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Abstract
This paper introduces the first treebank of Vedic Sanskrit, a morphologically rich ancient Indian language that is of central importance
for linguistic and historical research. The selection of the 4,000 sentences contained in this treebank reflects the development of metrical
and prose texts over a period of 600 years. We discuss how these sentences are annotated in the Universal Dependencies scheme and
which syntactic constructions required special attention. In addition, we describe a syntactic labeler based on neural networks that
supports the initial annotation of the treebank, and whose evaluation can be helpful for setting up a full syntactic parser of Vedic Sanskrit.
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1. Introduction

Vedic Sanskrit (VS) is an ancient Indo-Aryan language,
one of the oldest transmitted Indo-European languages and
the precursor of Classical Sanskrit.1 The large corpus of
Vedic poetry and prose is important for reconstructing the
early linguistic history of Indo-European and as a source for
socio-cultural developments in South Asia during the sec-
ond and first millenia BCE. The transmission of VS starts
with its most famous text, the R. gveda (R. V), composed pre-
sumably in the 2nd millenium BCE and comprising reli-
gious hymns. While the second oldest Vedic text, the Athar-
vaveda, focusses on royal and medicinal rites, the bulk of
the following Vedic literature discusses the Vedic ritual and
ends, at around 500-300 BCE, with texts that demarcate
the transition to the early Buddhist culture (Witzel, 1997;
Witzel, 2009).
Inspired in part by the famous Vedic grammarian Pān. ini,
Indo-European and Vedistic research have studied the con-
tent and the linguistic structure of VS for over 150 years.
Most of these studies are, however, based on small sub-
corpora of VS, often only on parts of the R. V, and there-
fore do not cover but a small part of the sociolinguistic
and spatiotemporal variation actually encountered in VS.
Moreover, the results of previous studies are often difficult
to reproduce, when larger, more diverse text samples are
considered. The composition of the Vedic treebank (VTB)
introduced in this paper is motivated by the need for a re-
source that can be used for data-driven, quantitatively ro-
bust diachronic and synchronic investigations of linguistic
phenomena in, and starting with, the oldest layers of VS.
One topic we are particularly interested in is the question
whether the early metrical texts show a higher degree of
non-configurationality than the later prose texts (Gillon,
1996; Kulkarni et al., 2015; Reinöhl, 2016). Consider the
passage R. gveda 1.51.5c, where the discontinuous elements
of the NP piproh. purah. ‘the strongholds of Pipru (a man)’
are printed in bold:

1Abbreviations used in this paper: AB: Aitareya Brāhman. a,
MS: Maitrāyan. ı̄ Sam. hitā, R. V: R. gveda; ŚB: Śatapatha Brāhman. a;
ŚS: Śaunaka Sam. hitā of the Atharvaveda; VS: Vedic Sanskrit.
All citations from Vedic texts are given without accents. Sandhis
are resolved in all examples.

tvam piproh. nr.man. ah. prārujah. purah.
you Pipru manly broke strongholds
“You broke through the strongholds of Pipru, o you
of manly mind.” (Jamison and Brereton, 2014, 164)

While in the R. gveda example the dependent piproh. is sep-
arated from its head purah. , the following prose example
shows the elements of the NP devānām. viśah. ‘subjects
of the gods’ in continuous placement (Aitareya Brāhman. a
1.9.5):

marutah. vai devānām viśah.
Maruts surely gods’ subjects
“The Maruts are the subjects of the gods.” (Keith, 1920, 113)

But the same prose text shows discontinuous placement as
well (Aitareya Brāhman. a 7.13.1):

tasya ha parvata-nāradau gr.he ūs.atuh.
his Parvata, Nārada house lived
“Parvata and Nārada lived in his house.

While such phenomena were only discussed with manually
selected examples in previous Vedistic literature, the VTB
will make it possible to assess them on a much larger scale
and to extend quantitative research to questions such as
change in word order (cmp. Gulordava and Merlo (2015)).
The treebank described in this paper was built from scratch,
including the compilation of the annotation guideline, but
working syntactic parsers for VS are not available. Human
resources for this task are limited, because annotating syn-
tactic structures, especially in the oldest texts, requires a
thorough knowledge of VS, and native speakers can obvi-
ously not be recruited (see the discussion in Saavedra and
Passarotti (2014)). Therefore, an important aspect of this
paper is the design of a machine learning tool that generates
proposals for labeling edges in the dependency trees and
that should be easy to retrain while the treebank is grow-
ing.
The rest of the paper is structured as follows. After a
short overview of related research in Sec. 2., Sec. 3. de-
scribes the composition of the VTB, the annotation pro-
cess and some salient problems we met during the anno-
tation. It also discusses the inter-annotator agreement. Sec-
tion 4. introduces the syntactic labeler. In Section 5., we
summarize the central results of this paper and indicate di-
rections for future research. – The treebank, the annota-
tion guideline and the Python code of the labeler can be
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found at https://github.com/OliverHellwig/
sanskrit/tree/master/papers/2020lrec, and
we are planning to integrate the treebank into the next offi-
cial UD release.

