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Abstract
In this paper, we propose a neural-based model to address the first task of the DEFT 2013 shared task, with the main challenge of a
highly imbalanced dataset, using state-of-the-art embedding approaches and deep architectures. We report on our experiments on the
use of linguistic features, extracted by Charton et al. (2014), in different neural models utilizing pretrained embeddings. Our results
show that all of the models that use linguistic features outperform their counterpart models that only use pretrained embeddings. The
best performing model uses pretrained CamemBERT embeddings as input and a Convolutional Neural Network (CNN) as the hidden
layer, and uses additional linguistic features. Adding the linguistic features to this model improves its performance by 4.5% and 11.4%
in terms of micro and macro F1 scores, respectively, leading to state-of-the-art results and an improved classification of the rare classes.
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1. Introduction

In this paper, we present the neural models we developed
to revisit the DEFT (Defi Fouille de Texte) 2013 (Grouin
et al., 2013) shared task, using state-of-the-art embedding
approaches and deep architectures. The DEFT 2013 shared
task addressed the general task of mining cooking recipes
in French through several classification and information ex-
traction tasks. Task 1, which is the focus of this paper, ad-
dressed the classification of recipes into four levels of diffi-
culty (Very Easy, Easy, Fairly Difficult, and Difficult). The
dataset is based on a collaborative website where individual
users can post their own recipes. Due to this collaborative
nature, the dataset raises several challenges, including the
subjectivity of the labels and the use of varied vocabulary
and grammar. Moreover, the dataset is highly imbalanced
with approximately 90% of the samples belonging to the
Very Easy and Easy classes, and only around 8% and less
than 1% of the samples with a Fairly Difficult and Difficult
label, respectively. These challenges sparked our interest
and curiosity as to how the performances of traditional and
state-of-the-art approaches would compare in a classifica-
tion task. Additionally, even though the dataset revolves
around food preparation, the challenge of an imbalanced
dataset can be encountered in a variety of applications and
real-world use cases.
To address the challenge of a high class imbalance, we ex-
perimented with pretrained embeddings as input features,
and various deep architectures. We also experimented with
adding the linguistic features extracted by Charton et al.
(2014) to the deep models and measured per-class results
to see if our approach could improve the performance on
rare classes.
This paper is structured as follows: The next section
presents a literature review of research in the area of
text classification including both traditional and neural ap-
proaches. Section 3 describes the dataset and the task in

detail. Section 4 provides a detailed description of our
methodology and the classification architectures we used
throughout our experiments. In Sections 5 and 6, we dis-
cuss the results of our experiments. Finally, in Section 7,
we draw conclusions and highlight future work.

2. Related Work
Recipes and food classification and analysis have been the
topic of interest of many research studies and applications.
Kicherer et al. (2018) performed automatic recipe multil-
abel classification and feature analysis for a dataset of 5,000
noisy recipes from the web and 87 predefined classes. Su
et al. (2014) and Naik and Polamreddi (2015) addressed
recipe classification into cuisines based on ingredients us-
ing support vector machine (SVM) (Cortes and Vapnik,
1995; Joachims, 1998). The general task of text classifi-
cation can be found in various use-cases, such as filtering
(e.g. spam filtering), information retrieval (e.g., document
classification, probabilistic retrieval models), and sentiment
analysis (Aggarwal and Zhai, 2012; Wang and Manning,
2012; Yang et al., 2016). These tasks vary from binary to
multi-class, to multi-label classifications. Traditional text
classification approaches, such as support vector machine
(SVM) (Cortes and Vapnik, 1995; Joachims, 1998) and
Naive Bayes (Manning et al., 2008; McCallum and Nigam,
1998), rely heavily on feature selection and feature engi-
neering. The most commonly used features are usually
human-designed (Lai et al., 2015) such as bag-of-words,
n-grams, part-of-speech, and phrases.
In general, linear classifiers (such as linear SVM), do not
share parameters across features and classes (Joulin et al.,
2016). Research suggested several solutions to this prob-
lem, such as the use of multi-layer neural networks (Joulin
et al., 2016; Collobert and Weston, 2008). The rise of pre-
trained embeddings in recent years, combined with deep
architectures, has offered powerful solutions for text classi-
fication (Lai et al., 2015).



