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Abstract
We propose a simple yet accurate method for dependency parsing that treats parsing as tagging (PaT). That is, our approach addresses the
parsing of dependency trees with a sequence model implemented with a bidirectional LSTM over BERT embeddings, where the “tag”
to be predicted at each token position is the relative position of the corresponding head. For example, for the sentence John eats cake,
the tag to be predicted for the token cake is -1 because its head (eats) occurs one token to the left. Despite its simplicity, our approach
performs well. For example, our approach outperforms the state-of-the-art method of (Fernández-González and Gómez-Rodrı́guez,
2019) on Universal Dependencies (UD) by 1.76% unlabeled attachment score (UAS) for English, 1.98% UAS for French, and 1.16%
UAS for German. On average, on 15 UD languages, our method with minimal tuning performs comparably with this state-of-the-art
approach, being only 0.16% UAS, and 0.82% LAS behind.

Keywords: dependency parsing, sequence methods

1. Introduction
There exists a trend in syntactic dependency parsing to-
wards simpler and simpler approaches. For example, early
dependency parsing algorithms had a runtime complex-
ity of O(n3) (Eisner, 1996). These were followed by
maximum spanning tree algorithms with a complexity of
O(n2) (McDonald et al., 2005), and shift-reduce methods,
which are linear in sentence length (O(n)) (Nivre, 2003).
This quest for simplicity continued with the recent works
of Ma et al. (2018) and Fernández-González and Gómez-
Rodrı́guez (2019), which replaced the shift-reduce algo-
rithm with pointer networks, which are also linear but are
arguably simpler than the shift-reduce algorithm.
This evolutionary trend begs the question: can we simplify
dependency parsing further, without losing considerable
performance? This paper indicates that the answer is yes.
We propose an extremely simple method for dependency
parsing that treats parsing as tagging (PaT). That is, our
approach addresses the parsing of dependency trees with a
sequence model, where the “tag” to be predicted at each
token position is the relative position of the corresponding
head. For example, for the sentence John eats cake, the tag
to be predicted for the token cake is -1 because its head
(eats) occurs one token to the left.1

The contributions of this work are:

(1) We propose a simple approach for dependency parsing
that operates in three stages, which are all widely used in
other natural language processing (NLP) approaches. First,
we encode the input tokens using a combination of ran-
domly initialized word embeddings, contextualized embed-
dings (Devlin et al., 2018), character-level embeddings gen-
erated using a convolutional neural network (CNN), and
part-of-speech (POS) embeddings. Second, these represen-
tations are fed into a BiLSTM. Finally, using the BiLSTM’s

1Using the same approach, we also predict the label of the
corresponding dependency, e.g., dobj in this example.

hidden states, we predict the relative position of the head for
each token in the sentence and the label of the correspond-
ing dependency.

(2) Despite its simplicity, we show that our approach
performs well. For example, our approach outperforms
the state-of-the-art method of Fernández-González and
Gómez-Rodrı́guez (2019) on Universal Dependencies (UD)
by 1.76% unlabeled attachment score (UAS) and 1.26%
labeled attachment score (LAS) for English, 1.98% UAS
and 1.65% LAS for French, and 1.16% UAS and 0.45%
LAS for German. On average, on 15 UD languages, our
method performs near this state-of-the-art approach, being
only 0.16% UAS and 0.82% LAS below.

(3) An ablation analysis indicates that the BERT contextu-
alized embeddings and the word-level BiLSTM have con-
siderable contributions to performance, confirming earlier
work that indicated the importance of contextualized em-
beddings for many NLP tasks (Devlin et al., 2018), and that
LSTMs capture grammatical structure (Linzen et al., 2016;
Kuncoro et al., 2018). As removing either of these compo-
nents impacts performance negatively, this suggests that we
are approaching the limits of simplicity for this task.

