
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 4749–4753
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

4749

Language Modeling with a General Second-Order RNN

Diego Maupomé and Marie-Jean Meurs
Université du Québec à Montréal - UQAM

Montreal, QC, Canada
maupome.diego@courrier.uqam.ca, meurs.marie-jean@uqam.ca

Abstract
Different Recurrent Neural Network (RNN) architectures update their state in different manners as the input sequence is processed. RNNs
including a multiplicative interaction between their current state and the current input, second-order ones, show promising performance in
language modeling. In this paper, we introduce a second-order RNNs that generalizes existing ones. Evaluating on the Penn Treebank
dataset, we analyze how its different components affect its performance in character-lever recurrent language modeling. We perform
our experiments controlling the parameter counts of models. We find that removing the first-order terms does not hinder performance.
We perform further experiments comparing the effects of the relative size of the state space and the multiplicative interaction space on
performance. Our expectation was that a larger states would benefit language models built on longer documents, and larger multiplicative
interaction states would benefit ones built on larger input spaces. However, our results suggest that this is not the case and the optimal
relative size is the same for both document tokenizations used.

Keywords: Recurrent Neural Networks, Language Modeling

1. Introduction

One of the principal challenges in computational linguis-
tics is learning probability distributions over sequences of
words or characters. Of course, the number of possible
phrases grows exponentially with respect to the length. It
is therefore required of natural language models to take
efficient approaches to representing natural language obser-
vations.
Recurrent Neural Networks (RNNs) are an elegant solution
to this problem. Indeed, by consuming sequences of tokens
(e.g. words, characters) in order, RNNs dynamically con-
struct an internal representation of the input sentence. This
representation can be used for downstream predictions.
As for inference, the backpropagation algorithm can intu-
itively be extended to run through the time steps of a se-
quence in reverse order. This is known as Backpropagation
Through Time (BPTT). It allows for efficient computation
of the gradients needed for gradient descent. It remains,
however, that the shape of an RNN will impact its ability to
learn language models.
In this work, we take interest in second-order RNN
architectures. We begin by introducing the simple first-order
RNN as well as several examples of second-order RNNs in
Section 2. We then introduce in Section 3. an architecture
generalizing these second-order architectures. Section
4. presents our experiments in character-level language
modeling, and their results are discussed in Section 5.
Finally, Section 6. concludes this paper.

2. First and Second-Order RNNs

RNNs process sequential data by reading one token at a time
and updating a real-valued vector called their hidden state.
Let a document be a sequence x1, . . . , xT indexed by
t = 1, . . . , T .

The hidden state of the RNN is first null,

h0 = 0. (1)

Thereafter, it is computed as a function of the past hidden
state as well as the input at the current time step,

ht = f(ht−1, xt). (2)

The function updating this value, f , is known as the transi-
tion function.

2.1. First-Order RNNs
In a first-order RNN, the transition function takes the form

ht = φ(Uxt +Wht−1 + b), (3)

where U,W are matrices of parameters and b is a vector of
parameters. The function φ is a squashing function such as
the hyperbolic tangent.
This structure allows, in theory, for straightforward model-
ing of sequences of arbitrary length (Hammer, 2000).
However, simple RNNs can be difficult to train by gradient
descent on natural language data. Indeed, the gradient of the
hidden state over n time steps takes the following form:

∂ht
∂ht−n+1

=

t∏
i=t−n

diag(φ′i)W (4)

This heavy dependence on W results in numerical instability.
Bengio et al. (1994) showed that gradients can quickly dis-
appear (or possibly explode) over time, making it impossible
to learn dependencies over long ranges, such as those found
in language. This can be addressed with gating mechanisms,
such as Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997), as well as specialized gradient descent
variants (Kanai et al., 2017), weight normalization and ini-
tialization techniques (Cooijmans et al., 2016; Talathi and
Vartak, 2015).

4750

Simple RNNs can also have trouble recovering from
erroneous hidden state values. This can be attributed to
the small value of Uxt compared to Wht−1 in certain
contexts (Wu et al., 2016). More importantly, an addition
between the terms is a disjunction, allowing each to overrule
the other in determining the next value of the hidden state,
rather than requiring a conjunction of the two (Sutskever
et al., 2011). In language applications, this translates into
requiring an agreement between the token being read and
the history of past tokens in order to update the value of the
memory vector.