5001

Difficulty Level Train Development Test
# of Samples Percentage # of Samples Percentage # of Samples Percentage

Very Easy 5569 50.2% 1393 50.2% 1132 49.0%
Easy 4601 41.5% 1151 41.5% 968 41.9%
Fairly Difficult 855 7.7% 213 7.7% 189 8.2%
Difficult 64 0.6% 16 0.6% 20 0.9%
Total 11089 100.0% 2773 100.0% 2309 100.0%

Table 1: Statistics of the DEFT 2013 - Task 1 datasets. The training and development datasets were originally released as
the training dataset by the DEFT 2013 organizers.

fastText (Bojanowski et al., 2017) and BERT (Devlin et al.,
2019) have been shown to be scalable, leading to state-
of-the-art performance in many NLP tasks (Joulin et al.,
2016). Dai and Le (2015) trained Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) and Re-
current Neural Networks (RNN) on a variety of document
classification tasks and found that state-of-the-art perfor-
mance can be achieved with careful hyperparameter tuning.
However, despite the popularity of deep models and their
state-of-the-arts results in many tasks, many issues still
need to be investigated. Wang et al. (2017) found that the
classification of short texts can be challenging due to the
texts’ occasional deviation from accepted syntax, their lack
of context, and the added ambiguity resulting from it. To
address this challenge, they proposed a model which makes
use of both explicit and implicit representations. To have
access to explicit representations, they first use a knowl-
edge base to extract the top 10 concepts in a sample. To
create implicit representations of samples, they use pre-
trained word embeddings which are kept static and char-
acter embeddings which are learned during the training of
the model. As their deep architecture, they use a CNN
with two different branches, one of which is used for the
training of character embeddings, and another that takes
as input the explicit representation alongside the pretrained
word vectors and keeps them frozen. In the end, the outputs
of both branches are concatenated and used for the final
classification. Using this setup, their model could signif-
icantly improve state-of-the-art results on short text clas-
sification, showing that a combination of traditional and
novel approaches can be effective in a challenging clas-
sification task. Furthermore, little research in the area of
deep learning has focused on the challenges of handling
an imbalanced distribution of labels over data, although
many real-world applications deal with highly imbalanced
datasets (Johnson and Khoshgoftaar, 2019). Following the
same approach as Wang et al. (2017) in using a mixture of
traditional and neural approaches, we investigate the effec-
tiveness of adding linguistic features, extracted by Charton
et al. (2014), to deep models in addressing the class imbal-
ance challenge in recipe classification.

3. Dataset and Task
In this work, we use the DEFT 2013 dataset from
Task 1 (Grouin et al., 2013) to develop and evaluate our
models. The dataset consists of cooking recipes taken from
Marmiton (www.marmiton.org); a French collaborative
website for sharing cooking recipes. When users submit a
recipe on this website, they must choose one of the four pre-

defined difficulty levels: Very Easy, Easy, Fairly Difficult,
or Difficult that corresponds to their perceived complexity
of the recipe being submitted. The goal of this classifica-
tion task is to correctly assign a difficulty level to a cooking
recipe given its title, ingredients, and instructions.
The DEFT 2013 - Task 1 training and testing datasets con-
sist of 13,862 and 2,309 French recipes, respectively, la-
beled with their difficulty level. In order to validate the
model, we set aside 20% of the training data and used it as
the development dataset. The remaining 80% of the origi-
nal training data was used for training the model.
Table 1 summarizes statistics of the training, development,
and test datasets. As shown in Table 1, the distribution of
the labels in all datasets is highly imbalanced. Approxi-
mately 50% and 41% of the samples belong to the Very
Easy and Easy classes, respectively. That leaves merely
around 8% of the data belonging to the Fairly Difficult
class, and less than 1% of the data belonging to the Dif-
ficult class.

4. Methodology
In order to evaluate the use of neural classification on the
DEFT 2013 dataset, we performed two sets of experiments.
The first one involves using different deep architectures
with pretrained embeddings as input; while in the second,
a combination of pretrained embeddings and extracted lin-
guistic features are utilized for classification.
The overall model architecture is shown in Figure 1. Details
of the models are presented below.