2. Related Work
To our knowledge, there exists no treebank of VS. Dwivedi
and Easha (2017) describe a small treebank which contains
230 sentences from a narrative text composed in Classical
Sanskrit and annotated according to the UD scheme.2 This
treebank cannot be used for our research, because the lin-
guistic structures of Classical Sanskrit differ strongly from
those of VS (comparable to the difference between Old and
Early Modern English), so that results found with a tree-
bank of Classical Sanskrit cannot easily be transferred to
the earlier level of VS. The University of Hyderabad has
released a large sample of texts composed in classical San-
skrit, some of which contain structural annotations of com-
pounds.3 As compounding is much less relevant in Vedic
than in Classical Sanskrit (see Sec. 3.2.) and a mapping
from the Hyderabad annotations to the data used in this pa-
per is difficult, we did not use this resource for training the
syntactic labeler described in Sec. 4.
Contrary to the situation for other ancient languages such as
Latin (Ponti and Passarotti, 2016) or Greek (Prokopidis and
Papageorgiou, 2014), working dependency parsers have not
been developed or tested for any historical level of San-
skrit. A limited number of papers has dealt with designing
such a parser from a Pān. inian (Huet, 2006; Kulkarni et al.,
2019) or purely data-driven perspective (Hellwig, 2009),
but the authors did not perform systematic experiments as-
sessing the quality of the proposed models. In addition,
these parsers are designed for Classical Sanskrit and expect
complete sentences. Both conditions are not fulfilled by
our data set. Apart from speeding up the annotation pro-
cess, the syntactic labeler described in Sec. 4. is therefore
also meant to explore meaningful features for developing a
complete syntactic parser of (Vedic) Sanskrit in the future.

3. Treebank
3.1. Text selection
The composition of the Vedic treebank is primarily moti-
vated by research questions about word order and config-
urationality in Vedic. Previous non-quantitative studies re-
stricted themselves to descriptive prose texts when study-
ing such phenomena (see, e.g., Delbrück (1888, 15ff.) or
Speyer (1896, 76ff.)). These studies often came to the
rather general conclusion that there exist certain prefer-
ences in the word order of Vedic prose, which may, how-
ever, vary substantially across genres, texts, and linguis-
tic conditions (e. g., pragmatic structure, clause and phrase
type).
In order to obtain large-scale quantitative, less biased data
for exploring the full range and amount of these phenom-
ena, the VTB contains annotations of continuous text sam-
ples from the oldest layer of Vedic prose, which may have

2https://github.com/
UniversalDependencies/UD_Sanskrit-UFAL

3http://sanskrit.uohyd.ac.in/Corpus/

Text # Sen. # Tokens
Metrical
R. V 298 2042
ŚS 1108 7107
Prose
MS 635 3481
AB 1503 10775
ŚS 15 248 2321
ŚB 212 1454

4004 27180

Table 1: Composition of the Vedic treebank, in approxi-
mately descending chronological order

been composed between 1000 and 700 BCE in Northern
India. As a contrast group, we added text samples from
the two oldest metrical texts, the R. gveda (1300–1000 BCE)
and the Śaunaka Sam. hitā of the Atharvaveda, whose met-
rical parts are largely contemporaneous with the later sec-
tions of the R. gveda. Thus, the VTB reflects the linguistic
development of Vedic over a time range of approximately
600 years.
The prose sections are collected from the following
sources:
• The Maitrāyan. ı̄ Sam. hitā (MS) is the oldest text of

the Yajurveda tradition. It contains metrical hymns to
be recited during rituals along with their prose expla-
nations (Amano, 2009). MS 2.5.1–11, a discussion
of optional sacrifices (kāmyes. t.i), has been annotated
completely.

• The Aitareya Brāhman. a is generally assumed to be-
long to the oldest layer of Brāhman. a prose, which is
slightly younger than the Sam. hitā prose of the MS
(Witzel, 1995, 113). The annotation covers AB 1.1–30
and AB 2.1–19, where the performance of the Soma
ritual is described, as well as the tale of Śunah. śepa
in AB 7.13-18, which belongs to a younger layer of
Brāhman. a prose.
• The 15th book of the ŚS contains the earliest known

description of the vrātyas, a sodality worshipping the
Vedic god Rudra (Falk, 1986).
• ŚB 1.8.1 relates the story of Manu and the fish, a vari-

ant of the deluge tale, and is presumably the latest text
sample in the VTB. While the extracts from the MS
and the Aitareya Brāhman. a use a more formal, exeget-
ical style, the sample from the ŚB is a narrative text
that includes dialogues, and thus represents a different
style of Vedic prose.

The samples of metrical texts are taken from the R. gveda
and the metrical part of the Śaunaka Sam. hitā (first Grand
Division mainly; ŚS). The metrical parts of the Śaunaka
Sam. hitā are slightly older than the oldest Vedic prose, but
may contain younger linguistic material as well (Witzel,
1995, 113). Table 1 gives an overview of the composition
of the VTB in its current state.