2.2. Second-Order RNNs

This brings us to the notion of second-order RNN. As previ-
ously mentioned, a first-order transition function is akin to a
disjunction between the inputs and the previous hidden state.
In order to have a conjunction, a multiplicative interaction
between the two is needed. This can be done by introduc-
ing a 3-way tensor, A, such that the i-th component of the
hidden state at time step t would be given by:

h
(i)
t = φ(h>t−1A

(i)xt + b(i)). (5)

This is the second-order RNN as proposed by Goudreau et al.
(1994). As previously mentioned, such an interaction allows
both the input and the hidden state to influence the update
of the former regardless of scale. Another advantage of this
set-up is that there is a formal distinction between input and
hidden-state. Indeed, the additive nature of the transition
function of first-order RNNs makes it so that inputs and the
hidden state can be seen as exchangeable terms in a sum,
contrary to the case of multiplicative interaction.
A significant drawback of this first second-order formulation
is the high parameter count such a tensor would entail. To
remedy this, one can synthesize a rank r 3-way tensor by
adding r rank 1 tensors. This is the simplification used in
the multiplicative RNN (mRNN) (Sutskever et al., 2011).
Its transition function uses two supplemental parameter ma-
trices, Z,V, to make this approximation:

ht = φ(Z(Vxt ∗Wht−1) +Uxt + b). (6)

The second-order term, Vxt ∗Wht−1, is referred to as the
intermediate state and denoted by mt. The dimension of m,
|m| is the rank of the synthesized tensor. It can be set freely
with respect to h, allowing for the multiplicative interaction
to take place in a space of smaller or larger dimension than
that of h.
A third example example of second-order RNN is the Mul-
tiplicative Integration RNN (MI-RNN) (Wu et al., 2016).
In its simple formulation, the transition function takes the
following form:

ht = φ(Uxt ∗Wht−1 + b), (7)

where ∗ denotes the Hadamard product. The parametrization
is the same as in the first-order RNN, but the interaction
between the two terms is multiplicative. This makes the
RNN second-order.
The authors also offer a more general formulation, which
includes two first-order terms using the same matrices of

parameters as well as additional multiplicative bias vectors
α,β1 and β2:

ht = φ(α∗Uxt ∗Wht−1+β1 ∗Uxt+β2 ∗Wht−1+b). (8)

This allows the resulting models more expressiveness,
while adding few additional parameters. This architecture,
however, does not allow for the multiplicative interaction to
take place in a space of arbitrary dimension.

3. A General Model

We propose here a model that generalizes existing second
order models. Its parameters are divided into five matrices,
A through E, and a bias vector, f . The transition function
has the following form:

ht = φ(A(Bxt ∗Cht−1) +Dxt +Eht−1 + f) (9)

The two first order terms, Dxt and Eht−1, as well as the
null order term, f , have the same dimension as the hidden
state, |h|. The second order term, Bxt ∗ Cht−1 is of free
dimension, |m|, with A mapping it back to the space of the
hidden state.
The mRNN can therefore be seen as the special case where
E is null. As for MI-RNNs, their general formulation corre-
sponds to the case where the following constraints hold:

A = diag(α) (10)

D = diag(β1)U (11)

E = diag(β2)W (12)

To explore the properties of our proposed architecture,
we conducted several experiments in recurrent language
modeling on the Penn Treebank corpus (Marcus et al., 1993).

4. Language modeling experiments

We performed several exploratory experiments in recurrent
language modeling on the Wall Street Journal portion of the
Penn Treebank corpus. The dataset is comprised of articles
in English published by the Wall Street Journal between
1987 and 1989.
We treat each line in the article as a separate document. We
applied the same preprocessing for all experiments. We
replaced all non-alphabetic characters by white spaces, then
replaced all consecutive white spaces by a single one. Fi-
nally, we replaced all uppercase letters by their lower case
counterparts. This results in a total 49,689 lines of text with
an alphabet of 27 characters. We did not trim the lines in
training or testing.
Models are evaluated by average cross-entropy over the
test documents, in bits per character (BPC). All of the re-
sults reported in this Section are issued from 5-fold cross-
validation. Inference was performed using the Adam opti-
mizer (Kingma and Ba, 2014) on 90% of the lines in the
training set (82% of the total). The remainder of the training

4751

Activation function
tanh Id

Dxt Eht−1 BPC BPC
X X 1.14 1.22
X - 1.13 1.16
- X 1.14 1.23
- - 1.12 1.17

first-order RNN 1.27 -
general MI-RNN 1.25 -

Table 1: Results of our first-order term ablation experiments
in BPC. We include a first-order RNN and a general MI-
RNN of the same parameter count for reference.

set was used as a validation set. A maximum of 25 epochs
was given to all models. The training examples were put in
batches of 64. The results represent the average performance
on the 20% test set across the folds.

