
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 4877–4882
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

4877

The Ontology of Bulgarian Dialects – architecture and information retrieval

Rositsa Dekova
Paisii Hilendarski University of Plovdiv

24, Tsar Assen Str, Plovdiv, Bulgaria

rosdek@uni-plovdiv.bg

Abstract
Following a concise description of the structure, the paper focuses on the potential of the Ontology of the Bulgarian Dialects, which
demonstrates a novel usage of the ontological modelling for the purposes of dialect digital archiving and information processing. The
ontology incorporates information on the dialects of the Bulgarian language and includes data from 84 dialects, spoken not only on the
territory of the Republic of Bulgaria, but also abroad. It encodes both their geographical distribution and some of their main diagnostic
features, such as the different mutations (also referred to as reflexes) of some of the Old Bulgarian vowels. The mutations modelled so
far in the ontology include the reflex of the back nasal vowel /ѫ/ under stress, the reflex of the back er vowel /ъ/ under stress, and the
reflex of the yat vowel /ѣ/ under stress when it precedes a syllable with a back vowel. Besides the opportunity for formal structuring of
the considerable amount of data gathered through the years by dialectologists, the ontology also provides numerous possibilities for
information retrieval – searches by dialect, country, dialect region, city or village, various combinations of diagnostic features.

Keywords: ontology, Bulgarian dialects, Protégé

1. Introduction

Although the geographic distribution and the characteristic
features of the various dialects of the Bulgarian language
have been the focus of many research studies through the
years, little has been done in the direction of their digital
archiving. Some of the few projects worth mentioning are
the Electronic Interactive Map of the Bulgarian Dialectal
Division1, the Bulgarian Dialectology as Living Tradition
website2 and the attempt for storing and processing dialect
data by using an XML-based model within the CLaRK
system (Osvenova and Simov, 2007). While the first two
are predominantly user-oriented and aim at making the
overall information on the Bulgarian dialects visible to the
general public as well as to specialists, the last one is
focused mainly on the adequate computerization of the
linguistic data for easy processing and portability.
Recent advances in employing ontologies and ontological
modelling for various task-specific and more generalized
applications have proven rather powerful and quite
adequate in capturing also the specifics of the natural
languages. For the purposes of this project, we use the term
ontology in the sense of Gruber (2009) to specify a set of
representational primitives for modelling a domain of
knowledge, where the definitions of these primitives must
include information on their meaning and constraints that
ensure their logically consistent application.
The work presented in the current paper is a novel attempt
at using the advantages of ontological modelling for
encoding information, both linguistic and extra linguistic,
about the Bulgarian dialects. The ontology incorporates
data from 84 dialects and it encodes their geographical
distribution, as well as some of their main diagnostic
features – the different mutations (also called reflexes) of
some Old Bulgarian vowels. The mutations modelled so far
include the reflex of the back nasal vowel (ѫ) under stress,
the reflex of the back er vowel (ъ) under stress, and the
reflex of the yat vowel (ѣ) under stress when it precedes a
syllable with a back vowel. Besides the formal structuring
of ample data gathered by dialectologists across decades,
the ontology also offers numerous possibilities for
retrieving information related to dialect, dialect region,
(combinations of) diagnostic features, etc.

1 Available at: http://ibl.bas.bg//bulgarian_dialects/.

2. Technologies Implemented

Besides the concept of the ontological modelling as such,
we have applied a number of different technologies to
ensure the correct representation of the dialect data and to
explore the various potentials for information retrieval.

2.1 Protégé

The Ontology of the Bulgarian Dialects was created with
the open-source ontology editor Protégé, which is freely
distributed by the Stanford Center for Biomedical
Informatics Research at the Stanford University School of
Medicine. Based on Java, Protégé is extensible and
provides a plug-and-play environment that makes it a
flexible base for both prototyping and application
development (Musen, 2015). Finally, Protégé was favoured
also because it is compliant with the W3C standards and
fully supports the newest specifications of OWL 2.