3.2. Annotation
We use the main syntactic relations defined in the Universal
Dependencies standard, v. 2.0 for dependency annotation
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(Nivre et al., 2017). The last column in Tab. 8 records the
number of annotated instances per dependency relation.
While the UD standard covers most of the syntactic phe-
nomena found in our texts, five structures required special
attention during annotation. (Head) ellipsis, though being
covered by the UD standard, occurs significantly more of-
ten in our texts than, for instance, in non-literary English or
German.4 The preference for ellipsis is partly caused by the
poetic, often enigmatic diction of Vedic poetry (see Fig. 1a
and the translation from Jamison and Brereton (2014) for an
example); but it is also found in the prose texts, which tend
to abbreviate parallel enumerations as much as possible.
The markup of compounds made it necessary to deviate
from the UD standard. While English noun compounds
mostly consist of two members, post-R. gvedic Sanskrit in-
creasingly uses compounds to express complex syntactic
structures (Lowe, 2015). The information that a sequence
of lexical units forms a compound structure can be deduced
from the morphological annotation extracted from the DCS
(see Sec. 3.4.), and therefore does not need to be encoded
in the dependency annotation. We therefore decided to
annotate compounds as if their elements occurred in non-
composed form. In Fig. 1b, for example, jā ‘born from’, the
final element of the compound vāta-abhra-jāh. ‘born from
wind and clouds’, retains the argument information of the
verb jan ‘be born’, from which it is derived. As a conse-
quence, ‘wind’ and ‘clouds’ are connected to jāh. with the
relation obl, which would be used to annotate the respec-
tive argument of the verb jan. As a consequence, most UD
relations can also be used when annotating compounds.
In the oldest metrical texts, preverb particles are often
separated by several words from the verb with which they
enter into a grammatical relation (tmesis; see the phrase
sam . . . gamemahi in Fig. 2, which would read śrutena
sam. gamemahi in later Vedic and Classical Sanskrit). This
phenomenon gradually disappears in post-R. gvedic texts,
which regularly prefix the preverb to the verbal stem (pre-
verbification). There has been a long and still unsettled dis-
cussion about the precise syntactic and semantic relations
between preverbs and verbs in Vedic, both from a descrip-
tive and diachronic perspective (Hettrich et al., 2004). Con-
trary to the UD standard which uses compound:prt for
comparable phenomena e.g. in German, we decided to la-
bel preverbs in tmesis as advmod, as they often have ad-
verbial function in the oldest layers of Vedic.
Sanskrit does not distinguish formally between direct and
indirect speech. Instead, both alternatives are expressed
using the quotation marker iti, which immediately follows
the quoted speech, either as ([speech verb] [statement] iti)
or ([statement] iti [speech verb]). The statement component
can consist of multiple and/or nested clauses. We annotate
the statement as ccomp of the speech verb, link the par-
ticle iti as mark to the rightmost independent verb in the
statement, and link multiple sentences in direct speech with

4While we observe 0.6% of orphan labels among all labels
in the VTB, non-literary German (de hdt-ud-train-b) has 0.011%
and non-literary English (en ewt-ud-train) has 0.014%. The rates
rise for modern literary texts in German and especially for Greek
(0.361%) and Latin (0.371%). Krisch (2009) discusses ellipsis in
ancient Indo-European languages from a linguistic perspective.

Rev. LAS UAS LOS
– 0.704 [0.716] 0.790 [0.811] 0.764 [0.785]
1 0.755 [0.771] 0.853 [0.873] 0.770 [0.797]

Table 2: Cohen’s kappa and proportional agreement (in
square brackets) for the labeled attachment score (LAS),
unlabeled attachment score (UAS) and label-only score
(LOS) before revising the annotations (first row) and after
the first revision (second row)

parataxis to their rightmost element.
Being a pro-drop language, Vedic often omits the subject
controlling verbal agreement in a clause. Secondary pred-
icates cannot be connected with an element of the clause
in this case, because their head (the subject) is not overtly
expressed. Since many secondary predicates have an adver-
bial meaning, we decided to use preferably advcl in such
cases. In formal terms, such expressions are often undis-
tinguishable from subjects, and we leave it open to the an-
notator to label them as csubj, if required by the context.
Consider the following phrase, in which the subject ‘he’ is
not overtly expressed:

paśu- kāmah. yajati
cattle- desire sacrifices

Depending on the textual context, the compound paśu-
kāmah. ‘wanting cattle’ can be connected as advcl or
csubj to its head yajati, resulting in the English transla-
tions ‘he sacrifices because he wants cattle’ or ‘the one who
wants cattle performs a sacrifice’, respectively.

3.3. Annotation workflow and quality
Syntactic labeling was performed by three authors of this
paper, each of whom annotated a different part of the VTB.
One annotator is a specialist in R. gvedic studies, one has a
general knowledge of Vedic without further specialization,
and the third one is a PhD student. All annotators hold
degrees in Indian and/or Vedic Studies. During the whole
annotation process, critical decisions (see Sec. 3.2.) were
discussed, and the decisions were documented in a guide-
line. We are aware that this workflow is not optimal, as
we cannot determine the inter-annotator agreement on large
samples; but, as stated in Sec. 1., this approach was the only
feasible one given the lack of qualified annotators and time
restrictions. We counter-checked our annotations using ac-
cepted modern translations of the texts in the VTB.5

In order to obtain an approximation of the IAA, the first
two annotators twice re-annotated thirty randomly selected
sentences annotated by the other annotator, once before the
first revision and once after. The results in Tab. 2 show
that the agreement clearly rises between these revisions.
While the UAS is close to the value reported by Bamman
et al. (2009) for Ancient Greek (87.4%)6, LOA and LAS