2. Related Work
Early algorithms for automatic dependency parsing such
as the dynamic programming approach proposed by Eis-
ner (1996) had a complexity of O(n3). Currently, the two
primary approaches, i.e., the graph-based maximum span-
ning tree approach proposed by McDonald et al. (2005)
and the transition based approach formalized by Nivre
(2003), have complexities of O(n2) and O(n), respectively.
Many variants of these lower-complexity transition-based
approaches have been proposed. Yamada and Matsumoto
(2003) trained a support vector machine to direct a shift-
reduce parser. Chen and Manning (2014) encode features
as embeddings and feed them to a multi-layer perceptron.
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Kiperwasser and Goldberg (2016) use a BiLSTM to learn
feature representations, and use these to encode the parser
state. Xipeng (2009) proposed a simpler method, where
the dependency parsing task is transformed into a sequence
labeling problem using conditional random fields. More
recently, Ma et al. (2018) proposed a stack-pointer net-
work, which uses information from the sentence as a whole.
Fernández-González and Gómez-Rodrı́guez (2019) intro-
duced a left-to-right parsing approach with a pointer net-
work, reducing the number of transitions required by Ma
et al. (2018) from 2n − 1 to n. Our approach continues
this simplification trend with a method that reduces parsing
to a simple sequence modeling task, similar with the ap-
proaches of (Strzyz et al., 2019) and (Li et al., 2018), albeit
with a much simpler architecture and better overall perfor-
mance. Li et al. (2018) propose an encoder-decoder archi-
tecture with an attention layer; Strzyz et al. (2019) propose
an encoder-decoder architecture with a more complex en-
coding scheme. We propose a much simpler architecture,
consisting of only a BiLSTM operating on top of contex-
tualized embeddings. Similar to our direction, Hewitt and
Manning (2019) showed that syntax trees are embedded in a
linear transformation of the BERT and ELMo embeddings.
However, they did not consider labels and the evaluation
was done only on undirected unlabeled attachment score
(UUAS) after generating a minimum spanning tree on the
predicted distance graph.
In the pool of exciting methods that simplify the parsing
task, our approach is closer in spirit to the approach of
Zhang et al. (2017) for dependency parsing, and Marcheg-
giani et al. (2017) for semantic role labeling. Both these
works also encode the tokens in a sentence using an LSTM.
However, they operate over pairs of words to predict a
syntactic dependency between a modifier and head (Zhang
et al., 2017), or a token’s semantic role given a predi-
cate (Marcheggiani et al., 2017). Further, (Marcheggiani
et al., 2017) separately encode the sentence with an LSTM
for each predicate. Our approach is simpler and faster, i.e.,
we encode the sentence just once with the LSTM, and we
predict the relative position of head words rather than rely-
ing on all possible pairs of words.

3. PaT: Parsing as Tagging
Our approach casts the task of dependency parsing to one of
sequence tagging. Since in the dependency tree formalism,
each token has a single head, which may be another token
in the sentence or ROOT, we can naturally map the pars-
ing task into a tagging problem. That is, the “tag” of each
token becomes the relative position of its head (relpos),
computed as follows:

relpos =

{
0, if head is ROOT
head− id, otherwise

(1)

where id is the absolute position of the current token (start-
ing at 1) (Buchholz and Marsi, 2006), and head is the ab-
solute position of the corresponding head word.
As an example, consider the sentence in Figure 1. The rel-
ative position of the head of cake is −1 because its head
(eats) is one word to the left. A relative position of 0 indi-
cates that the token is headed by the ROOT. To predict the

dependency parse, our architecture straightforwardly en-
codes the sentence, and for each token predicts these rel-
ative positions, as well as the label of the directed edge be-
tween them.
Because we framed this task as tagging, we need to con-
strain prediction to a finite number of possible relative po-
sitions. We empirically chose a range of (−50, 50), which
accounts for 99.9% of the English dependencies in the Uni-
versal Dependencies training dataset. We use the same
range for all languages.

3.1. Token Representations
Given an input sentence s, consisting of n tokens t1, . . . , tn,
we represent each token ti by a vector ei, which is the con-
catenation of (a) the pretrained BERT representation2 (De-
vlin et al., 2018) of the token; (b) the word embedding (we)
for the token; (c) the character CNN encoding (ce) of the
token; and (d) its part-of-speech (POS) embedding (pos):

ei =
[
t
(bert)
i · t(we)

i · t(ce)i · t(pos)i

]
(2)

For the character-level encoding, we use a character CNN
with max pooling, which has been shown to be useful by
Lample et al. (2016). We learned the embeddings for
part-of-speech tags and words, which were initialized us-
ing Xavier initialization (Glorot and Bengio, 2010).

3.2. Architecture
Our proposed architecture, as shown in Figure 1, consists of
a BiLSTM (Hochreiter and Schmidhuber, 1997) that oper-
ates over our token representations ei, producing the corre-
sponding hidden state hi. For each token ti we use hi in two
ways: to predict the relative position of the head, and to pre-
dict the label of the corresponding dependency relation. For
the relative position, we pass hi into a multi-layer percep-
tron (MLP), followed by a linear layer and a softmax to get
a distribution over the possible relative positions. For the
corresponding dependency label, we concatenate the MLP
outputs corresponding to ti and its predicted head theadi and
pass them to another linear layer and softmax to produce a
distribution over the dependency labels.
The objective function of the model is calculated by the
cross entropy (Nasr et al., 2002) between predicted and ob-
served values of both the dependency labels and relative
positions.