4.1. The Input Layer
Each recipe includes a title and a preparation section. In
order to feed the recipes to the model, first, the title and the
preparation sections of each recipe are concatenated. These
samples are then fed to an embedder.
As shown in Figure 1, the embedder takes in a sample as
input, tokenizes it based on the type of embedding to be
produced (e.g. contextual versus non-contextual), then out-
puts a dense vector representation for each token.
To create these vector representations, three different types
of embedders are used:

fastText The fastText embedder (Bojanowski et al.,
2017) is used to output 300-dimensional pretrained embed-
dings. fastText embeddings are trained based on the skip-
gram model proposed by Mikolov et al. (2013). These em-
beddings are created by taking into account the morphol-
ogy of words, instead of treating them as distinct units.
Therefore, using this method, each word is represented
as a sum of the representations of the character N-grams

www.marmiton.org
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Model Hyperparameters
CNN-fastText 300 unigram, 200 bigram, 100 trigram, and 100 4-gram filters, with max pooling
GRU-fastText two layers of 128 bidirectional GRUs, with attention
LSTM-fastText one layer of 64 bidirectional LSTM units, with attention
CNN-BERT 300 unigram, 200 bigram, 100 trigram, and 100 4-gram filters, with max pooling
GRU-BERT one layer of 64 bidirectional GRUs, with attention
LSTM-BERT one layer of 64 bidirectional LSTM units, with attention
Transformer-fastText three layers of 300 transformer units with 6 attention heads
CNN-CamemBERT 250 bigram and 50 trigram filters, with max pooling

Table 2: Hyperparameters used to train the models not using linguistic features.

Model Hyperparameters
CNN-fastText 250 bigram convolution filters, with max pooling
GRU-fastText one layer of 64 bidirectional GRUs, with attention
LSTM-fastText one layer of 64 bidirectional LSTM units, with attention
CNN-BERT 250 bigram convolution filters, with max pooling
GRU-BERT one layer of 64 bidirectional GRUs, with attention
LSTM-BERT one layer of 64 bidirectional LSTM units, with attention
Transformer-fastText three layers of 300 transformer units with 6 attention heads
CNN-CamemBERT 400 unigram filters, with max and average pooling

Table 3: Hyperparameters used to train the models utilizing linguistic features.

Figure 1: Overall architecture of the model.

constituting it, giving us the opportunity to experiment
with models that focus on N-grams in a sample to per-
form the classification. The flair (https://github.com/
zalandoresearch/flair/) package was used to extract
the pretrained fastText embeddings.

BERT In addition to fastText, a BERT embedder is used
to produce pretrained BERT embeddings for the tokens in
each sample. Proposed by Devlin et al. (2019), BERT em-
beddings are trained using a transformer architecture that
takes both left and right contexts into account, allowing us

to experiment with contextual embeddings as well as non-
contextual ones (i.e., fastText). We use the BERT base mul-
tilingual cased version which has been pretrained on the
cased Wikipedia text for 104 languages, using the first pool-
ing operation (i.e., using only the initial sub-word’s em-
bedding), and working with the last layer of the pretrained
model, which results in a dense 768-dimensional represen-
tation for each token.

CamemBERT Finally, we experiment with the pre-
trained CamemBERT embeddings (Martin et al., 2019).
CamemBERT is a French version of the BERT model and
is pretrained on the French portion of the multilingual Os-
car corpus (Ortiz Suárez et al., 2019). Extracting features
from the last layer of the pretrained CamemBERT model
leads to a 768-dimensional representation for each token.
The pretrained CamemBERT model provides the opportu-
nity to measure the effect of using contextual embeddings
that are trained exclusively on French data.

4.2. The Hidden Layer
As shown in Figure 1, the dense vectors created by the in-
put layer are fed to the hidden layer. We experiment with
four different types of hidden architectures: a CNN (LeCun
et al., 1999) which works on N-grams in a sample by pro-
cessing N consecutive token embeddings separately, bidi-
rectional Gated Recurrent Units (GRU) (Cho et al., 2014)
and a bidirectional LSTM (Hochreiter and Schmidhuber,
1997) that process token embeddings from first to last in
a forward pass and from last to first in a backward pass,
and finally, a transformer encoder (Vaswani et al., 2017)
which creates contextualized token representations using
multi-head attention.