5The following translations were used: R. gveda: Jamison and
Brereton (2014); Atharvaveda: Whitney and Lanman (1905);
Maitrāyan. ı̄ Sam. hitā: Amano (2009); Aitareya Brāhman. a: Keith
(1920); Śatapatha Brāhman. a: Eggeling (1882 1900)

6It is not clear if Bamman et al. (2009) report Cohen’s kappa
or the uncorrected rate of agreement.
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sa hi ks.ayen. a ks.amyasya janmanah. sāmrājyena divyasya cetati
he for place earthly race rule heavenly note

discourse

amod

obj

conjorphan

nsubj

obl

(a) Promotion of the dependents of the elided verb cetati at R. V 7.46.2ab (“For
in consequence of his dwelling place he takes cognizance of the earthly race
and, in consequence of his universal rule, of the heavenly.”).

vr.s.ā vāta- abhra- jāh.
bull wind cloud born

acl

conj obl

(b) Annotation of a com-
pound; “a bull born from wind
and clouds”

Figure 1: Sample annotations

are clearly below the respective values for Ancient Greek
(85.3% and 80.6%).
Further analysis showed four main sources for annotator
disagreement. The first source, secondary predication with
non-overt subjects has already been discussed in Sec. 3.2.
Second, it was not always clear which elements should be
labeled root and nsubj in copular clauses (potentially
even with zero copula). Consider Śaunaka Sam. hitā 5.5.8ab,
where the unclear context makes it difficult to decide for
topic and comment (thema/rhema):

silācı̄ nāma kānı̄nah. pitā tava
Silācı̄ by name of a young woman father your

While the first two words of this line, which refer back
to a woman mentioned earlier, can safely be translated as
‘[You are] Silācı̄ by name’, it is not clear if the ‘father’
or the ‘[person] born by a young woman’ should be set
as the root of the second sentence. Third, we found that
the labeling of the accusative singular neuter of pronouns
and adjectives was often disputed, because these elements
can express direct objects as well as adverbial modifications
(Maitrāyan. ı̄ Sam. hitā 2.5.2):

yat prathamam tamah. apāghnan
when/ first.ACCSG darkness.ACCSG they removed
what

Here, prathamam was connected with acl to tamah. by one
annotator (‘when they removed the darkness as the first
[of a number of items to remove]’), while the other an-
notator chose an adverbial meaning by connecting it with
advmod to the verb apāghnan (‘when they first [in a num-
ber of trials] removed the darkness’). Fourth, the two anno-
tators often disagreed about labeling particles as advmod
or discourse; existing handbooks of Sanskrit syntax as
Delbrück (1888) are not really helpful in resolving these
problems. In all cases, disagreement arises because of com-
peting content-related options, not because of uncertainties
concerning formal analyses. While we discussed and adju-
dicated such ambiguous cases for the IAA subset, eventu-
ally updating the guidelines, the final decision is left to the
respective annotator in the default workflow.

3.4. Text data and annotation interface
Within specific lexical, phrasal and clausal domains, San-
skrit merges invidual words into longer strings using a set
of phonetic rules called Sandhi (Whitney, 1879, 33ff.), so
that Sanskrit texts need to be split into words before word
based annotations can be added. Instead of manually split-
ting the texts mentioned in Sec. 3.1., we attach the depen-
dency annotations on top of the Sandhi-split texts provided
by the Digital Corpus of Sanskrit (DCS7, Hellwig (2019)).
The DCS provides lemmatized texts with manually vali-
dated morphological information, along with POS tags that
are automatically induced from morpho-lexical information
(Hellwig et al., 2018).
Similar to other ancient languages (see, e.g., Guibon et al.
(2014) or Zemánek (2007)), Sanskrit texts do not demar-
cate sentence boundaries in a consistent manner (Hellwig,
2016). Metrical texts mark metrical units, which often co-
incide with sentence boundaries, while boundary marking
in prose texts depends, more or less, on the personal prefer-
ences of modern editors. Therefore, a single text line may
consist of multiple sentences, and sentences may transgress
boundary markers in metrical texts. We decided to adhere
to the form of the edited texts as closely as possible in the
annotation interface, in order to facilitate philological re-
search. Therefore, we allow individual text lines to contain
more than one syntactic root, or sentences to extend over
multiple text lines.
Although brat (Stenetorp et al., 2012) or WebAnno
(Eckart de Castilho et al., 2016) provide APIs for task
specific actions, we decided to set up a lightweight web-
based interface for collaborative dependency annotation us-
ing PHP, JQuery and Ajax and to integrate the labeler into
it (see Fig. 2). The Sandhi-split words along with their
morpho-lexical analyses are stored in a MySQL database
and are loaded dynamically on user request. Edges be-
tween words are created by dragging the dependent of a
syntactic relation on its head term. This dragging event
asynchronously calls the syntactic labeler described in Sec.
4., which generates a popup dialog containing the sorted
proposals for the edge annotation along with their prob-
abilities. Figure 2 shows the complete annotation of the

7Data dump available at https://github.com/
OliverHellwig/sanskrit/tree/master/dcs/data.
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Figure 2: Annotation of the hemistych ŚS 1.1.4cd (sam
śrutena gamemahi mā śrutena vi rādhis. i ‘May we be en-
dowed with knowlegde. Let me not be deprived of knowl-
edge.’) in the annotation interface, illustrating the split into
two sentences induced by the depedency annotation

text line ŚS 1.1.4cd and demonstrates how two sentences
emerge from the dependency annotation of a text line with-
out sentence boundaries. Note that the published data in
conllu format contain only one syntactic root per chunk.