2.2 The OWL2 Web Ontology Language

We used the OWL 2 Web Ontology Language (Hitzler,
2012) to express the extensive and multifaceted knowledge
related to dialects, thus utilizing the wide potential of the
classes, properties, individuals, and data values provided
by the OWL 2 ontologies. We chose OWL 2 because it is a
computational logic-based language that readily allows for
the data encoded in it to be automatically checked for
consistency, using an OWL Reasoner. Among other
capacities for coding and structuring knowledge, OWL 2
provides also the option of including a rich variety of
metadata as annotations that can be appended to classes and
individuals as well as to properties and restrictions. This
proved to be particularly useful in expressing dialect data.

2.3 The OWL API and the Hermit Reasoner

For the processing of the ontology and the retrieval of
information, we used the class-based object-oriented
programming language Java (JDK 1.8) and the Java
compatible OWL API reference implementation for
creating, manipulating and serialising OWL Ontologies
(Horridge & Bechhofer, 2011). We also employed the
Hermit OWL Reasoner (Glim et al., 2014) for consistency
validation and for extracting implicit knowledge.

2 Available at: http://bulgariandialectology.org/.

mailto:rosdek@uni-plovdiv.bg
http://ibl.bas.bg/bulgarian_dialects/
http://bulgariandialectology.org/

4878

3. Building the Ontology

The overall architecture of the ontology follows the guiding
principles and complies with the data standards for
cataloguing cultural objects (Baca, 2006). Thus, it could be
easily incorporated in larger projects for ontological
modelling of knowledge on cultural and historical heritage.
The data included in the ontology have been collected
through the years and classified by the researchers at the
Department of Bulgarian Dialectology and Linguistics
Geography at the Institute for Bulgarian at the Bulgarian
Academy of Sciences (Kochev, 2001).

So far, the ontology encodes information only on the
geographical distribution of the Bulgarian dialects and
some of their most prominent diagnostic features as
described in Antonova-Vasileva et al. (2014).

3.1 General Characteristics of the Ontology

The ontological model consists of a hierarchy of
representational primitives (such as classes, properties, and
relationships) designed to describe the specifics of the
dialect knowledge.

Currently, the ontology contains 24 classes encompassing
384 individuals. We have defined 17 object properties and
there are 1998 axioms. The data covers 102 dialect regions,
84 dialects, and over 150 administrative places (i.e. cities,
villages, and countries). We have described 25 different
mutations of the Old Bulgarian vowels /ъ/, /ѫ/, and /ѣ/.
There are also 369 annotation assertions, which are mostly
of the type <rdfs:label xml:lang="bg">, so that all the data
can be readily visualised through a graphical user interface.

3.2 Specific Classes and Their Properties

Figure 1 shows the overall architecture of the ontology with
respect to the hierarchy of classes and the hierarchy of the
object properties is visualized in Figure 2, followed by a
concise presentation of some of the most essential classes,
together with their key characteristics (see Dekova (2019)
for a more detailed description in Bulgarian).

The Bulgarian dialects are defined as instances of the class
Dialect. The most important axioms for the class Dialect
refer to the places where it is spoken (spokenIn some
DialectRegion) and the mutations of the Old Bulgarian
vowels which are specific for this dialect (hasVowel some
BgVowel).

The object property spokenIn relates a dialect with an
administrative or geographic location where this dialect can
be found. Thus, each dialect is related to at least one place,
but multiple relations of this type are also conceivable. For
example, the Eastern Sub-Balkan dialect is related to three
places: the cities Yambol and Sliven, and the Eastern Sub-
Balkan dialect region.

The various dialect regions of Bulgarian described in the
works of Kochev (2001) and Stoikov (1993) are defined as
instances of the class DialectRegion. Since almost each
dialect (and respectively its region) belongs to a larger
group of dialects sharing similar features, we have
modelled a hierarchy of the dialectal division as shown in
Figure 3 (the colour coding complies with the Electronic
Interactive Map of the Bulgarian Dialectal Division).