https://github.com/zalandoresearch/flair/
https://github.com/zalandoresearch/flair/
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4.3. The Pooling/Attention Layer
When a CNN is used in the hidden layer, first the Concate-
nated Rectified Linear Unit (CReLU) activation function is
applied on the output of the hidden layer. Its ouput is then
passed to a pooling layer.
In the case of the bidirectional GRU, the bidirectional
LSTM, and the transformer, an attention mechanism (Bah-
danau et al., 2014) is used instead of pooling. The atten-
tion mechanism works by calculating weights for different
time-steps (tokens), allowing it to give more weight to to-
kens that can play a more important role in the final clas-
sifications. These weights are generated by the following
process: First, a feed-forward layer is applied on the output
of the hidden layer for a time-step (of size N), mapping it to
a scalar (of size 1). Equation 1 shows how the scalar νt for
a particular time-step t is calculated. yt is the output of the
hidden layer for that time-step and w stands for the weights
in the single feed-forward layer.

νt = yt ×w (1)
When the scalars are calculated for all time-steps, they are
concatenated and a softmax activation function is applied
on the resulting vector to create the vector of weights ω ,
using Equation 2:

ω = So f tmax([ν1,ν2,ν3, . . . ,νn]) (2)
Finally, the weight vector, generated in the previous step, is
used by the attention mechanism to calculate a weighted-
average of the outputs of the hidden layer for all time-
steps in a sample text. Equation 3 shows how the attention
mechanism functions by multiplying the output of the hid-
den layer at time-step t (yt ) by the corresponding generated
weight (ωt ), then summing over the results of this multipli-
cation for time-steps 1 to n.

Attention =
n

∑
t=1

ytωt (3)

4.4. Addition of linguistic features
In order to measure the effect of adding linguistic features
to the deep neural models, we experimented with the set of
linguistic features extracted by Charton et al. (2014) specif-
ically for this task. The following features are extracted for
each recipe:

1. The number of words that make up the title, an integer.
2. The number of words that make up the preparation

section, an integer.
3. The number of ingredients, an integer.
4. The cost associated with the meal that can be cheap,

average, or fairly expensive. This feature is input as
an ordinal number (1-3).

5. The presence (or absence) of 22 discriminative words
which belong to the fairly difficult class, represented as
22 binary features. The extraction and selection pro-
cess of these words is explained in detail by Charton
et al. (2014).

6. The presence (or absence) of 48 discriminative tri-
grams extracted from the preparation section of the
samples, represented as 48 binary features.

7. The number of verbs belonging to three discrimina-
tive verb families present in the preparation section,

represented as three integers (for a detailed explana-
tion of the verb families and how they are extracted,
see (Charton et al., 2014)).

The extraction of the above features leads to the creation
of feature vectors of size 77. These feature vectors are first
passed to a one-layer feed-forward neural network, whose
output is concatenated to the output of the attention/pooling
layer and mapped to a vector of size 4 (representing the
4 classes) by another feed-forward layer. Finally, a soft-
max activation function produces the probability distribu-
tion over the classes.

4.5. Model Optimization
In order to train the neural networks, the AdamW opti-
mizer (Loshchilov and Hutter, 2019) (a modified version of
the Adam optimization method proposed by Kingma and
Ba (2015)) with a weight decay coefficient of 0.02 was
used. The learning rate was set to 10−3 for all models.
However, for models with CNN as the hidden layer, the ini-
tial learning rate of 10−3 was set to 10−4 after two epochs
of training.
As loss function, multi-class cross-entropy was used with
class weights, to handle the imbalanced distribution of the
labels in the dataset, assigning more penalty to errors which
were made on less frequent classes compared to more fre-
quent ones. For the models that did not make use of linguis-
tic features, the class weights were calculated proportional
to the inverse of the number of samples in each class (in the
training dataset), resulting in weights of 0.0104, 0.0126,
0.0680, 0.9089 for the Very Easy, Easy, Fairly Difficult,
and Difficult classes respectively. For models utilizing lin-
guistic features, the class weights were set to 0.1, 0.1, 0.2,
0.6 for the Very Easy, Easy, Fairly Difficult, and Difficult
classes, respectively.
The mini-batch size was set to 32 and in order to have a
uniform sequence length in each batch, zero-padding was
used. Samples with similar lengths were placed in the same
batch to minimize the amount of padding.
In the models using fastText embeddings as input, only the
first 300 tokens of the samples were used. In the mod-
els with BERT embeddings, the samples were limited to
their first 100 tokens. A dropout layer with a rate of 0.2
was applied on the output of the Concatenate layer in Fig-
ure 1 to reduce overfitting. Finally, gradient clipping with
a norm of 0.5 was used to prevent the exploding gradient
problem (Pascanu et al., 2012).