3.3. Cycle Detection
Note that there is nothing in the above architecture that pre-
vents our approach from generating cycles. To control for
this, we explore three post-processing options for handling
cycles:

(1) No cycle removal, leaving the output of the model un-
changed.

(2) Greedy cycle removal, where we globally sort the pre-
dicted dependencies based on weight. Then, we incremen-
tally add to the output tree the dependency with the highest

2We used pre-trained “BERT-Base Uncased” model for en-
glish and “BERT-Base Multilingual Cased (new)” model for other
languages. We do not fine-tune.
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Figure 1: PaT architecture: we feed a concatenation of several representations (Section 3.1.) to a BiLSTM and then a multilayer
perceptron (MLP). The MLP output is passed through a linear layer to predict the relative positions. Once a head has been selected, we
concatenate the MLP output for the dependent and the predicted head, and pass it to another linear layer to predict the corresponding
dependency label.

probability which does not add a cycle, until all tokens are
covered.

(3) Optimal cycle removal, which finds a maximum
spanning tree (MST) using the Chu-Liu-Edmonds algo-
rithm (Edmonds, 1967).

4. Experiments and Results
We used the same datasets as Fernández-González and
Gómez-Rodrı́guez (2019) and Ma et al. (2018). We tested
our model on the Stanford Dependencies (de Marneffe and
Manning, 2008) (SD) conversion of the Penn Treebank
(Marcus et al., 1993) and on 15 languages from the Uni-
versal Dependencies (UD) Treebank. For SD we used the
standard splits and the predicted part-of-speech tags. For
UD we used the same set up as Fernández-González and
Gómez-Rodrı́guez (2019),3 with the addition of Arabic, Es-
tonian, and Japanese.
Table 1 lists the unlabeled (UAS) and labeled (LAS) accu-
racies of our model (averaged over 3 runs) for 15 languages
from the UD Treebank, compared against the state-of-the-
art method of Fernández-González and Gómez-Rodrı́guez
(2019). The hyper parameters were tuned on English UD,

3In particular, we also used version 2.2 of UD, to facilitate
comparison with previous work.

by exploring 100 configurations. The same hyper parame-
ters were used for all languages in this table.
In Table 2 we show the performance of our method after
tuning the hyper parameters for each language. For each
language, we selected the best performing model from a set
of 15 configurations. The same search space was used for
all languages.
In our experiments, we used early stopping to halt training
if there is no improvement for 3 epochs. In some instances,
the training stops too early, resulting in a bigger standard
deviation in some cases (e.g., Italian), or sub-optimal per-
formance in others. For future experiments, we recommend
either to use a warm-up phase of 10–15 epochs, or to in-
crease the early stopping threshold to 5.
Despite the simple architecture, the two tables show that
PaT outperforms the method of Fernández-González et al.
on six languages for UAS, and on four for LAS; on average,
on the 15 languages, its performance is 0.16% UAS and
0.82% LAS behind this state-of-the-art parser.
Even though PaT does not enforce the production of acyclic
structures, relatively few parse trees produced by PaT con-
tain cycles: between 0.47% for Japanese and 17.20% for
Arabic, for an average of 5.11% ± 1.11. Further, we ob-
serve that the simple, greedy cycle removal performs simi-
larly to the optimal MST algorithm, which is probably due
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Language
Fernández-González

et al.
This work

% of
sentences

with
cycles

Without cycle
removal

With greedy
cycle removal

With optimal
cycle removal

UAS LAS UAS LAS UAS LAS UAS LAS

ar 87.93 ± 0.02 83.47 ± 0.03 17.64 ± 2.47 84.45 ± 0.21 78.94 ± 0.3 84.38 ± 0.26 78.84 ± 0.32 84.36 ± 0.28 78.75 ± 0.36

bu 94.42 ± 0.02 90.70 ± 0.04 3.05 ± 1.42 94.23 ± 0.17 89.77 ± 0.27 94.28 ± 0.14 89.74 ± 0.26 94.29 ± 0.17 89.71 ± 0.27

ca 94.07 ± 0.06 92.26 ± 0.05 6.41 ± 0.50 93.80 ± 0.03 91.43 ± 0.31 93.80 ± 0.05 91.40 ± 0.32 93.80 ± 0.05 91.36 ± 0.34

