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Abstract
We present an annotated corpus of English cooking recipe procedures, and describe and evaluate computational methods for learning
these annotations. The corpus consists of 300 recipes written by members of the public, which we have annotated with domain-specific
linguistic and semantic structure. Each recipe is annotated with (1) ‘recipe named entities’ (r-NEs) specific to the recipe domain, and
(2) a flow graph representing in detail the sequencing of steps, and interactions between cooking tools, food ingredients and the products
of intermediate steps. For these two kinds of annotations, inter-annotator agreement ranges from 82.3 to 90.5 F1, indicating that our
annotation scheme is appropriate and consistent. We experiment with producing these annotations automatically. For r-NE tagging we
train a deep neural network NER tool; to compute flow graphs we train a dependency-style parsing procedure which we apply to the
entire sequence of r-NEs in a recipe. In evaluations, our systems achieve 71.1 to 87.5 F1, demonstrating that our annotation scheme is
learnable.
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1. Introduction
Procedural text describes in an objective way how to carry
out some task. Although this kind of text is widespread, it
is found particularly in instruction manuals and cookbooks.
The information in procedural text could be used to sup-
port a wide range of computer-based applications involv-
ing intelligent search, reasoning, and non-textual forms of
human-computer interaction; but first the text would need
to be transformed into a more computationally tractable
representation. At minimum, this representation would rep-
resent domain entities, actions, and relationships between
them.
A flow graph is one kind of computationally tractable rep-
resentation; it contains steps linking actions with entities,
and specifies the obligatory sequencing relationships be-
tween steps. A flow graph abstracts away from differences
in surface linguistic expression that are irrelevant to cor-
rectly performing a procedure. For example, when cooking
a dish, the instructions add diced carrots to the pot and dice
carrots and add to the pot are different textually, but would
correspond to the same flow graph since they involve the
same actions carried out in the same order.
Our research focuses on the cooking domain, and specifi-
cally the procedural part of cooking recipes. Our general
approach and some of our computational techniques are in-
spired by recent research on recipes written in Japanese
(Mori et al., 2014). We extend that work by adapting the
annotation to English, annotating more data, investigating
the consistency of annotation, and improving accuracy of
processing.
In this paper, we describe how we annotated a corpus of
300 English recipes, which were contributed to a recipes
web site by members of the public. We first annotated each

recipe with ‘recipe named entities’ (or r-NEs). These r-NEs
are specific to the recipe domain, and account for cooking
actions, cooking implements (tools), ingredients, interme-
diate products, durations and quantities. The r-NE anno-
tation formed the basis for a second level of annotation: a
flow graph representing in detail the relationships between
the r-NEs (e.g. an action carried out with a certain tool and
food items) and the sequencing of the actions1.
We used the annotated corpus to investigate approaches
for automatic r-NE tagging and flow graph computation.
For r-NE tagging, we train a deep neural network NER
tool, treating the task as a sequence labelling problem. To
derive the flow graph representation, we consider the en-
tire sequence of r-NEs in a recipe as a single input string,
and extract a flow graph using a dependency-style maximal
spanning tree parser. In contrast to standard sentence-by-
sentence parsing, the parser creates flow graph edges that
span different sentences in exactly the same way as within-
sentence edges; this means we do not need any extra pro-
cessing stages such as co-reference resolution. Our evalua-
tion results are very promising.
The rest of the paper is structured as follows. Section 2 sur-
veys approaches to representing procedural text, and cook-
ing recipe text annotation and processing. Section 3 de-
scribes the r-NE tagset, annotation, and an evaluation of au-
tomatic r-NE tagging accuracy. Section 4 describes the flow
graph representation, annotation, the parsing algorithm for
computing a flow graph, and an evaluation of its accuracy.
Section 5 discusses the main findings and proposes direc-
tions for future research.