The transitive object property isLocatedIn and its reverse
property includesPlace allow us to encode the relations of
the various administrative and geographical locations
within each other. Hence the assertion includesPlace some
DialectRegion allows us to specify only the direct children
of each larger region. Similarly, for the instances of type
Place we assert only the direct hierarchical parent using the
property isLocatedIn some DialectRegion.

Thus, with the assertions spokenIn and includesPlace and
their respective transitive properties speaksDialect and
isLocatedIn, we are able to include a lot of information in
the ontology in a very effective way. Figure 4 shows an
example of an instance of type DialectRegion where all the
assertions are automatically inferred using the HermiT
OWL Reasoner (Glim et al., 2014).

Figure 1: Class hierarchy.

Figure 3: Hierarchy of the dialectal division of the

Bulgarian language.

Figure 2: Hierarchy of the object properies included in

the ontology at present.

4879

To express the linguistic knowledge about some of the most
prominent diagnostic features of the Bulgarian dialects we
introduced the class SoundSystem with two subclasses
BulgarianCyrillic and OldBulgarianCyrillic (see Figure 1).
The different mutations (reflexes) of the Old Bulgarian
vowels /ъ/, /ѫ/, and /ѣ/ were then defined as instances of
the type BgVowel, where for each instance holds the
assertion isInheritedFromOldBgVowel some OldBgVowel.
Thus, we do not have a single instance for the sound /u/, for
example, but we define the separate instances UfromBigEr
and UfromBigYus and we use the assertion to relate them
to their respective ancestors – the Old Bulgarian vowels /ъ/
and /ѫ/. The basic idea for this structure is the inherent
relation between Old Bulgarian and modern Bulgarian
sounds. These reflexes differ in the different dialects, i.e.
one and the same Old Bulgarian vowel has mutated
differently in the different dialects. For example, the Old
Bulgarian back nasal vowel /ѫ/ has become /ъ/ in some
dialects (e.g. in the Ihtiman, the Balkan, and the Sub-
Balkan regions), while in others it has mutated to /a/ (e.g.
Botevgrad, Vratsa, Pirdop), /u/ (e.g. Belogradchik,
Negotino, Breznik), /o/ (e.g. the Devisilovo region), /ô/
(e.g. Smolyan, Shiroka Lаka), etc.

Figure 5 below shows an OntoGraf of those instances of the
type BgVowel which are related to their ancestor bigYus of
the type OldBgVowel, i.e. all the mutations of the Old
Bulgarian back nasal vowel /ѫ/ found in dialects.

Hence, the knowledge for each dialect is encoded by a set
of property assertions including the relations spokenIn and
hasVowel, which enable us to generalize and extract further
information.

Figure 6a offers an example of the amount and types of data
presently available for most of the dialects in the ontology,

3 Available at: https://jetbrains.com/idea/.

while Figure 6b illustrates the inferred property assertions
based on the relation Same Individual As, which indicates
that the two dialects, i.e. the Ropka dialect and the Hvoyna
dialect are one and the same individual. Similarly, Same
Individual As relates the two dialect regions and entails the
inferred property assertions spokenIn, which is also visible
in Figures 6a and 6b below.

4. Ontology Processing and Information
Retrieval

Since the ontology was not created with the sole objective
of digital archiving but also with the intent of data
visualisation and information retrieval oriented towards a
broader audience, we developed the BgDialectsOntology
project so as to take care of the queries and manage the data
to be retrieved. The project was implemented in Java (JDK
1.8) in the IntelliJ IDEA programming environment3. We
have also imported the libraries of OWL API (Horridge &
Bechhofer, 2011) and the HermiT Reasoner (Glim et al.,
2014), as they were not part of the standard Java libraries.
For ease of portability, the ontology .owl file was imported
in a separate package (resources-Ontology).

Figure 4: Inferred object property assertions for

the Razlog dialect region.

Figure 5: An OntoGraf of some BgVowel instances.