cs 94.19 ± 0.04 91.45 ± 0.05 2.85 ± 0.87 93.77 ± 0.09 90.14 ± 0.15 93.77 ± 0.09 90.10 ± 0.16 93.78 ± 0.08 90.07 ± 0.16

de 87.28 ± 0.07 82.99 ± 0.07 5.73 ± 1.68 88.37 ± 0.30 83.44 ± 0.44 88.44 ± 0.26 83.41 ± 0.41 88.43 ± 0.29 83.35 ± 0.42

en 90.93 ± 0.11 88.99 ± 0.11 2.88 ± 1.16 92.64 ± 0.09 90.25 ± 0.25 92.69 ± 0.05 90.21 ± 0.26 92.68 ± 0.06 90.15 ± 0.26

es 93.23 ± 0.03 91.28 ± 0.02 7.61 ± 1.09 93.33 ± 0.15 90.89 ± 0.19 93.35 ± 0.13 90.85 ± 0.18 93.35 ± 0.13 90.83 ± 0.17

et 87.72 ± 0.07 84.98 ± 0.12 5.02 ± 0.50 87.12 ± 0.14 83.48 ± 0.3 87.17 ± 0.14 83.45 ± 0.31 87.16 ± 0.14 83.39 ± 0.32

fr 90.97 ± 0.09 88.22 ± 0.12 5.20 ± 0.49 92.92 ± 0.35 89.87 ± 0.24 92.91 ± 0.34 89.84 ± 0.25 92.95 ± 0.29 89.80 ± 0.25

it 94.28 ± 0.06 92.48 ± 0.02 3.80 ± 2.28 94.25 ± 0.81 91.93 ± 0.99 94.29 ± 0.76 91.93 ± 0.98 94.26 ± 0.78 91.90 ± 1.01

ja 94.03 ± 0.05 91.54 ± 0.04 0.47 ± 0.1 94.25 ± 0.27 92.09 ± 0.35 94.26 ± 0.28 92.09 ± 0.36 94.26 ± 0.28 92.09 ± 0.36

nl 93.23 ± 0.09 90.74 ± 0.08 3.66 ± 0.35 92.87 ± 0.13 89.51 ± 0.20 92.93 ± 0.16 89.49 ± 0.20 92.92 ± 0.18 89.46 ± 0.20

no 95.23 ± 0.06 93.99 ± 0.07 1.81 ± 0.42 94.65 ± 0.12 92.88 ± 0.19 94.66 ± 0.13 92.86 ± 0.20 94.66 ± 0.13 92.84 ± 0.19

ro 91.58 ± 0.08 86.00 ± 0.07 7.22 ± 2.59 90.24 ± 0.23 83.45 ± 0.36 90.28 ± 0.18 83.40 ± 0.32 90.25 ± 0.25 83.34 ± 0.37

ru 94.71 ± 0.07 93.38 ± 0.09 3.27 ± 0.70 93.91 ± 0.06 91.98 ± 0.12 93.93 ± 0.07 91.95 ± 0.12 93.92 ± 0.07 91.91 ± 0.12

Table 1: Accuracy comparison between PaT and the best performing models of Fernández-González et al. on the test partitions of
15 languages from the Universal Dependencies Treebank. The bold font indicates the best performing model on each language. PaT’s
reported results are the average and the standard deviation (stdev) over three runs. The same parameters, tuned for English, were used
for all languages.

Language
Fernández-González

et al.
This work

% of
sentences

with
cycles

Without cycle
removal

With greedy
cycle removal

With optimal
cycle removal

UAS LAS UAS LAS UAS LAS UAS LAS

ar 87.93 ± 0.02 83.47 ± 0.03 17.20 ± 2.55 84.75 ± 0.21 78.96 ± 0.28 84.74 ± 0.24 78.9 ± 0.32 84.72 ± 0.25 78.85 ± 0.34

bu 94.42 ± 0.02 90.70 ± 0.04 2.21 ± 0.33 94.04 ± 0.33 89.56 ± 0.21 94.07 ± 0.30 89.56 ± 0.20 94.06 ± 0.30 89.50 ± 0.23

ca 94.07 ± 0.06 92.26 ± 0.05 5.77 ± 0.54 93.74 ± 0.17 91.56 ± 0.20 93.77 ± 0.20 91.55 ± 0.20 93.76 ± 0.20 91.51 ± 0.21