1The annotated corpus of English recipes is available
at https://sites.google.com/view/yy-lab/
resource/english-recipe-flowgraph
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2. Related Work
There has been much research into representing the seman-
tics of natural language sentences (Banarescu et al., 2013,
inter alia) and developing parsers that output such rep-
resentations (Flanigan et al., 2014, for example). Seman-
tic representations encode the meanings of linguistic units
within a sentence, but do not attempt to capture domain-
specific constraints or real-world context. In some domains
and applications these latter factors may be very impor-
tant. (For example, in cooking, a mixture can sometimes be
beaten and sometimes not, depending on which ingredients
have been added to it). For this reason, approaches to pro-
cessing text describing procedures often do not attempt to
construct general semantic representations, but instead con-
struct more specialised domain- and genre-specific repre-
sentations. For example, Momouchi (1980) proposed rep-
resenting the meaning of procedural text as a flow graph,
and described algorithms to convert text documents to flow
graphs. Hamada et al. (2000) adopted a similar graph rep-
resentation for analysing recipes.
More recent studies have created annotated corpora of
procedural text, in order to build machine learning-
based systems that extract entity and action informa-
tion. In the domain of cooking recipes, such in-
formation has been shown to be useful for the so-
called ‘smart kitchen’ (Hashimoto et al., 2008), cook-
ing robots (Bollini et al., 2013), etc. In one recent
study, Mori et al. (2014) produced flow graph annota-
tions for 266 cooking recipes written in Japanese. That
corpus has been used for testing empirical methods
for natural language understanding (Maeta et al., 2015)
and intelligent search (Yamakata et al., 2013), Similarly,
Jermsurawong and Habash (2014) described a corpus of
ingredient trees for recipes, and evaluated methods for
constructing these automatically. There have been
some attempts at unsupervised processing of recipes
(Kiddon et al., 2015, inter alia) but the outputs are much
less rich than those obtained by supervised methods.
This paper concerns a flow graph corpus for recipes
in English; the flow graphs are based on the propos-
als of Mori et al. (2014) in which the graph nodes are
‘recipe named entities’ (r-NEs). The r-NE types cover
domain entities such as ingredients; in addition, Mori
et al. argue that r-NE types should also cover actions by
the cook / chef (which are often expressed as verbs).
Unlike the set of NE types commonly used for gen-
eral text (Sang and Meulder, 2003)—person name, loca-
tion, organization, etc.—r-NEs are an example of a
domain-specific NE definition. Domain-specific NE def-
initions are widely used in fields such as bioinformat-
ics (Ben Abacha and Zweigenbaum, 2011). A domain-
specific NE definition facilitates the development of intelli-
gent applications that process documents in that particular
domain.
The task of identifying NEs is called ‘named en-
tity recognition’ (NER). NER is usually formulated
as a sequence labeling problem, in which each in-
put token is tagged as being inside or outside an NE
(and in some approaches, beginning an NE). In this
framework many techniques and refinements have been

Tag Meaning Explanation
F Food Eatable; also intermediate products
T Tool Knife, container, etc.
D Duration Duration of cooking
Q Quantity Quantity of food
Ac Action by chef Verb representing a chef’s action

Ac2
Discontinuous Second, non-contiguous part
Ac (English of a single action by chef
only)

Af Action by food Verb representing action of a food

At
Action by tool Verb representing a tool’s action
(English only)

Sf Food state Food’s initial or intermediate state
St Tool state Tool’s initial or intermediate state

Table 1: Recipe named entity (r-NE) tags.

investigated (Borthwick, 1999; Sang and Meulder, 2003;
Ratinov and Roth, 2009), and many general-purpose NER
tools have been developed. In this study, we use one such
tool, PWNER (Sasada et al., 2015a), which computes prob-
abilities for all possible NE tags based on pointwise predic-
tion, and searches for the best sequence of tags under the
tag sequence constraints. The tool is distinctive in being
trainable on data that has been only partially annotated.

3. Recipe Named Entities
3.1. Recipe Named Entity Tags
In previous work (Yamakata et al., 2017), we created a cor-
pus of 100 recipes written in English, sampled from the
Allrecipes UK/Ireland web site2 and annotated for ‘recipe
named entities’ (r-NEs). The r-NE tag types were based on
a set of eight tags originally devised for annotating recipes
written in Japanese (Mori et al., 2014), but with the addi-
tion of a further two tags. One is introduced in order
to account for linguistic phenomena that occur in English
and many other languages but not Japanese: discontinuous
multi-word expressions (Constant et al., 2017). The other
is to cover expressions for the actions by automatic cooking
tools (e.g. food processors), which are not yet common in
Japan, so the tag was not necessary for recipes in Japanese.
Table 1 lists the ten r-NE tags that we use for English recipe
annotation. Note that this tag set is compatible with the
original.
Figure 1 shows the annotation that would be given to the
recipe step Preheat oven to 180 C / Gas mark 4. The tag
suffixes -B and -I (abbreviating Begin and Inside respec-
tively) indicate NE spans according to the IOB2 text chunk-
ing representation (Sang and Veenstra, 1999). A tag is as-
signed to each word or word-sequence designating a sin-
gle and indivisible object/action/phenomenon in the cook-
ing domain. For example, Gas mark 6 in the example sen-
tence designates the state of the dial of the oven being at 6,
so it is annotated as a single r-NE. Therefore, the first word
Gas is annotated as St-B and the subsequent words mark
and 6 are both annotated as St-I. The word to is annotated
O because it is Outside any named entity.