Figure 7: An UML class diagram of the BgDialectsOnto
and OntoManager packages and their methods.

Figure 6a: Property

assertions for the Ropka

dialect.

Figure 6b: Property

assertions for the Hvoyna

dialect.

https://jetbrains.com/idea/

4880

The project comprises two main packages (BgDialectsOnto
and OntoManager) that process the ontology and retrieve
the necessary information (illustrated in Figure 7).

In addition, there is also an interface package
(IBGDialectsOntology) which contains all the methods that
might be used to extract information from the ontology, and
defines the parameters that could be sent by the graphical
user interface. Thus, we enable users to choose among
different criteria for filtering and extracting information.
These criteria are the parameters received by the interface,
where the information required by the ontology is extracted
by calling the appropriate method(s). Once the ontology
has been processed, the knowledge matching the query is
displayed by means of its associated annotation <rdfs:label
xml:lang="bg">.

Thus, at the current stage of the project, users could search
for and retrieve information on a dialect region and its sub-
regions (if any); a place (city or village) and its dialect; a
dialect and its diagnostic features.

More details on the potential for processing the ontology
and data queries are discussed below in relation to the
description of the respective methods in the packages
OntoManager the BgDialectsOnto.

We divided the methods into two separate packages to
obtain a higher level of efficiency. Thus, OntoManager
encompasses all the methods that access the ontology
directly and retrieve the necessary information using
external org.semanticweb libraries, such as owlapi.model,
owlapi.apibinding.OWLManager, owlapi.reasoner, and
HermiT.Reasoner.

BgDialectsOnto, on the other hand, is designed to
implement the methods from the IBGDialectsOntology
interface and it handles only individuals. For any
information accessible through ontology processing, it uses
the methods of OntoManager.

4.1 Processing the Ontology

Besides the indispensable methods for setting and verifying
the status of the ontology, we defined a number of methods,
which are crucial for managing the ontological knowledge
and retrieving relevant information.

4.1.1 Extracting ontology individuals

To obtain ontology individuals, we have defined the
getIndividuals method. The method is public and
implements the method getIndividualsInSignature() of the
org.semanticweb.owlapi.model.OWLOntology class. As a
result, it returns a list of the type OWLNamedIndividual,
which can then be handled by the BgDialectsOnto methods.

4.1.2 Extracting instances by class

To retrieve the individual(s) that we want to visualise in the
GUI drop-down lists so as to offer various searches by
dialect, place or vowel mutation, we have defined the
public method getInstancesInClass. It accepts a String
variable that is set to specify the name of the class the
instances of which we need to extract. The result is of the
type List <String> and contains the Bulgarian labels of all
the instances of the class. For example, for the String
variable OldBgVowel the getInstancesInClass method
returns the label annotations for the Old Bulgarian vowels
included so far in the class, i.e. the back er vowel (ъ), the

back nasal vowel (ѫ), and the yat vowel (ѣ) – [[задна ерова
гласна [ъ], задна носова гласна [ѫ], ятова гласна [ѣ]].

4.1.3 Extracting object property values

To obtain the specific values of a particular object property,
we defined the method getObjPropertyValues. It is public
and it accepts two variables: one of the type
OWLNamedIndividual and the String variable property.
As a result, the method returns a set of the type
OWLIndividual, i.e. the set of all values of the particular
object property (e.g. hasPlace, isLocatedIn, spokenIn,
hasVowel) assigned to a concrete object.

This method is implemented in almost all of the searches
as it allows us to obtain all individuals with specific object
property values and to extract those that match a particular
query.

4.1.4 Extracting the <rdfs:label> annotation

As it is necessary to visualise the results of the queries in a
format that is relevant and understandable to the users, we
have designed the getIndividualLabel method to extract the
annotations of the type <rdfs:label xml:lang="bg">.

The method accepts a variable of the type
OWLNamedIndividual and returns a result of the type
String, i.e. the name or the description of the individual in
Bulgarian. Although currently Bulgarian is the only
language included under this label, we plan to include label
information for English as well.