4. The syntactic labeler
This section describes the syntactic labeler that is integrated
in the annotation interface. Its design reflects how data are
annotated: The annotator has chosen the syntactic depen-
dent and is about to connect it with its head. The task of the
labeler is to decide which label should be chosen for this
new edge in the dependency graph.
The development of the labeler is guided by three require-
ments. First, while producing reliable results, it should
be fast to train and generate predictions quickly while the
annotation proceeds. Second, it should use deep learning
techniques, which have been shown to outperform flat dis-
criminative techniques in most areas of NLP. Third, it needs
to be integrated in our web-based architecture for collabo-
rative annotation and thus adhere to a client-server model.
Given these requirements, we decided to implement the la-
beler in tensorflowJS.8 Note that the experiments re-
ported in this section were performed with tensorflow
in Python, but they use a subset of functions that is also
available in tensorflowJS.
As mentioned in Sec. 2., we consider the development of
the labeler as a pre-study for implementing a full syntactic
parser of VS. The evaluation of the results therefore con-
centrates on the question which features have the highest
discriminative power in syntactic edge labeling.

4.1. Features
The labeler makes predictions on the basis of n-grams of
morpho-lexical features. These features are extracted from
the DCS (see Sec. 3.4.) and therefore represent manually
validated information. We use the following basic features
provided by the DCS:
• The lemma and POS tag (on which see Hellwig et al.

(2018)) of each word.
• For nouns, adjectives and nominalized verbal forms

(e.g. participles): case, number, gender
• For finite verbal forms: person, number, tense; passive

or active voice
• For nominalized verbal forms, we additionally extract

the type of the form (participle, past participle, gerund,
absolutive, infinitive). This information appears rele-
vant, because these types can be strongly correlated

8https://www.tensorflow.org/js

Unigrams
lemma; POS; case; number; gender;
verb: person, tense, active/passive;
type of finite verbs;
case, number and gender agreements;
left/right of the head
Bigrams
POSi POSi+1, POSi casei+1, POSi numi+1,
casei POSi+1, casei casei+1, numi POSi+1,
numi numi+1

casei numi

Trigrams
POSi−1 POSi POSi+1, casei−1 casei casei+1

casei numi geni

Table 3: N-grams of basic features used for the syntactic
labeler; num = number. In order to save space, bigrams of
the form Ai Bi+1 imply that Bi−1 Ai is also used.

with syntactic relations, as, for example, participles
are mostly annotated as acl.
• If the head and the dependent have nominal inflection,

additional binary flags indicate their case, number and
gender agreement.
• A binary flag indicates if the dependent occurs to the

left or the right of its head.
Following Chen and Manning (2014) and Shen et al.
(2016), we create embeddings of the basic features for in-
dividual words as well as for contextual bi- and trigrams.
This means that for word wi at position i in a text line, bi-
gram features are created for wi−1, wi and wi, wi+1, and a
trigram feature for wi−1, wi, wi+1. Table 3 shows the eval-
uated combinations, whose influence on the classification
accuracy is evaluated in Sec. 4.3.2.
The lemma information is encoded in pre-trained dis-
tributed word embeddings, which are created by running
word2vec (Mikolov et al., 2013) on the complete DCS, in-
cluding late Vedic and Classical Sanskrit texts. We explore
four settings for adapting these pre-trained embeddings to
syntactic labeling. Apart from leaving the embeddings un-
changed (setting 1, -emb -lex), we back-propagate the net-
work error to the embedding layer (setting 2, +emb -lex).
Note that embeddings of words not contained in the train-
ing set are not adapted in this setting. In setting 3 (-emb
+lex), the embeddings are held constant, but a fully con-
nected layer is inserted after the embedding layer, which
is expected to encode adaptations of the embeddings re-
quired for syntactic labeling and to share these adaptations
with words that are not observed during training. Setting
4 (+emb +lex) combines settings 2 and 3 by adapting the
embeddings and using the additional fully connected layer.

4.2. Models
The feedforward model is a feed-forward neural net-
work (see Fig. 3a). The input concatenates the feature
embeddings (i.e. the pre-trained word embeddings and the
embeddings of the features according to Tab. 3) of the
words corresponding to the dependent and head nodes, and
is fed through two hidden layers with tanh activations and
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dropout regularization (Srivastava et al., 2014). The de-
pendency labels are predicted using a softmax layer with
cross-entropy loss.
While the input of the feedforward model incorporates
contextual information by using bi- and trigrams of atomic
features, one may hypothesize that a representation of the
complete sentence may help in labeling long-range depen-
dencies and improve the performance on critical opposi-
tions such as xcomp vs. acl, where the correct decision
depends on the syntax and semantics of the surrounding
text (see Delbrück (1888), Reinöhl (2016)). Therefore, we
additionally evaluate two sequential models that combine
the dependent-head information of feedforward with a
representation of the containing text line.9

All sequential models use the same overall architecture
shown in Fig. 3b, but differ in how the representation of
the text line is created. Let W ∈ RL×F denote the input
representation of a text line with L words, each of which
is described by the concatenation of its feature embeddings
with a total length F . Now, each sequential model creates
a sentence embedding vector s from W:
• sum sums up the concatenated embeddings along the

sentence axis, and passes the resulting vector of length
F through an additional feed-forward layer f(. . .)
with tanh activation: s = f(

∑L
l Wl∗). Although this

model of the sentence context may appear simplistic,
generating sentence embeddings from the sums or av-
erages of their word embeddings turned out to be a
good baseline in several tasks (see, e.g. Kenter et al.
(2016)).