4.6. Overall Training Process
Each model was trained for 20 epochs and the model pa-
rameters were saved after each epoch of training. The
optimal model parameters were chosen from the epoch
in which the best micro score on development data was
achieved. This model was then evaluated on the test dataset.
The hyperparameters used for the training of each model
are presented in Tables 2 and 3.

4.7. Fine-tuning BERT
As an additional experiment, the BERT base multilin-
gual cased model was fine-tuned. To do so, the AdamW
optimizer with a weight decay rate of 0.01 was used.
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Model
Development Test

Micro
F1-P-R Macro F1 Macro P Macro R Micro

F1-P-R Macro F1 Macro P Macro R

CNN-fastText 60.9 42.7 44.2 41.3 59.6 45.3 50.8 40.9
GRU-fastText 57.0 35.0 35.2 34.8 57.6 34.3 34.5 34.1
LSTM-fastText 56.1 40.8 44.2 38.0 54.2 34.6 34.2 34.9
CNN-BERT 61.5 39.3 41.1 37.6 58.8 37.7 39.4 36.1
GRU-BERT 59.9 38.5 38.5 38.4 58.0 36.8 37.0 36.7
LSTM-BERT 58.8 42.2 44.1 40.4 56.9 37.3 38.8 36.0
Transformer-fastText 58.6 35.5 37.8 33.4 58.4 41.0 48.5 35.5
BERT (fine-tuned) 56.9 39.3 42.9 36.2 55.9 36.0 36.8 35.3
CNN-CamemBERT 60.9 42.7 43.4 42.0 59.3 38.6 39.9 37.3

Table 4: Performance of different deep architectures with pretrained embeddings as input, on the development and test data

Model
Development Test

Micro
F1-P-R Macro F1 Macro P Macro R Micro

F1-P-R Macro F1 Macro P Macro R

CNN-fastText 64.7 51.7 68.6 41.5 63.6 49.4 66.9 39.2
GRU-fastText 64.4 39.8 42.8 37.2 63.4 39.4 42.4 36.8
LSTM-fastText 64.0 39.6 44.9 35.5 59.9 36.4 40.3 33.2
CNN-BERT 64.5 49.1 60.0 41.6 62.0 47.3 59.3 39.3
GRU-BERT 65.8 41.7 45.5 38.5 63.1 39.3 42.1 36.8
LSTM-BERT 64.5 45.5 55.5 38.5 62.3 43.3 54.8 35.8
Transformer-fastText 63.1 39.8 42.9 37.2 61.6 39.4 42.6 36.7
CNN-CamemBERT 66.4 50.3 58.5 44.2 63.8 50.0 62.0 42.0

Table 5: Performance of different deep architectures using pretrained embeddings and additional linguistic features on the
development and test data

Cyclical learning rate (Smith, 2017) with a maximum
value of 10−5 was chosen, using the fastAI imple-
mentation (https://docs.fast.ai/callbacks.one_
cycle.html). Weighted cross-entropy was used as loss
function and the mini-batch size was set to 32. Finally,
samples were limited to their first 128 tokens before being
fed to the model. Fine-tuning was stopped at the epoch for
which the lowest validation error was recorded. The results
of the fine-tuned BERT model can be found in Table 4.

5. Results
Micro-average evaluation is used as the primary metric to
evaluate the performance of the models. Since the micro-
average scores are calculated on all 4 classes, the micro-
average F1 score is mathematically equal to micro-average
precision and micro-average recall.
Furthermore, macro F1, precision, and recall are used as
additional evaluation metrics. In the context of the DEFT
2013 shared task, the macro F1 score is calculated using
Equation 4 (Grouin and Forest, 2012), using macro pre-
cision and macro recall (Sokolova and Lapalme, 2009).
Macro precision and macro recall are computed using
Equations 5 and 6, respectively, with n representing the
number of classes.

macro F1 =
2×macro precision×macro recall

macro precision+macro recall
(4)

macro precision =
∑

n
i=1

(true positivesi)
(true positivesi+ f alse positivesi)

n
(5)

macro recall =
∑

n
i=1

(true positivesi)
(true positivesi+ f alse negativesi)

n
(6)

In this paper, both macro and micro F1 scores are used in
order to analyze the results and compare them with the re-
sults of systems participating to DEFT 2013.