4.2 Retrieving Information

One of the main strengths of the ontological modelling of
knowledge lies in its potential for retrieving information of
various types and even such that has not been explicitly
encoded. The ontology presented in this paper was created
as a distinct module of an ongoing project for building an
intelligent system for the ontological modelling of the
Bulgarian dialects (Dekova, 2018). Although the GUI
module is still under construction, it was important for us
to envisage and design a good number of search options
already at this stage. These are implemented through the
methods included in the BgDialectsOnto package and can
be easily employed by the graphical user interface through
the IBGDialectsOntology interface package.

4.2.1 Searches by Dialect or Geographic Place

The dialect search allows the user to select one of the
dialects from a drop-down menu or to enter any string of
characters in the search field. In the second case, the system
responds interactively by correcting the dialect list, leaving
only those dialects that include the user’s input string.
To create the drop-down lists that are displayed to the user
when searching by dialect or place, we defined the public
method getIndividualsInClass. The method implements the
getInstancesInClass method (described in 4.1.2 above),
with the variable owlClass, which receives its value from
the GUI input field, that is, the name of the class whose
individuals we want to display in the drop-down menu and
returns as a result a list of strings. This comprises the labels
of those individuals, whether dialects, dialect regions, or
locations like cities or villages.

Once the dialect is selected, its name is given as the value
of the variable dialect of the public method
getRegionForDialect. It implements the OntoManager
methods getIndividuals and getObjPropertyValues, the

4881

latter specified for the property spokenIn, and it returns
information about the region where this dialect is spoken.
To return the specific characteristics of the dialect (its main
diagnostic features), we have defined the public method
getDialectPoperties. It accepts the variable dialect of type
String and returns a list of type String as a result. This
method gets its input parameter from the graphical user
interface when the user selects a particular dialect for which
they want to receive more information. As a result, a list of
values of the hasVowel property for the particular dialect is
returned, displaying their labels to the user. These are the
specific features of the dialect chosen by the user.

For example, if we search for the Razlog dialect, we will
get as a result the region where it is spoken (the Razlog
dialect region) and the set of diagnostic features included
in the ontology, i.e. the specific mutations of the Old
Bulgarian vowels /ъ/, /ѫ/, and /ѣ/ in this particular dialect.
Searching for a geographic location employs the same
principles as searching for a dialect, enabling the user to
write the name of a city or a village. If the ontology has
some information about this place, it will be displayed.
The method used for this search is the public method
getRegionForCity, which behaves quite similarly to the
getRegionForDialect method described above.

4.2.2 Retrieving the sub-regions of a dialect region

To retrieve the sub-regions of a specific dialect region, we
defined the getMainRegions method – a non-recursive
method which does not use automatically generated logic
properties and outputs only the explicitly specified values
set for the inlcudesPlace property of the selected dialect
region. The getMainRegions method is public, accepts a
mainRegion variable of type String and returns a list of type
String as a result. This method expects a string as the input
parameter, which is the name of the dialect region selected
by the user through the graphical user interface and returns
a list of strings – labels of the dialect sub-regions included
in that region, which will be displayed as a result for the
user.

4.2.3 Searching for dialects with specific properties

The search for dialects with specific characteristics enables
the user to select from of a drop-down menu any of the
possible mutations for each of the three Old Bulgarian
vowels – the reflex of the back nasal vowel /ѫ/ under stress,
the reflex of the back er vowel /ъ/ under stress, and the
reflex of the yat vowel /ѣ/ under stress in a position
preceding a syllable with a back vowel. This provides the
users with the unique possibility to initiate a search by one,
two, or all three criteria, and to receive as a result the set of
dialects that meet these criteria.

To implement this type of search, we have defined three
individual methods corresponding respectively to the
user’s decision to choose one, two or all three parameters.
The getDialectsWithPoperty method accepts only one
String variable and is called in the cases where the user has
selected only one parameter from any of the three drop-
down menus. The method retrieves all instances of type
Dialect that have the value selected by the user for the

4 Here for convenience, we use the names of the reflexes and the

names of the dialects as they are defined in the ontology. The user

will see the respective annotation labels in Bulgarian.

hasVowel property. The method returns as a result a list of
labels of the dialects that meet the criterion.