cs 94.19 ± 0.04 91.45 ± 0.05 2.85 ± 0.87 93.77 ± 0.09 90.14 ± 0.15 93.77 ± 0.09 90.10 ± 0.16 93.78 ± 0.08 90.07 ± 0.16

de 87.28 ± 0.07 82.99 ± 0.07 4.29 ± 0.89 88.70 ± 0.05 83.80 ± 0.15 88.78 ± 0.07 83.80 ± 0.15 88.78 ± 0.06 83.75 ± 0.15

en 90.93 ± 0.11 88.99 ± 0.11 2.88 ± 1.16 92.64 ± 0.09 90.25 ± 0.25 92.69 ± 0.05 90.21 ± 0.26 92.68 ± 0.06 90.15 ± 0.26

es 93.23 ± 0.03 91.28 ± 0.02 7.84 ± 1.48 93.22 ± 0.14 90.80 ± 0.16 93.26 ± 0.12 90.78 ± 0.16 93.24 ± 0.13 90.75 ± 0.17

et 87.72 ± 0.07 84.98 ± 0.12 5.02 ± 0.50 87.12 ± 0.14 83.48 ± 0.3 87.17 ± 0.14 83.45 ± 0.31 87.16 ± 0.14 83.39 ± 0.32

fr 90.97 ± 0.09 88.22 ± 0.12 5.20 ± 0.49 92.92 ± 0.35 89.87 ± 0.24 92.91 ± 0.34 89.84 ± 0.25 92.95 ± 0.29 89.80 ± 0.25

it 94.28 ± 0.06 92.48 ± 0.02 3.17 ± 1.18 94.52 ± 0.52 92.31 ± 0.64 94.52 ± 0.53 92.31 ± 0.63 94.50 ± 0.50 92.27 ± 0.62

ja 94.03 ± 0.05 91.54 ± 0.04 0.48 ± 0.83 94.35 ± 0.1 92.35 ± 0.06 94.35 ± 0.11 92.35 ± 0.07 94.36 ± 0.08 92.35 ± 0.06

nl 93.23 ± 0.09 90.74 ± 0.08 4.46 ± 1.02 92.81 ± 0.15 89.51 ± 0.21 92.88 ± 0.14 89.49 ± 0.18 92.87 ± 0.15 89.46 ± 0.18

no 95.23 ± 0.06 93.99 ± 0.07 1.87 ± 0.52 94.65 ± 0.05 92.95 ± 0.08 94.67 ± 0.06 92.93 ± 0.10 94.66 ± 0.05 92.91 ± 0.09

ro 91.58 ± 0.08 86.00 ± 0.07 5.94 ± 0.52 90.64 ± 0.07 83.71 ± 0.07 90.71 ± 0.05 83.70 ± 0.07 90.72 ± 0.05 83.67 ± 0.07

ru 94.71 ± 0.07 93.38 ± 0.09 2.32 ± 0.77 94.12 ± 0.11 92.22 ± 0.15 94.13 ± 0.09 92.21 ± 0.15 94.14 ± 0.08 92.18 ± 0.14

Table 2: Accuracy comparison between tuned PaT and the best performing models of Fernández-González et al. on the test partitions
of 15 languages from the Universal Dependencies Treebank. The bold font indicates the best performing model on each language. PaT’s
reported results are the average and the standard deviation (stdev) over three runs. For each language, we select the best performing
configuration from a set of 12 possible configurations.

to the above-mentioned fact that only a small percentage of
sentences yield structures with cycles.
In Table 3, we list unlabeled and labeled accuracies on the
SD test partition, along with the performance of state-of-
the-art approaches and the type of method used by each.
The reported accuracy for our system is the mean and stan-
dard deviation over 5 runs, without cycle removal. As the
table shows, PaT outperforms many more complex meth-
ods. All in all, on SD, PaT outperforms the best approach
by 0.23% LAS, while underperforming the best by less than
0.2% UAS.