Figure 2: Mean absolute correlation of the linguistic fea-
tures with different classes.

Table 4 presents the performance of different models which
utilize only pretrained embeddings, in terms of micro score
(F1, precision, and recall) and macro scores on both devel-
opment and test data.
Table 5 shows the performance of different models that use
pretrained embeddings and linguistic features to perform
the classification. As shown in Tables 4 and 5, in terms of
micro evaluation, all of the models which utilize linguis-
tic features outperform their counterpart models that only
use pretrained embeddings. The effect of adding linguistic
features is discussed in further detail in Section 6.
For comparative purposes, the results achieved by the top
3 systems (Charton et al., 2014; Collin et al., 2013; Bost
et al., 2017) at DEFT 2013 are presented in Table 6. As

https://docs.fast.ai/callbacks.one_cycle.html
https://docs.fast.ai/callbacks.one_cycle.html
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Micro
F1-P-R Macro F1 Macro P Macro R

First System (Charton et al., 2014) 62.5 48.4 68.2 37.5
Second System (Collin et al., 2013) 61.2 45.1 52.4 39.5
Third System (Bost et al., 2017) 59.2 45.3 63.3 35.3

Table 6: Results of top 3 participating systems on the test data of DEFT 2013 - Task 1

Model Development Test
Very Easy Easy Fairly Difficult Difficult Very Easy Easy Fairly Difficult Difficult

CNN-fastText 72.4 60.6 24.6 22.2 72.4 58.8 23.3 9.5
GRU-fastText 72.7 59.7 19.0 0.0 72.4 58.3 18.3 0.0
LSTM-fastText 74.6 52.6 13.8 0.0 71.9 47.0 10.2 0.0
CNN-BERT 72.0 60.8 24.9 21.0 70.0 58.1 22.5 17.4
GRU-BERT 73.9 61.1 22.6 0.0 72.0 58.1 18.9 0.0
LSTM-BERT 71.4 62.7 2.7 20.0 69.5 60.5 4.0 9.1
Transformer-fastText 70.4 60.0 21.4 0.0 69.3 58.0 22.6 0.0
CNN-CamemBERT 74.0 61.8 27.0 27.2 72.2 59 25.2 25.0
DEFT Top System (Charton et al., 2014) 72.0 57.4 23.2 12.4 71.7 56.2 18.8 9.5

Table 7: Per class results, in terms of F1 score, achieved by different deep architectures using pretrained embeddings and
additional linguistic features on development and test data

Figure 3: Mean absolute correlation of the neural features
extracted by the CamemBERT-CNN model (trained with-
out the linguistic features) with different classes.

Table 5 shows, our best model (CNN-CamemBERT with
features) outperforms the top performing model by Charton
et al. (2014) at DEFT 2013 with a micro F1 score of 63.8%
versus 62.5% and a macro F1 score of 50.0% versus 48.4%.
Finally, for further analysis, Table 7 shows F1 scores of
the models that utilize pretrained embeddings and linguis-
tic features for each difficulty class, along with the results
of the top performing system by Charton et al. (2014) at
DEFT 2013, showing that the CNN-CamemBERT model
with features performs well on individual classes, espe-
cially, in the case of less frequent ones. It should be noted
that in order to obtain the development results and vali-
date the model, Charton et al. (2014) used five fold cross-
validation.

6. Discussion
In this section, we first inspect the correlation between
the linguistic features and the difficulty classes. Then, we

turn our attention to the change in the performance of each
model after the addition of the linguistic features. Finally,
we take a closer look at the performance of the models on
different classes.