• bidirnn uses a bidirectional recurrent neural net-
work (Schuster and Paliwal, 1997) with LSTM units
(Hochreiter and Schmidhuber, 1997). The concate-
nated feature embeddings are fed elementwise into the
input layer of the RNN. The sentence embedding s
consists of the concatenated outputs of the forward
and backward layers of the network, i.e. of the out-
put of time step L of the forward layer and time step
1 of the backward layer. – We also experimented with
stacked bidirectional RNNs (see, e.g. Kiperwasser and
Goldberg (2016)), but could not observe better perfor-
mance, presumably due to the limited size of the train-
ing set (details not reported).

4.3. Experiments
4.3.1. Model comparison
We start the evaluation by comparing the three architec-
tures introduced in Sec. 4.2. using a 5 × 2 cv test (Di-
etterich, 1998). All models are trained for 20 iterations
with the Adagrad algorithm (Duchi et al., 2011). We did
not specifically optimize the model architecture (sizes of
embeddings and hidden layers, activation functions) nor
the hyperparameters.10 Although Tab. 4 shows that the

9As mentioned in Sec. 3.2., Sanskrit has no reliable sentence
boundary markers. We therefore use text lines as the closest ap-
proximations of the true sentences.

10We use the following settings: size of the first dense layer in
Fig. 3: 20; of the penultimate layer: 40; batch size: 32; dropout
rate: 20%; learning rate: 0.001.

jyāke pari nah. nama

Dense

Dense

Softmax

(a) Baseline model
jyāke pari nah. nama

s

Dense

Dense

Softmax

(b) Sequential models

Figure 3: Predicting the dependency label (vocative) for
jyāke→ nama in the sentence jyāke pari n. o nama ‘O bow-
string, bend around us.’ The node labeled s in Fig. 3b
contains the representation of the containing text line.

feedforward model performs worst of all models, nei-
ther of the 5×2 tests that contrast pairs of models produces
a p-value lower than 10%, indicating that the differences
observed in Tab. 4 are not systematic. Notably, the recur-
rent archictecture of bidirnn, which has produced state
of the art results in many NLP tasks, did not outperform
the other models at a significant margin. This somehow
unexpected result can probably be explained by the fact
that most dependency arcs are short. In 83% of all cases,
there are maximally two other words between the depen-
dent and the head of a syntactic relation. In theses cases, bi-
and trigram features of the feedforward model cover
the part of the phrase between dependent and head, and
the sequential models, which encode the full text line, do
not seem to provide relevant additional information. This
hypothesis is supported when the classification results of
feedforward and bidirnn are stratified by the dis-
tance between dependent and head, and the stratified re-
sults are compared using the McNemar test. While the test
shows no significant difference between feedforward
and bidirnn for syntactic arcs shorter than four words
(p = 0.68), the difference is significant with p = 0.008 for
longer arcs, although the accuracy differs by less than 1%.

Comparing the quality of our labeling models with those
described by previous research is complicated. Our la-
beler works with morpho-lexical gold data. On the other
hand, other approaches often use much larger treebanks for
training as well as the unsupervised output of (state of the
art) POS taggers and lemmatizers, whose error levels are
low for well-resourced languages such as English. Papers
dealing with the re-labeling of complete trees are also not
easily comparable, because they can model interdependen-
cies between the proposed labels using a Markov chain as-
sumption (see, for instance, the CRF output layer used by
Shen et al. (2016)). Taking these restrictions into account,
the feedforward model obtains a micro-averaged PRF
of 81.3%/77.6%/78.9% and an overall accuracy of 84.0%



5143

Model P R F A A@3
feedforward 79.43 74.95 76.59 82.35 95.14
sum 79.62 75.19 76.79 82.78 95.16
bidirnn 79.50 75.45 76.92 82.75 95.13

Table 4: Micro-averaged p(recision), r(ecall), F (score),
a(ccuracy) and accuracy @3 for the models described in
Sec. 4.2. All features described in Sec. 4.1. (including the
+lex +emb adaptation) are activated for these experiments.
The four models are compared using a 5 × 2 cv test (Diet-
terich, 1998). None of the pairwise tests produced a p-value
that is significant at the 10% level.