2http://allrecipes.co.uk/
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Preheat oven to 180 C / Gas mark 4 .
Ac-B T-B O St-B St-I O St-B St-I St-I O

Figure 1: Example of r-NE annotation.

3.2. Annotating Recipe Named Entities
Our corpus of English recipes consists of the 100 recipes
mentioned above, plus a further 200, which we have se-
lected and annotated recently.
The first, 100-recipe subset (which we call ‘100-r’)
was sampled from Allrecipes, selecting the most popu-
lar recipes within each dish category (e.g. ‘Main course’,
‘Dessert’) in proportion to the total number of recipes in
that category. These recipes were annotated by an English
native speaker, and all annotations were verified by the first
author, as described by Yamakata et al. (2017).
The second, 200-recipe subset (‘200-r’) was sampled from
Allrecipes completely randomly. These recipes were anno-
tated by two Japanese homemakers who had previously an-
notated Japanese recipes in the study of Mori et al. (2014).
Both are good English readers; in preparation, they re-
familarized themselves with the annotation guidelines.
They annotated the first half of 200-r completely manu-
ally; the average annotation time was 19 minutes per recipe
(including initial preparation). To speed up the workflow,
we automatically tagged the remainder of 200-r using the
PWNER NE recognizer trained on 100-r; the annotators
then checked and corrected the recognition results. The
300-recipe corpus comprises 38,062 tokens in total.
To estimate inter-annotator agreement, we asked the second
pair of annotators to re-annotate 100-r independently. Un-
fortunately we cannot use Cohen’s kappa or related mea-
sures, since they assume that each annotation decision is
independent of any other; however, with IOB2 some com-
binations of tags are illegal, e.g. an Inside tag may only
occur after a Begin or Inside with the same tag prefix. In-
stead, we took one of the annotators as the gold standard
and evaluated the accuracy of the other with respect to this.
We measured the agreement as 89.9% precision, 92.2% re-
call, and 90.5 F1. We consider this to be a high level of
agreement.

3.3. Automatic Recognition of r-NEs
Having created the 300-recipe r-NE annotated English cor-
pus, we investigated the extent to which the annotation
supports NER, and whether the r-NE tagging accuracy is
comparable to previous results for Japanese recipes. Al-
though PWNER works well for r-NE tagging, we de-
cided instead to experiment with the more modern deep
learning named entity recognizer BERT-NER3, a state-of-
the-art tool based on the BERT neural network architec-
ture (Devlin et al., 2019). For this evaluation we used 10-
fold cross-validation, splitting the data into 80% training,
10% hyperparameter tuning, and 10% test. The overall F1

for r-NE recognition is 87.6. Accuracies by recipe subset
are shown in Table 2. Table 3 shows accuracy by tag; F1

ranges from a low of 17.1 for the rarest tag At to 92.7 for

3https://github.com/kyzhouhzau/BERT-NER

Dataset Precision Recall F1 #NEs
100-r 81.6% 87.4% 84.4 5629
200-r 85.4% 87.9% 86.7 9728
Overall 86.5% 88.8% 87.6 15435

Table 2: r-NE recognition accuracy by corpus subset and
overall.

Tag Precision Recall F1 #NEs
F 90.5% 93.9% 92.1 5007
T 87.7% 90.1% 88.9 1904
D 87.4% 90.2% 88.8 589
Q 70.9% 76.8% 73.7 529
Ac 92.3% 93.1% 92.7 4977
Ac2 43.8% 46.8% 45.3 178
Af 51.4% 50.4% 50.9 255
At 60.0% 10.0% 17.1 15
Sf 66.1% 71.4% 68.6 1105
St 81.6% 82.5% 82.0 876
Total 86.5% 88.8% 87.6 15435

Table 3: r-NE recognition accuracy by tag for the full 300-
recipe corpus.

the very common tag Ac.
In previous research, Sasada et al. (2015b) trained PWNER
on a corpus of 193 Japanese recipes of comparable com-
plexity annotated with the same set of r-NE tags, and re-
ported 84.4 F1; our F1 for 200-r is comparable. We also
note that F1 is 2.3 points higher for 200-r than 100-r; this
indicates that annotating more data is likely to lead to fur-
ther worthwhile improvements in NE recognition accuracy.
It is likely that annotating more data would be particularly
beneficial for the tags Ac2, Af and At, which are relatively
rare.