6.1. Correlation of Features with Classes
In order to have a better sense of the effect of adding the
linguistic features to the models, we first focus on the cor-
relation between the discriminatve features with the diffi-
culty classes. Pearson correlation is used to calculate the
correlation between each feature and each class, separately
(through binarizing the labels, i.e. setting the labels from
the target class equal to 1, and the rest of the labels equal to
0). Since the resulting value can be either positive or neg-
ative and in both cases signaling a correlation, the absolute
of the computed correlation values is used. Finally, for each
class, an average is computed over all of the correlation val-
ues of different features with that class.
Figure 2 shows the mean absolute correlation between the
linguistic features and the classes.
As shown in Figure 2, although the Fairly Difficult and Dif-
ficult classes are the least frequent ones, the mean absolute
correlation between the linguistic features and the classes is
at its minimum for the Easy class, with approximately 41%
of samples belonging to it. This demonstrates that the ex-
tracted linguistic features can be assumed to be in favor of
the less frequent classes despite the small number of sam-
ples belonging to those.
As a comparison, the mean absolute correlation between
the neural features extracted by the CNN-CamemBERT
model before the addition of the linguistic features and
the different classes has been computed (using the same
method explained above for computing the correlation
values between the linguistic features and the classes).
The mentioned neural features are the vectors output by
the Concatenate layer in Figure 1, before the last fully-
connected layer.
Figure 3 presents the mean absolute correlation between the
neural features from the CNN-CamemBERT model and the
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Figure 4: Macro F1 of each model before and after the addition of the linguistic features, sorted from the highest to the
lowest amount of improvement.

Figure 5: Confusion matrix of the predictions made by the
CNN-CamemBERT model, without the use of linguistic
features.

difficulty classes. As shown in Figure 3, the mean absolute
correlation between the neural features and the Fairly Diffi-
cult class is the second highest after the Very Easy class,
although the Fairly Difficult class includes less than 8%
of the training samples. We hypothesize that in this case,
the class weights have been helpful in training the network
towards the extraction of features that are in favor of this
class. However, this is not the case for the Difficult class
as the least amount of mean absolute correlation has been
calculated for this class, which is caused by the very small
number of training samples belonging to it (less than 1%).

A comparison between Figures 2 and 3, shows how the lin-
guistic features have been helpful in handling the imbal-
anced distribution of labels in the training data, especially
for the Difficult class which is the least frequent one. We
believe that this has been the reason behind the need for
more balanced class weights (as mentioned in Section 4.5.)
to achieve better results, when training the models that use
the linguistic features.

Figure 6: Confusion matrix of the predictions made by the
CNN-CamemBERT model, using the linguistic features.

6.2. Effect of Features on Performance
The help of the linguistic features in better handling the
rare classes can explain the increase in the macro F1 after
adding the said features to the system (see Figure 4); an
increase which can be seen in the macro F1 score achieved
by almost all of the models (excluding the Transformer-
fastText model).
Looking at Figure 4 which shows the improvement in
macro F1 for each model before and after utilizing the lin-
guistic features, it can be observed that, in general, the mod-
els that use pretrained BERT-based embeddings (including
CamemBERT) as input features, achieve a higher improve-
ment in terms of macro F1 score after using the linguistic
features. Knowing that, as explained in Section 4.4., the
linguistic features are based on N-grams (and hence, non-
contextual), We believe that this is due to the contextual na-
ture of BERT-based embeddings, which can be better com-
plemented by the linguistic features. This is not the case
for fastText embeddings, as they are non-contextual by na-
ture. Therefore, the non-contextual linguistic features may
not add the same amount of advantage to the models using
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fastText embeddings in comparison to the models that use
BERT and CamemBERT embeddings.
The greatest amount of increase in macro F1 can be seen in
the case of the CNN-CamemBERT model (from 38.6% to
50%). When linguistic features were not used, this model
was not the top performing one among our models (see Ta-
ble 4). On the other side, when linguistic features were
incorporated in the model, it achieved the best overall per-
formance (see Table 5). This can lead to the hypothesis
that the neural features that are extracted by the CNN-
CamemBERT model, although not the most representative
of the classes, can be complementary to the linguistic fea-
tures, resulting in the top performance of the model.