4.1. First-order term ablation experiments

We began by testing the importance of the two first-order
terms in Eq.9 by ablation. Specifically, we build four recur-
rent language models, one for each possible combination:
removing each, both or none. This indirectly tests the im-
portance of the second-order term as well.
We allot all models the same parameter budget of 500k
parameters. The size of the hidden and intermediate states
are adjusted accordingly with the constraint that they be
equal. The activation function (φ) used is the hyperbolic
tangent (tanh).
If we examine the gradient of the hidden state over n time
steps, we obtain

∂ht
∂ht−n

=

t∏
i=t−n+1

diag(φ′i)(E+Adiag(Bxi)C) (13)

The right-hand side, Adiag(Bxt)C, depends on the input
at each time step. This will allow the input to dynamically
adjust A and C, as argued by Wu et al. (2016). However, the
hidden-to-hidden parameter matrix, E is ”loose”, much like
in the first-order RNN, potentially allowing the gradients to
explode. Note that the right-hand size is not potentiated by
E but rather adds to it. We hypothesized this would prevent
the gradients from vanishing.
To test this, we conducted the experiments again with
φ set to the Identity (Id), which facilitates gradient
explosion (Grosse, 2017). In short, our expectation was that
including Eht−1 in a model would hurt performance but
more so with identity activation. Results are presented in
Table 1 and discussed in the following Section.

4.2. Experiments on the role of m and h

We continued with experiments comparing the impact of the
dimension of |m| and |h| on performance. We hypothesized
that, broadly speaking, a larger hidden state amounts to a
larger and therefore longer memory capacity. Nonetheless,
in the context of first-order RNNs, a larger hidden state is
accompanied by a very significant and perhaps undesired

0.1 0.2 0.5 1 2 5 10 20
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

|m|
|h|

B
PC

unigrams
bigrams

Figure 1: Test cross-entropy in BPC for equally sized models
having different values of |m||h| in two recurrent language
modeling tasks

increase in the parameter count. This tricky trade-off be-
tween under and overfitting helps to make first-order RNNs
difficult to train.
However, in the case of our second-order architecture, this
is mitigated in two ways. Firstly, as our earlier experiments
suggest, the first-order terms can be omitted. This signifi-
cantly alleviates the parameter count increase with respect
to |h|. Secondly, the dimension of |m| being free, it can be
decreased to keep the parameter count low. Furthermore, we
contend that a larger |m| allows for more complex transition
to take place, as both the input and the hidden state value
are mapped onto a larger dimension space separating their
different factors of variation.
The settings of these experiments were largely similar to the
previous ones except that we also train models operating on
sequential pairs of characters. These pairs do not overlap and
stay within word boundaries. They are also complemented
by single characters. For example the word ’state’ would
be tokenized as ’st’, ’at’, ’e’. The documents are therefore
shorter when tokenized in this fashion, but the input space
is larger.
Given these two separate tasks – using character unigrams
as for the previous experiments, and character bigrams as
previously explained – we trained models on them taking
with varying values of |m| and |h|. We trained 8 models per
task, with |m||h| taking on values in {0.1, 0.2, 0.5, 1, 2, 5, 10,
20} for each. Again, we allot all models a parameter budget
of 500k parameters. The absolute sizes of |m| and |h| are
adjusted accordingly.
Although the unigram task would presumably obtain better
results overall, this was largely immaterial to our exper-
iments. The models being equal in parameter count, as
the dimension of h increases, that of m decreases and con-
versely. In both tasks, having |h| or |m| too small would
be detrimental: too little memory capacity would impede
the models from remembering the pertinent context; too
simple transitions would prevent the models from exploiting

4752

to land customers for their well paying stock
th toud tortomers tor the r oaal brr ng torck

but it s just one of those things that happened
tut tt s aust tne of these shangs that tavpensd

Figure 2: Prediction example for the best unigram model. Above are the true sequences; below are the model predictions.

0 2 4 6 8 10 12 14 16 18

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

Character position in word

B
PC

Figure 3: Average test loss of the best unigram model as a
function of a character position in a word

its memory.
We therefore expected the optimal value of |m||h| to lie inside
our selected interval. Under our hypothesis, the unigram
task would require more memory because the sequences are
longer. The bigram task would require less memory capacity
and more complex transitions because the input space is of
larger dimension. The best bigram model would therefore
have a larger |m||h| than the best unigram model.

In summary, we expected the optimal value of |m||h| to be
larger for the character bigram task than for the character
unigram task regardless of what these optimal values
yielded in loss. The results we obtained are shown in Figure
1, and discussed in the following Section.