4. Recipe Flow Graphs
4.1. Flow Graph Representation
Mori et al. (2014), in a study of Japanese recipe text,
showed how the procedural aspects of a recipe can be rep-
resented as a flow graph. A flow graph is a directed acyclic
graph (DAG) with a single root. Graph nodes are r-NEs and
labelled edges represent the relationships between these
nodes. Table 4 lists the flow graph edge labels.
Figure 2 shows the procedural text in a recipe “Almost no
fat banana bread” on the Allrecipes web site4. Figure 3 con-
tains the flow graph for this recipe. The flow graph makes
explicit what actions are applied to which ingredients and
using what tools. The graph is read downwards from the
top; nodes without any incoming edges represent ingredi-
ents, and a node with no outgoing edges denotes an end
product. A path of directed edges from an action A to an
action B implies that A must be carried out before B. For
example, the flow graph explicitly represents the fact that
batter in sentence 4 is the end product of stirring the con-
tents of the large bowl; this relationship is only implicit

4From http://allrecipes.co.uk/recipe/722/
almost-no-fat-banana-bread.aspx, February 2020.
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Label Meaning Explanation
Agent Subject

Relationship with actions (Ac or Af)Targ Direct object

Dest
Indirect object
(container)

t-comp tool complement Tool used in an action
F-comp Food complement Food used as a tool
F-eq Food equality Identical food
F-part-of Food part-of Refer to a part of a food
F-set Food set Refer to a set of foods
T-eq Tool equality Identical tool
T-part-of Tool parf-of Refer to a part of a tool
A-eq Action equality Identical action (Ac, Af)
V-tm Head verb for timing, etc.
other-mod Other relationships

Table 4: Flow graph edge labels.

(#Step=1)-(#Sentence=0): Preheat oven to 180 C /
Gas mark 4.
(1)-(1): Lightly grease a 20x10cm (8x4 in) loaf tin.
(2)-(2): In a large bowl, stir together flour, sugar, bak-
ing powder, bicarbonate of soda and cinnamon.
(2)-(3): Add egg whites, bananas and apple purée; stir
just until combined.
(2)-(4): Pour batter into prepared tin.
(3)-(5): Bake in preheated oven for 50 to 55 minutes,
until a skewer inserted into centre of loaf comes out
clean.
(3)-(6): Turn out onto wire rack and allow to cool be-
fore slicing.

Figure 2: The recipe “Almost no fat banana bread”, com-
prising 7 sentences (numbered 0 to 6), grouped into 3 steps.
Sentences used as examples are in bold.

in the recipe text since batter is not previously mentioned.
Please note that a flow graph is an internal, symbolic repre-
sentation designed to support any kind of computation over
recipes, and we do not intend that it be displayed verbatim
to a cook in a recipe visualization application, for instance.

Starting from the r-NE annotations, the same Japanese
homemakers annotated all 300 sentences. The average an-
notation time was 37 minutes per recipe (including ini-
tial preparation); at first it was longer but as the annota-
tors gained experience they got faster. The average an-
notation time for the final ten recipes was 26 minutes per
recipe. To measure inter-annotator agreement, we arranged
for both annotators to annotate the 100-r subset. We com-
pute agreement similarly to the previous section, for similar
reasons. Taking one of the annotators as the gold standard,
the other’s annotations had 84.4% precision, 80.4% recall,
and 82.3 F1. Although lower than the r-NE agreement, this
is still a good result bearing in mind the very large space of
possible edge annotations.

4.2. Automatic Computation of Flow Graphs
Maeta et al. (2015) describe a procedure for computing a
flow graph from recipe text. The procedure consists of three
steps, which are applied in turn to the entire r-NE tagged
recipe, and output a set of directed edges between r-NEs:

1. Calculate weights of labelled edges between all pairs
of r-NEs, using an SVM-based machine learning
model.

2. Given the resulting weighted digraph, select a root
node and compute a spanning arborescence of mini-
mum weight. A reliable heuristic is to select as root
node the Ac that occurs last in the input.