Feature P R F A
-lex -emb -2.69 -2.05 -2.09 -1.43***
+lex -emb -0.46 -0.69 -0.66 -0.31***
-lex +emb -3.01 -1.59 -1.83 -1.37***
Unigrams -6.30 -6.74 -6.94 -3.63***
Bigrams -2.12 -1.49 -1.83 -0.87***
Trigrams -0.85 -0.77 -0.94 -0.31***

Table 5: Feature ablation study with the feedforward
model. The first column indicates which feature was deac-
tivated. Asterisks and dots after the accuracy value indicate
the significance levels of a McNemar χ2 test (< 0.001, <
0.01, < 0.05, < 0.1) that compares the respective model
with full sum model.

when tested with a tenfold cross-validation (detailed data
in Tab. 8). These results appear acceptable given the cur-
rent size of the treebank.
When considering the tradeoff between accuracy, train-
ing duration (which is by far longest for bidirnn) and
simplicity of the architecturee, the feedforward model
combines high accuracy with a simple context representa-
tion and high training speed. We therefore use this model
in the following experiments.

4.3.2. The influence of features
In order to estimate the influence of individual features, we
perform an ablation study with the feedforward model.
The statistical significance of differences to the full baseline
model (all features activated) are assessed using the McNe-
mar χ2 test statistics. The results shown in Tab. 5 demon-
strate that the adaptation of the pretrained lexical embed-
dings (-emb +lex), unigrams and bigrams have the strongest
effect on the classification accuracy, while the influence of
the embedding adaptations and the trigrams is limited. We
hypothesize that the trigram features are too sparse given
the current size of the VTB and therefore do not improve
the labeling accuracy.
Because Tab. 5 shows that the unigrams have the strongest
influence on the quality of the model, we examine their
individual influence in a second ablation study. Here, the
feedforward model uses full lexical adaptation (+lex
+emb), but bi- and trigrams are discarded completely, be-
cause they contain the unigram information. The results
in Tab. 6 show that cases and lexical information are, by
a large margin, most relevant for syntactic labeling, fol-
lowed by the binary flag indicating the relative position

Feature P R F A
lemma -6.82 -6.84 -7.29 -2.35***
POS -1.67 -0.62 -0.65 -0.79***
case -9.00 -8.67 -8.72 -11.99***
number -0.44 +0.46 +0.34 -0.05
gender +0.01 +0.63 +0.60 -0.17.
verb: person -0.25 -0.19 -0.06 -0.07
verb: tense -0.71 +0.17 +0.11 -0.02
verb: passive -0.43 +0.16 +0.10 +0.04
verb: nomin. +0.01 -0.30 -0.36 -0.13
case agr. -0.58 -0.36 -0.36 -0.28**
number agr. -1.05 -0.23 -0.34 -0.31***
gender agr. -0.98 -0.48 -0.55 -0.16.
full agr. -0.62 +1.09 +0.78 -0.01
left/right -1.16 -0.04 -0.31 -0.92***

Table 6: Feature ablation study for the unigram features. In
the delexicalized setting (lemma), all words are set to the
UNK tag.

Setting c h c ¬h ¬c h ¬c ¬h
+lex +emb 83.73*** 80.46 71.91 73.03
-lex -emb 82.29 79.09 70.28 71.96
-lex +emb 82.42 78.54 69.46 70.89
+lex -emb 83.37 79.59 72.30 73.67

Table 7: Details for the lexical subtests in Tab. 5. Column
labels show if the dependent (resp. head) lemma of a syn-
tactic relation is contained in the training set (c, h) or OOV
(¬c, ¬h); ¬c ¬h thus indicates that both dependent and
head lemmata are OOV. Highest values per dependent/head
combination are printed in bold. The indicator of the signif-
icance level after the best value per column, if any, is based
on a McNemar test comparing the best with the second best
setting (see Tab. 5 for the significance levels).

of the dependent, POS, as well as gender, case and num-
ber agreement. Morphological information about the verb
plays almost no role. The importance of the case informa-
tion is obvious, as it is relevant for distinguishing verbal
roles (nsubj vs. obj etc.) as well as for nominal modifi-
cation.
The important function of the lexicon has been observed in
previous research, as, for instance, in the lexicalized parser
introduced by Collins (2003). Table 7 therefore gives a
more detailed evaluation of the four types of lexical adap-
tation. Here, we examine how the adaptation type (+lex
-emb etc.; see Sec. 4.1.) influences the classification result
if the dependent or head of a syntactic relation are OOV.
First, one can observe that relations in which the depen-
dent is OOV (¬c x) are clearly harder to classify than those
in which the head is OOV (x ¬h). Second, Tab. 7 shows
that the fully connected layer inserted for lexical adapta-
tion (+lex x) works as intended: The two best settings (+lex
+emb, +lex -emb) use this kind of lexical adaptation. Be-
sides, this layer produces the best results when the depen-
dent lemma is OOV, indicating that this layer transfers syn-
tactic information to OOV words.
Returning to Tab. 6, a detailed evaluation shows that the
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model without the left/right flag makes numerous errors
when distinguishing advmod from discourse elements.
This can be explained by our annotation practice, because
we label enclitic particles (dependent directly to the right
of its head) such as vai ‘surely’ or ha ‘indeed’ mostly as
discourse, while adverbial particles such as iha ‘here’
often appear to the left of their heads (mostly the verbs).
Given the limited amount of training data, the difference
between these two kinds of particles has apparently not
been captured in the embeddings, but is rather induced from
the relative positions. We also found notable the high rel-
evance of gender information. Here, direct objects of a
verb (obj) were frequently misclassified as advmod by
the model without gender information. VS can use pro-
nouns and adjectives in accusative singular neuter as ad-
verbial modifiers as in the sentence tad yah. . . . yajate ‘who
therefore sacrifices . . . ’, where tad is the acc. sg. neuter
of the pronoun tad (see the discussion of the annotator dis-
agreement in Sec. 3.3.).