5. Discussion

The results of the first set of experiments are presented in
Table 1. As expected, models free of the first-order term
Eht−1 outperformed the rest. These differences are very
small when using the hyperbolic tangent, whose derivative
prevents gradient explosion. They become larger when using
no activation.
In addition, our models outperformed our baseline first-
order RNN. These results suggest the first-order terms can
be entirely omitted, all things being equal.
The second set of experiments yielded surprising yet in-
teresting results. The bigram task was more difficult, as
expected. However, while we expected the optima to differ,

they appear to be around the same value of 2 for both tasks.
The key difference between both tasks is that the bigram
task appears to be much more sensitive to different values
of |m||h| .
It is important to note that, while bigram tokenization does
reduce the length of the documents, this reduction is much
smaller than the increment in the dimension of the input
space. Indeed, tokenizing the documents in pairs of charac-
ters decreases the median length by about 40%, the dimen-
sion of the input space increases by a factor of 27, the size
of the alphabet.
Figure 2 shows selected test observations matched to the
best unigram model predictions. As one might expect, most
prediction errors happen at the beginning of words. The
model is however quick to adjust its prediction. These pre-
dictions are sensible given the current input character and
the containing word.
In the third example of Figure 2, having read ’happen’, the
model erroneously predicts ’s’, which forms a true word.
Upon reading the following character ’e’, the model adjusts
its prediction to the correct word: ’happened’.
Figure 3 shows this steep decline in prediction error as
the model moves further along the current word. There is,
however, a late increase, which is likely due to the rarity of
words over 13 characters in the dataset (<2%).

6. Conclusion

We have offered a generalization of second-order RNNs,
which allow, through their multiplicative interaction, more
expressive transitions of their state. The results of our first
set of experiments are consistent with the hypothesis that
the first-order terms are largely secondary and should be
omitted.
Moreover, our second set of experiments suggest that the
length of tokenization, while affecting both length and
”width of input” is ultimately immaterial to the best relative
sizes of m and h. This surprising result requires further
exploration in determining how different aspects of corpora
and RNNs determine the optimal settings for learning prob-
ability distributions over language.
Since existing second-order RNNs have been modified into
gated variants, such as the multiplicative LSTM (Krause et
al., 2016), the multiplicative GRU (Maupomé and Meurs,
2019) and the multiplicative integration LSTM (Wu et al.,
2016), further work is required to verify how the results
presented in this paper translate to gated variants.

4753

Reproducibility

To ensure reproducibility and comparisons between systems,
our source code is publicly released as an open source
software in the following repository:
https://gitlab.ikb.info.uqam.ca/diego/

gsornn_lrec.

Acknowledgment

This work is funded by the New Frontiers in Research Fund
(NFRF) RELAI project. We acknowledge the support of
the Social Sciences and Humanities Research Council of
Canada (SSHRC), the Canadian Institutes of Health Re-
search (CIHR) and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Bibliographical References
Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning

long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2):157–166.

Cooijmans, T., Ballas, N., Laurent, C., and Courville,
A. C. (2016). Recurrent batch normalization. CoRR,
abs/1603.09025.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., and Chen,
D. (1994). First-order versus second-order single-layer
recurrent neural networks. IEEE Transactions on Neural
Networks, 5(3):511–513, May.

Grosse, R. (2017). Lecture 15: Exploding and Vanishing
Gradients, University of Toronto Computer Science.

Hammer, B. (2000). On the approximation capability of
recurrent neural networks. Neurocomputing, 31(1-4):107–
123.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term
Memory. Neural computation, 9(8):1735–1780.

Kanai, S., Fujiwara, Y., and Iwamura, S. (2017). Preventing
gradient explosions in gated recurrent units. In I. Guyon,
et al., editors, Advances in Neural Information Processing
Systems 30, pages 435–444. Curran Associates, Inc.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.

Krause, B., Lu, L., Murray, I., and Renals, S. (2016). Multi-
plicative LSTM for Sequence Modelling. arXiv preprint
arXiv:1609.07959.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a large annotated corpus of English: The
Penn Treebank. Computational linguistics, 19(2):313–
330.

Maupomé, D. and Meurs, M. (2019). Multiplicative models
for recurrent language modeling. CoRR, abs/1907.00455.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Gener-
ating text with recurrent neural networks. In Proceedings
of the 28th International Conference on Machine Learn-
ing (ICML-11), pages 1017–1024.

Talathi, S. S. and Vartak, A. (2015). Improving performance
of recurrent neural network with relu nonlinearity. CoRR,
abs/1511.03771.

Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., and Salakhutdinov,
R. R. (2016). On Multiplicative Integration with Recur-
rent Neural Networks. In Advances in Neural Information
Processing Systems, pages 2856–2864.

https://gitlab.ikb.info.uqam.ca/diego/gsornn_lrec
https://gitlab.ikb.info.uqam.ca/diego/gsornn_lrec

	Introduction
	First and Second-Order RNNs
	First-Order RNNs
	Second-Order RNNs

	A General Model
	Language modeling experiments
	First-order term ablation experiments
	Experiments on the role of m and h

	Discussion
	Conclusion