3. Since the previous step can only produce a tree, extend
this to a DAG by adding further edges whose weights
are below a threshold and which satisfy certain condi-
tions to ensure consistency.

In our work, we apply a similar procedure but ignore labels
in step 1 and omit step 3; we output a spanning arbores-
cence with r-NEs as nodes connected by (directed) unla-
belled edges5.
We estimate the weight of a directed edge from node u to v
with label l as follows:

s(u, v, l) =
exp{Θ · f(u, v, l)}∑

(x,r)∈(V \{u})×L exp{Θ · f(u, x, r)}
(1)

where V is a set of nodes, L is the set of edge labels (see
Table 4), Θ is a weight vector, and f(u, v, l) is a function
returning the feature vector for the edge. Intuitively, the
right hand side of the equation computes the total weight of
the edge’s features as a proportion of the grand total of the
weights of all edges starting at node u.

5An alternative approach would be to parse recipes syntac-
tically in a sentence-by-sentence manner, and then induce flow
graph edges and their labels based on paths between nodes in the
parses; however, as Maeta et al. (2015) argue, in that case further
processing would be required to deal with inter-sentence phenom-
ena such as coreference, anaphora and ellipsis—whereas these do
not require any special treatment in our framework.
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Figure 3: Flow graph for the recipe “Almost no fat banana bread”.
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r-NER Precision Recall F1

Gold 73.7% 68.6% 71.1
BERT-NER 51.1% 37.7% 43.3

Table 5: Edge estimation accuracy with gold r-NEs and
with automatically recognized r-NEs.

The function f(u, v, l) returns a feature vector for an edge,
containing information about the nodes u and v that the
edge links. The vector comprises the following features:

• words in u and v, and their concatenation;

• concatenation of the r-NE tags of u and v;

• whether u is in the same, a previous or a subsequent
sentence as v;

• number of words between u and v (positive if u ap-
pears before v, otherwise negative); and

• whether u and v are in the same sentence and there is
a preposition between them6.

In initial experiments, we confirmed that each of these five
features improves edge detection accuracy.
The weight vector Θ is estimated from the training data
by a log-linear model (Berger et al., 1996). Given training
data consisting of T manually annotated edge-label pairs
(ut, vt, lt), we maximize the following value:

T∑
t=1

s(ut, vt, lt)−
1

2
∥Θ∥2 (2)

To evaluate the accuracy of flow graph construction, we
used 10-fold cross-validation, splitting the data into 270
recipes for training and 30 recipes for test. When we started
from the gold standard r-NE tagging, the overall F1 for edge
detection was 71.1. When we started instead from the auto-
matic r-NE tagging, the edge detection F1 reduced to 43.3;
the main reason for the large decrease is that an edge will
always be wrong if the r-NE at even just one of its two end
points is mis-recognized. The results are shown in Table 5.
Table 6 shows the recall of edge detection for each label.
Recall is low for several labels: F-eq, F-part-of, F-set, T-eq,
T-part-of and A-eq. Edges with these labels often form con-
fluences in the recipe flow graph and therefore cannot be
detected in step 2 of the procedure (the step that extracts a
spanning arborescence). We intend to address this issue in
future work.

4.3. Flow Graph Computation Examples
Figure 4 shows flow graph nodes and edges corresponding
to the two sentences labeled (0)-(0) and (3)-(5) in Figure 2.
Figure 4(a) shows the manually-annotated gold standard
flow graph, (b) shows the flow graph produced automati-
cally starting from gold standard r-NEs, and (c) shows the

6To detect prepositional context, we use the RASP grammati-
cal analysis system (Briscoe et al., 2006)—having adapted its lex-
icon to account for the non-standard writing style of cooking
recipes.

Label #Gold #Est Recall
Agent 674 371 55.1%
Targ 6210 5109 82.3%
Dest 1983 1576 79.5%
T-comp 650 540 83.0%
F-comp 286 252 88.2%
F-eq 1139 227 19.9%
F-part-of 737 91 12.3%
F-set 23 2 8.7%
T-eq 316 41 13.0%
T-part-of 190 71 37.5%
A-eq 237 85 35.7%
V-tm 640 474 74.1%
other-mod 2776 2033 73.2%
Total 15,861 10,883 68.6%

Table 6: Edge estimation recall.