4.3.3. Error analysis
In order to estimate how the feedforward model per-
forms in real prediction tasks, we performed a tenfold
cross-validation, the results of which are displayed in Tab.
8. In general, we observe a weak positive correlation be-
tween the number of annotated instances and the F-score of
each syntactic relation (τ = 0.39, p = 0.056).
Notably, many errors were made in copular sentences with
zero copula, in which the subject is not correctly labeled.
Since the subject and the root agree in case (and often in
number as well) in such sentences, a frequent mislabeling
is conj as at Aitareya Brāhman. a 1.29.7: somah. vai rājā
induh. ‘The drop [is] indeed King Soma’. Here, the arc from
soma to indu- ‘drop’ should be labeled as nsubj, but is as
conj. We also observe high confusion rates with xcomp,
as at Aitareya Brāhman. a 2.8.3: tasmāt ajah. medhyah. a-
bhavat ‘Therefore, the goat became ritually clean’, where
aja ‘goat’ is wrongly labeled as xcomp; all labelers pro-
pose the correct nsubj as their second best options. Note
that the analysis as xcomp would also result in a meaning-
ful sentence (“therefore, he became a ritually pure goat”),
which does, however, not fit into the textual context.
Another frequent error is amod instead of acl, which re-
flects the formal underspecification of the differences be-
tween attributive adjectives and secondary predicates (see
Sec. 3.2.). Take, for example, the following sentence from
Maitrāyan. ı̄ Sam. hitā 2.5.3 which relates how cattle emerges
from the killed demon Vr.tra:

tasmāt vis.vañcah. paśavah. vyudāyan
from him moving to cattle went out

all sides.ADJ
‘The cattle went out of him to all sides.’

Although vis. vañcah. is morphologically an adjective, it
serves as an event-oriented secondary predicate; a clunky
translation would render the sentence as ‘the cattle went
out of him as moving to all sides’. This error also occurs
when words that are listed as adjectives in the dictionary
are actually frozen verbal forms and could thus also be read
as compounds involving a participle. Such a case occurs at

Relation P R F Freq.
acl 77.79 76.22 76.99 1190
advcl 73.69 73.24 73.47 826
advmod 84.85 87.01 85.92 3103
amod 75.60 75.88 75.74 792
appos 64.73 55.14 59.56 243
case 79.70 84.05 81.82 257
cc 94.94 96.16 95.55 625
ccomp 80.12 73.57 76.70 367
conj 75.70 77.40 76.54 1743
cop 91.97 97.52 94.66 282
csubj 69.23 33.96 45.57 53
det 86.20 86.32 86.26 760
discourse 71.39 69.08 70.22 773
iobj 87.13 89.43 88.26 492
mark 90.17 89.81 89.99 756
nmod 89.45 92.07 90.74 1538
nsubj 87.67 91.97 89.77 3411
nummod 85.20 83.92 84.56 199
obj 86.32 92.51 89.31 2510
obl 89.07 85.16 87.07 1799
orphan 69.01 47.34 56.16 207
parataxis 72.45 47.65 57.49 149
vocative 95.48 99.17 97.29 362
xcomp 73.37 58.70 65.22 460

Table 8: Detailed results of a tenfold cross-validation of the
feedforward model

Śaunaka Sam. hitā 15.13.5c, where the gold annotation la-
bels aparimitāh. lokāh. ‘infinite worlds’ as acl, because a-
parimita ‘infinite’ is the negated past participle of pari-mā
‘measure’ (note that Latin ‘infinitus’ is derived in a similar
way from the verb finire).

5. Summary
This paper has described the composition and annotation
of the first treebank of Vedic Sanskrit, which is, at the same
time, the first large treebank of a premodern Indian lan-
guage. While the UD standard, which is used for the an-
notation, covers most of the syntactic phenomena we en-
countered in our text sample, the annotation of compounds
deviates from the official annotation scheme. Given that
Classical Sanskrit often uses nominal compounding to ex-
press various kinds of events and states, we consider our
decision as an appropriate basis for annotating Classical
Sanskrit texts as well.
The paper also discussed a syntactic labeler that greatly
sped up the annotation process. The analysis of the re-
sults of the labeler provided important clues about which
features may be useful for setting up a complete syntac-
tic parser of (Vedic) Sanskrit. As soon as enough data
are available, we plan to address this issue by using neu-
ral parser architectures developed for morphologically rich
languages (e.g. Legrand and Collobert (2016)).
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Allgemeines, II. úpa, III. áva. Münchener Studien zur
Sprachwissenschaft, 64:17–130.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Huet, G. (2006). Shallow syntax analysis in Sanskrit
guided by semantic nets constraints. In Proceedings of
the 2006 International Workshop on Research Issues in
Digital Libraries, pages 1–10. ACM.

Jamison, S. W. and Brereton, J. P. t. (2014). The Rigveda:
the Earliest Religious Poetry of India. Oxford University
Press, New York.

Keith, A. B. (1920). Rigveda Brahmanas: The Aitareya
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