The getDialectsWithTwoPoperties method accepts two
variables of type String and is called when the user has
selected two parameters from the drop-down menus. The
method retrieves all instances of type Dialect that have the
value selected by the user for the hasVowel property. Then
only those that meet the second requirement are preserved.
The method returns as a result a list of the labels of those
dialects that have both characteristics.

The getDialectsWithThreePoperties method behaves
similarly to the previous method but accepts three String
variables and is called when the user has selected one
parameter from each of the drop-down menus. The method
returns as a result a list of labels of many dialects that have
all three diagnostic features the user has selected.

All three methods implement the private void method
getDialectsWithSearchedProperty with the four variables
(String searchedProperty, List<String> searchedDialects,
OWLNamedIndividual ind, Set<OWLIndividual>
hasVowelProps). The first variable gets its value from the
user’s input. The second one is the list to which the dialects
that have the specified characteristic are appended. The
third variable is the specific individuality (dialect) for
which the method verifies whether it meets the criterion,
i.e. whether it has the desired characteristic. The last
variable represents the set of values for the hasVowel
property. Each element of type OWLIndividual from the
hasVowelProps set is converted to an
OWLNamedIndividual to check whether it matches the
desired characteristics. If it does, it takes the value from the
label annotation of the variable ind and adds it to the
searchedDialects list.

In this way, the getDialectsWithSearchedProperty method
undertakes a substantial part of the search and is used by
the other three methods to achieve greater efficiency.

For example, a search with the following combination of
criteria <AfromOldBigEr; AfromBigYus; EfromYat>4
returns the set of dialects where each dialect has these three
specific mutations – the reflex /a/ of the back er vowel /ъ/
under stress, the reflex /a/ of the back nasal vowel /ѫ/ under
stress, and the reflex /e/ of the yat vowel /ѣ/ under stress
when it precedes a syllable with a back vowel. As a result
the user gets the following set of dialects: [vrachanski,
shtipsko-radovishki, negotinski, iztochnosofiyski
(elinpelinski), samokovski, veleshko-prilepsko-bitolski,
razlozhki, dupnishki].

This search allows not only for retrieving and comparing
dialects with similar characteristics but it also allows for
discovering of previously undetected analogies. Therefore,
it is foreseen as particularly valuable for specialists in the
field of dialectology, but it can also serve users with non-
specialist interests and the general public, more broadly.

4882

5. Conclusions and Future Work

Although the data incorporated in the current stage of the
ontology represent a tiny part of the knowledge related to
the Bulgarian dialects, we believe that the ontological
modelling of dialectal records has a number of significant
advantages and it certainly deserves further development.

Our next steps include expanding the data related to
particular phonological characteristics of the Bulgarian
dialects, as well as expressing some of the more specific
lexical and morpho-syntactic features, such as the dialectal
phonetic variants of the morpheme denoting definiteness in
singular masculine adjectives and nouns or the various of
the future tense auxiliary verb form ще /ʃte/ (e.g. ше /ʃe/,
же /ʒe/, че /tʃe/, ке /ke/, за /za/, etc.).

We are also working on the visibility of the data by creating
a suitable graphical user interface that will allow a good
visualisation for the processing and extracting information
by the wider public.

Designed in compliance with the CCO data standards
(Baca, 2006), the architecture of the ontology also allows it
to be incorporated in different projects and applications
related to the digitalization and exploration of cultural and
historical heritage, such as the Personal Internet of Things
Tourist Guide developed at the Faculty of Mathematics and
Informatics, at the Paisii Hilendarski University of Plovdiv
(Glushkova et al., 2018).