flow graph resulting from end-to-end processing (i.e. with
r-NE recognition and edge detection7 both done automati-
cally).
In (b) and (c), our method successfully detected the ac-
tion equality A-eq between #(0-0) Preheat and #(5-2) Pre-
heated, even though they are several steps apart. In con-
trast, tool equality T-eq was not detected between #(0-1)
oven and #(5-3) oven; this exemplifies the low recall of
T-eq edges as reported in Table 6. In (b), the out-edge of
#(5-17) loaf is linked to the wrong node, although all the
other edges are correct. In (c), our system failed to detect
the r-NEs for skewer, centre and inserted. The destination
of the out-edge from loaf should be centre, but this node
does not exist and the edge wrongly connects to the word
Bake. As a result, the part of the flow graph corresponding
to the subordinate clause until a skewer inserted into centre
of loaf comes out clean fails to correctly represent the se-
mantic structure. However, the edges in the rest of the flow
graph are correct.

5. Conclusion
Taking as a starting point research on recipes written in
Japanese (Mori et al., 2014), we have presented an anno-
tated corpus of English cooking recipe procedures, and de-
scribed and evaluated computational methods for learning
these annotations. In this paper we have demonstrated that:

• the approach to annotating and analysing recipes
transfers well to a typologically different language;

• the annotation scheme supports high inter-annotator
agreement; and

• recipe named entities can be identified with good ac-
curacy using a deep neural network tagger.

The paper described how we annotated each recipe in the
corpus with recipe named entities (r-NEs); inter-annotator
agreement was high. A deep neural network NER tool

7In this setup, we are pipelining two modules; eventually we
would like to combine these into a single model by training on
both module representations jointly.
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(0 0) Preheat [Ac]

(5 2) preheated [Ac]

v-eq

(0 1) oven [T]

targ

(5 3) oven [T]

t-eq

(0 3) 180_C [St]

other-mod

(0 6) Gas_mark_4 [St]

other-mod

(5 0) Bake [Ac]

targ

targ

(5 5) 50_to_55_minutes [D]

other-mod

(5 12) skewer [T]

(5 13) inserted [Ac]

t-comp

(5 18) comes_out [At]

targ

(5 15) centre [F]

dest

(5 17) loaf [F]

f-part-of

v-tm

(5 20) clean [St]

other-mod

(a) Ground truth: manually annotated flow graph.

(00-000) Preheat [Ac]

(05-002) preheated [Ac]

(00-001) oven [T] (00-003) 180_C [St] (00-006) Gas_mark_4 [St]

(05-000) Bake [Ac]

(05-003) oven [T]

(05-005) 50_to_55_minutes [D]

(05-012) skewer [T]

(05-013) inserted [Ac]

(05-018) comes_out [At]

(05-015) centre [F]

(05-017) loaf [F] (05-020) clean [St]

(b) Flow graph computed from manually annotated r-NEs.

(00-000) Preheat [Ac]

(05-002) preheated [Ac]

(00-001) oven [T] (00-003) 180_C [St] (00-006) Gas_mark_4 [St]

(05-000) Bake [Ac]

(05-003) oven [T]

(05-005) 50_to_55_minutes [D] (05-017) loaf [F] (05-018) comes_out [At]

(05-020) clean [St]

(c) End-to-end flow graph estimation.

Figure 4: Flow graph nodes and edges corresponding to the sentences Preheat oven to 180 C / Gas mark 4 and Bake in
preheated oven for 50 to 55 minutes, until a skewer inserted into centre of loaf comes out clean.

trained on this data obtained an overall F1 of 87.5. This ac-
curacy is comparable to r-NE tagging of Japanese recipes.
Starting from the r-NE annotation, inter-annotator agree-
ment for flow-graph annotation was 82.3 F1. This level
of agreement is good, considering the very large space of
possible edge annotations. Computing flow graphs used
a dependency-style parsing procedure, which achieved an
F1 for edge detection of 71.1. Previous work on analysing
Japanese recipes has shown that this level of accuracy is
sufficient to support tasks including recipe information re-
trieval and symbol grounding for cross-modal cooking ap-
plications.

In future work, we intend to refine the procedure for ex-
tracting a flow graph from the weighted digraph of r-NE
nodes. We will experiment with training classifiers for
adding labels to edges, and for inserting links that form
confluences in the flow graph. Although these are extra

processing steps, they would add structure only monoton-
ically to the minimum weight spanning arborescence, so
should not have a negative impact on efficiency or on cor-
rect structure that is already in the flow graph.
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