyu.edu/cs/projects/proteus/evalb.

Straka, M., Hajic, J., and Straková, J. (2016). Ud-
pipe: Trainable pipeline for processing conll-u files per-
forming tokenization, morphological analysis, POS tag-
ging and parsing. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalua-
tion LREC 2016, Portorož, Slovenia, May 23-28, 2016.

Strunk, J., Jr., C. N. S., and Kaestner, C. A. A. (2006). A
comparative evaluation of a new unsupervised sentence
boundary detection approach on documents in english
and portuguese. In Computational Linguistics and In-
telligent Text Processing, 7th International Conference,
CICLing 2006, Mexico City, Mexico, February 19-25,
2006, Proceedings, pages 132–143.

Treviso, M. V., Shulby, C., and Aluı́sio, S. M. (2017).
Sentence segmentation in narrative transcripts from neu-
ropsychological tests using recurrent convolutional neu-
ral networks. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computa-
tional Linguistics, EACL 2017, Valencia, Spain, April 3-
7, 2017, Volume 1: Long Papers, pages 315–325.

Vogel, F. and Fischer, P. (2019). Practical course report
of the practical course textimaging at goethe university
frankfurt, institute for informatics. unpublished.

Wang, H. and Huang, Y. (2003). Bondec–a sentence
boundary detector. CS224N Project, Stanford.

Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E., and Li,
H. (2014). A deep neural network approach for sen-



5290

tence boundary detection in broadcast news. In INTER-
SPEECH 2014, 15th Annual Conference of the Interna-
tional Speech Communication Association, Singapore,
September 14-18, 2014, pages 2887–2891.

Daniel Zeman et al., editors. (2018). Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, Brussels, Belgium,
October 31 - November 1, 2018. Association for Com-
putational Linguistics.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., and Zhu, J.
(2013). Fast and accurate shift-reduce constituent pars-
ing. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, ACL 2013, 4-
9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers,
pages 434–443.


	Introduction
	Related Work
	Training Data
	Re-Training constituency parsers
	Error analysis
	Differentiating authors through segment analysis

	Dependency Parsing with prior Segmentation
	General Procedure
	Strategies for dealing with root elements
	Strategies for dealing with commas
	Strategies for dealing with relative pronouns

	Results and Error Analysis
	Results
	Error Analysis

	Conclusion
	Open Source
	Bibliographical References