The conceptual modelling of data related to dialects is a
novel usage and as far as we know, there are no similar
studies on dialects of other languages. Although the
features encoded in the ontology seem rather specific for
the historical development of the Bulgarian language and
its dialects, the overall design of the hierarchies of classes
and properties can be easily adapted and applied to other
languages. Therefore, it offers scope for valuable
contribution that goes beyond national and regional
borders.

6. Acknowledgements

This work was conducted using the Protégé resource,
which is supported by grant GM10331601 from the
National Institute of General Medical Sciences of the
United States National Institutes of Health.

I gratefully acknowledge the anonymous reviewers for
their valuable suggestions and my colleagues Maria Miteva
and Milena Katsarska for their precious advice and friendly
support along the way.

7. Bibliographical References

Alexander, R. and Zhobov, V. (2016) Bulgarian
Dialectology as Living Tradition. Available at:
http://www.bulgariandialectology.org (02.03.2020)

Antonova-Vasileva, L., Vasileva, L., Keremedchieva, Sl.,
Kocheva-Lefedzhieva, A. (2014) Dialektnata delitba na
bulgarskiya ezik. http://ibl.bas.bg/Dialektna_delitba.pdf
(12.03.2020)

Baca, M. (2006). Cataloging cultural objects: a guide to
describing cultural works and their images. Chicago,
American Library Association.

Dekova, R. (2018). An Intelligent System for Ontological
Representation of the Bulgarian Dialects: the
Ontological Model. MSc Thesis (in Bulgarian,
unpublished), Faculty of Mathematics and Informatics,
Paisii Hilendarski University of Plovdiv.

Dekova, R. (2019). An Ontological Model of the Dialectal
Division of the Bulgarian Language. In V. Micheva, D.
Blagoeva, S. Kolkovska, T. Aleksandrova and Hr.
Deykova (Eds.), Proceedings of the International Annual
Conference of the Institute for Bulgarian Language Prof.
Lyubomir Andreychin (Sofia, 14th – 15th May 2019).
Prof. Marin Drinov Press of the Bulgarian Academy of
Sciences, Sofia, pp. 309—318, (in Bulgarian).

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang,
Z. (2014). HermiT: An OWL 2 Reasoner, Journal of
Automated Reasoning, 53:245–269.

Glushkova, T., Miteva, M., Stoyanova-Doycheva, A.,
Ivanova, V., Stoyanov, S. Implementation of a Personal
Internet of Thing Tourist Guide, American Journal of
Computation, Communication and Control, 5(2):39–51.

Gruber, T. R. (2009) Ontology. In Liu, L. and Özsu, M. T.
(Eds.) The Encyclopedia of Database Systems, Springer-
Verlag.

Horridge, M. and Bechhofer, S. (2011) The OWL API: A
Java API for OWL Ontologies, Semantic Web Journal
2(1), Special Issue on Semantic Web Tools and Systems,
pp. 11--21.

Kochev, I. (2001). Bulgarski dialekten atlas. Obobshta-
vasht tom. Part. I–III Fonetika. Aktsentologiya. Leksika.
KIK Trud, Sofia.

Musen, M. A. (2015). The Protégé project: A look back and
a look forward. AI Matters. Association of Computing
Machinery Specific Interest Group in Artificial
Intelligence, 1(4):4–12.

Osenova, P. and Simov, K. (2007). An Infrastructure for
Storing and Processing Dialect Data. In Bulgarian
Islands on Balkans, Figura publ., 2007, pp. 256--263.

Pascal, H., Krötzsch, M., Parsia, B., Patel-Schneider, P.F.,
and Rudolph, S. (Eds.). (2012). OWL 2 Web Ontology
Language: Primer. W3C Recommendation. Available at:
http://www.w3.org/TR/OWL 2-primer/ (27.11.2019)

Stoikov, S. (1993). Bulgarska dialektologiya. Bulgarian
Academy of Sciences, Sofia.

http://www.bulgariandialectology.org/
http://ibl.bas.bg/Dialektna_delitba.pdf
http://www.w3.org/TR/OWL%202-primer/