6.3. Performance on Different Classes
Table 7 presents the results achieved on different classes by
the models that use the linguistic features. As shown in Ta-
ble 7, four models could achieve an F1 score above zero
on the least frequent class, i.e. the Difficult class. Out of
these four models, three had CNN as their deep architec-
ture. Furthermore, looking at the results that were achieved
on the Fairly Difficult class, it can be seen that three out of
the four top-performing models on this class made use of
CNN as their hidden layer. This shows the better capacity
of the CNN to capture the information required to detect
the two classes Fairly Difficult and Difficult, which have a
significantly smaller number of training samples belonging
to them. Finally, it can be seen in Table 7 that the per-
formance of the CNN-CamemBERT model is significantly
higher on the last two difficulty classes, compared to other
models, resulting in the CNN-CamemBERT model achiev-
ing the highest macro F1 among all models (see Table 5).
Figures 5 and 6 present the confusion matrices of the pre-
dictions by the CNN-CamemBERT model, before and after
the addition of the linguistic features, respectively. A com-
parison between the two matrices shows that although the
performance on the Very Easy class drops after adding the
features, a remarkably higher number of correct predictions
are made on the Easy class when the model incorporates the
linguistic features. In fact, the CNN-CamemBERT model
that does not use the linguistic features is more likely to
incorrectly tag a sample as Very Easy instead of Easy, as
a result of the imbalanced distribution of labels over the
training data. In the case of the Fairly Difficult class, when
an incorrect prediction is made, the addition of the linguis-
tic features to the model increases the chances of a Fairly
Difficult sample to be incorrectly tagged as Easy, as op-
posed to being tagged as Very Easy, which can be deemed
an improvement in detecting the difficulty degree of a sam-
ple recipe.
Finally, looking at the predictions on the Difficult class in
Figure 5, it is interesting to see that the CNN-CamemBERT
model that does not use the linguistic features is more likely
to predict a Difficult sample as Easy instead of tagging it as
Fairly Difficult (which is more similar to the true label in
terms of degree) when making a mistake, thus showing a
bias towards a more frequent class. However, this is not the
case for the CNN-CamemBERT model that uses the lin-
guistic features, as shown in Figure 6. When making an in-
correct prediction on the Difficult class, this model is more

likely to incorrectly tag a Difficult recipe as Fairly Difficult,
rather than Easy, despite the outstandingly lower number of
samples in the Fairly Difficult class compared to the Easy
class. This can be seen as a sign of improvement in a clas-
sification task where the classes are not completely distinct
and also proof of a lesser degree of bias towards the more
frequent classes in this model.

7. Conclusion and Future Work
In this paper, we proposed a deep-learning-based classifi-
cation model to revisit the first task of DEFT 2013. To
develop the model, we experimented with pretrained fast-
Text, BERT, and CamemBERT embeddings as input fea-
tures, and a CNN, GRU, LSTM, and transformer encoder as
hidden architecture. We also checked the effect of adding
the linguistic features extracted by Charton et al. (2014)
to the deep model and evaluated its performance using the
DEFT 2013 - Task 1 dataset, which includes a collection
of cooking recipes tagged with one of four difficulty lev-
els, and the evaluation metrics specific to the shared task.
The results achieved by different models before and after
the addition of linguistic features showed that, in general,
the performance improved after incorporating the features.
The best performance on the test data was achieved with
pretrained CamemBERT embeddings as input and CNN as
the hidden layer, and with the addition of the linguistic fea-
tures to the model.
The incorporation of the linguistic features in this model
improved its performance by approximately 4.5% in terms
of micro F1 and 11.4% in terms of macro F1 score, result-
ing in state-of-the-art results on the dataset. This setup also
proved effective in better handling the imbalanced distri-
bution of the labels over the dataset and lead to a better
classification of the rare classes.
As future work, three possible directions can be proposed:
Firstly, it would be interesting to experiment with a mix-
ture of contextual and non-contextual embeddings (for ex-
ample, CamemBERT and fastText) as input features to the
model, knowing that they can capture different information
and could potentially act in a complementary manner to
perform a better classification. Also, seeing that our best
model used pretrained CamemBERT embeddings as input,
we could experiment with models using different types of
hidden layers, and CamemBERT embeddings as input. Fi-
nally, we could check the effect of fine-tuning Camem-
BERT embeddings and check if it results in a better per-
forming classification model.

Reproducibility

To ensure reproducibility and comparisons between
systems, our source code is publicly released as an open
source software in the following repository:
https://github.com/cooking-classification/
LREC2020.
The data could be obtained by contacting the DEFT 2013 shared
task organizers (see https://deft.limsi.fr/2013/
index.php?id=1&lang=en

https://github.com/cooking-classification/LREC2020
https://github.com/cooking-classification/LREC2020
https://deft.limsi.fr/2013/index.php?id=1&lang=en
https://deft.limsi.fr/2013/index.php?id=1&lang=en
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