Table 4 shows the UAS error rates for English UD based on
distance between the dependent and its head. PaT’s error
rate is small for heads that are within three tokens to their
dependents, the most frequent situation, and increases with
the distance.
Table 5 shows an ablation analysis performed on the En-
glish UD dataset. As shown, eliminating the BiLSTM has
the biggest impact on performance, followed by BERT, and
POS embeddings. This confirms previous observations that
LSTMs capture grammatical structure (Linzen et al., 2016;
Kuncoro et al., 2018), and are the critical ingredient to de-
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Parser UAS LAS Type
Chen and Manning (2014) 91.80 89.60 Tr
Dyer et al. (2015) 93.10 90.90 Tr
Kiperwasser and Goldberg (2016) 93.10 91.00 Tr
Ballesteros et al. (2016) 93.56 91.42 Tr
Strzyz et al. (2019) 93.67 91.72 Tag
Kiperwasser and Goldberg (2016) 93.90 91.90 Tr
Weiss et al. (2015) 93.99 92.05 Tr
Wang and Chang (2016) 94.08 91.82 G
Cheng et al. (2016) 94.10 91.49 G
Li et al. (2018) 94.11 92.08 Tag
Alberti et al. (2015) 94.23 92.36 Tr
Kuncoro et al. (2018) 94.26 92.06 G
Zhang et al. (2017) 94.30 91.95 G
Qi and Manning (2017) 94.30 92.20 Tr
Fernández-González and
Gómez-Rodrı́guez (2018) 94.50 92.40 Tr

Andor et al. (2016) 94.61 92.79 Tr
Dozat and Manning (2016) 95.74 94.08 G
This work (untuned) 95.85 ± 0.20 94.60 ± 0.24 Tag
Ma et al. (2018) 95.87 94.19 Tr
This work (tuned) 95.87 ± 0.05 94.66 ± 0.07 Tag
Fernández-González and
Gómez-Rodrı́guez (2019) 96.04 94.43 Tr

Table 3: PaT performance on Stanford Dependencies, compared
to other methods on the test partition of the Penn Treebank. For
our approach we used the greedy cycle removal strategy, and
we report mean and stdev over 5 runs. Tr, G and Tag indicate
transition-, graph-, and tag-based methods, respectively.

pendency parsing.
In Table 6, we discuss the amount of effort in tuning and
training each language. As expected, the time is highly de-
pendent on the size of the data, taking from 60 seconds per
epoch for Bulgarian to 2100 seconds per epoch for Czech.
For English, we selected the best performing model from a
set of 100 configurations.
We tuned hyper parameters for the other languages by se-
lecting the best performing model from a set of 12 configu-
rations.

Distance between head and modifier
0–3 4–9 10–19 20+

Error rate (%) 4.86 ± 0.18 13.91 ± 0.47 37.85 ± 3.82 74.19 ± 6.89
Total deps 18070 3280 516 124

Table 4: PaT error rates (mean and stdev over 3 runs) for the
English UD data, grouped by the distance between modifier and
head.

UAS LAS
Full model 92.69 ± 0.05 90.25 ± 0.25
– CNN Char Embeddings 92.04 ± 0.21 89.76 ± 0.32
– POS Embeddings 91.42 ± 0.11 87.96 ± 0.11
– BERT 88.59 ± 0.1 86.14 ± 0.1
– BiLSTM 64.28 ± 0.38 62.97 ± 0.4

Table 5: Four different types of ablation tests performed over the
English UD dataset. The reported results represent the mean and
stdev over 3 runs with greedy cycle removal by removing only one
component in each row.

5. Conclusion
We proposed an approach that reframes dependency pars-
ing as a sequence tagging task that relies solely on surface

Language Configurations Average epoch time (s) Data size (MB)
en (UD) 100 120 11
en (SD)

12

250 29
ar (UD) 110 35
bg (UD) 60 9.1
ca (UD) 200 24
cs (UD) 2100 173
de (UD) 120 16
es (UD) 360 46
et (UD) 150 17
fr (UD) 165 19
it (UD) 150 15
ja (UD) 75 7.5
nl (UD) 150 17
no (UD) 240 26
ro (UD) 90 13
ru (UD) 600 67

Table 6: Amount of effort for tuning PaT. For English, we se-
lected the best performing model from a set of 100 configurations.
For every other language, we selected the best performing model
from a space of 15 configurations. The same search space was
used for all the languages. The training time varies from 60s (Bul-
garian) to 2100s (Czech), depending on the data size, on an Nvidia
Tesla P4 GPU.

information. Specifically, for each token in a given sen-
tence, we predict the relative position to that token’s head,
as well as the corresponding dependency label. Our ap-
proach achieves state-of-the-art performance on three Uni-
versal Dependencies languages and strong performance on
nine others. This work suggests that parsing as tagging can
serve as a new, simple, yet strong baseline for dependency
parsing.
For reproducibility, we release the code behind this
work as open source. The software, together with
all hyper parameters used, is available at this URL:
https://github.com/clulab/releases/
tree/master/lrec2020-pat.
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