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Abstract
Universal embeddings, such as BERT or ELMo, are useful for a broad set of natural language processing tasks like text classification
or sentiment analysis. Moreover, specialized embeddings also exist for tasks like topic modeling or named entity disambiguation. We
study if we can complement these universal embeddings with specialized embeddings. We conduct an in-depth evaluation of nine well
known natural language understanding tasks with SentEval. Also, we extend SentEval with two additional tasks to the medical domain.
We present PubMedSection, a novel topic classification dataset focussed on the biomedical domain. Our comprehensive analysis covers
11 tasks and combinations of six embeddings. We report that combined embeddings outperform state of the art universal embeddings
without any embedding fine-tuning. We observe that adding topic model based embeddings helps for most tasks and that differing
pre-training tasks encode complementary features. Moreover, we present new state of the art results on the MPQA and SUBJ tasks in
SentEval.
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1. Introduction
Universal embeddings, such as BERT (Devlin et al., 2019)
or ELMo (Peters et al., 2018), are an effective text represen-
tation (Nguyen et al., 2016; Conneau and Kiela, 2018). Of-
ten, they are trained on hundreds of millions of documents
with an language modeling objective and contain millions
to even billions of parameters. These pre-trained vec-
tors lead to significant increases in performance in various
downstream natural language processing tasks (Mikolov et
al., 2013a; Joulin et al., 2017; Akbik et al., 2018; Peters et
al., 2018; Radford et al., 2018). Contrary to universal em-
beddings, specialized embeddings for tasks like entity link-
ing (Pappu et al., 2017; Gillick et al., 2019) or paragraph
classification (Arnold et al., 2019) exist. Often, special-
ized embeddings are trained with objectives and training
datasets different from universal embeddings. This circum-
stance raises the question if universal embeddings capture
all useful features for downstream tasks or if specialized
embeddings may provide complementary features.

Example: Clinical Decision Support Systems. Medi-
cal literature databases, such as PubMed1 or UpToDate2,
help doctors answer their questions. These systems bene-
fit from methods that enrich texts with semantic concepts,
like entity recognition, sentence classification, topic clas-
sification, or relation extraction (Demner-Fushman et al.,
2009; Berner, 2007). Medical language is highly special-
ized and often ambiguous in clinical documents (Leaman
et al., 2015). Documents, such as medical research pa-
pers, doctors’ letters or clinical notes, are heterogeneous
in terms of structure, vocabulary, or grammatical correct-
ness (Starlinger et al., 2017). We propose to complement

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.uptodate.com/

universal embeddings with specialized embeddings to ex-
ecute common downstream tasks for clinical decision sup-
port systems (CDSS). Examples are paragraph classifica-
tion, subjectivity classification, question type classification,
sentiment analysis and textual similarity.

Problem definition. We hypothesize that specialized
neural text representations may complement universal em-
beddings. Given is a set of both universal and specialized
embeddings with different pre-training tasks for the English
language (see Table 1). These embeddings encode words,
entities, or topics. We study which combination of embed-
dings is complementary using the SentEval3 (Conneau and
Kiela, 2018) benchmark. Thus, we investigate if universal
embeddings capture the same features as specialized em-
beddings.

Probing embeddings with SentEval. We probe single
embeddings and combinations with SentEval in a transfer-
learning setting on nine different tasks. SentEval focuses
on news and customer reviews. The language in these do-
mains differs vastly from the medical domain. Moreover,
SentEval concentrates on single sentence evaluation, which
does not fully utilize the capabilities of contextualized em-
bedding models (Peters et al., 2018; Devlin et al., 2019;
Arnold et al., 2019).

Novel datasets. We tackle the shortcomings of SentEval
by integrating the WikiSection-Diseases4 (Arnold et al.,
2019) dataset into the SentEval framework. WikiSection
also enables an in-depth evaluation of contextualized em-
beddings since its paragraph classification task is multi-
sentence based. As the language in CDSS resources (e.g.,
PubMed) differs from the Wikipedia-based WikiSection

3https://github.com/facebookresearch/SentEval
4https://github.com/sebastianarnold/WikiSection
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Name Pre-Training Task Domain Publication Class

ELMo (EL) Language Modeling Web (Peters et al., 2018) Universal
BERT (BE) Language Modeling Web (Devlin et al., 2019) Universal
FastText (FT) Language Modeling Web (Mikolov et al., 2018) Universal
Pappu (PA) Entity Linking Wikipedia (Pappu et al., 2017) Specialized
SECTOR (Wikipedia) (SW) Neural Topic Modeling Wikipedia (Arnold et al., 2019) Specialized
SECTOR (PubMed) (SP) Neural Topic Modeling Medical - Specialized

Table 1: Comparison of neural text embeddings.

dataset, we propose the PubMedSection5 dataset. PubMed-
Section is a novel medical topic classification dataset cre-
ated with a method inspired by distant supervision.

In-depth experimental evaluations on 11 tasks. We
study properties of single and combined text embeddings
and their performance on the nine tasks from SentEval and
on the two medical datasets, WikiSection and PubMedSec-
tion. Our focus is on examining the differences between
universal and specialized embeddings and effective embed-
ding combinations.
The remainder of this paper is structured as follows: Sec-
tion 2 reviews embeddings and work on integrating embed-
dings. Section 3 introduces our novel datasets while Sec-
tion 4 describes our setup. In Section 5 we show and dis-
cuss quantitative results from our comprehensive analysis.
We conclude in Section 6 and propose future research di-
rections.

2. Related Work
In the following we investigate universal and specialized
embeddings shown in Table 1 and discuss methods for com-
bining embeddings.

2.1. Universal Text Embeddings
Recently, researchers explore universal text embeddings
trained on extensive Web corpora, such as the Common
Crawl6 (Mikolov et al., 2018; Radford et al., 2019), the
billion word benchmark (Chelba, 2010; Peters et al., 2018)
and Wikipedia (Bojanowski et al., 2017). Universal text
embeddings often perform language modeling tasks where
the model is asked to predict a missing word given a
small window of neighboring words (Mikolov et al., 2013b;
Joulin et al., 2017; Mikolov et al., 2018; Pennington et
al., 2014). Another common task is to predict the next,
or masked word of a sentence given previously predicted
words as context (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019). For the encoder-decoder architec-
ture, Kiros et al. (2015) propose an encoder network that
encodes a sequence of words in such a way that the decoder
can predict the previous and the next sentence given the en-
coder’s vector representation.
Universal embeddings vary in their granularity at the sub-
word, word, or sentence level. For example, Bojanowski et
al. (2017) improve the model of Mikolov et al. (2013b) by
adding sub-word information to handle ambiguous spelling
or typos. This sub-word embedding takes advantage of the

5https://pubmedsection.demo.datexis.com
6https://commoncrawl.org/

fact that similarly spelled words often also have a similar
meaning.
Universal text embeddings encode the meaning of frequent
words (Peters et al., 2018; Devlin et al., 2019; Radford
et al., 2019). However, they perform worse in compari-
son with domain adapted representations in specialized do-
mains (Sheikhshabbafghi et al., 2018; Lee et al., 2019).
Furthermore, universal text embeddings might miss essen-
tial aspects about named entities. The reason is that most
training methods base on the co-occurrence of words in rel-
atively short local contexts. This hinders the models to cap-
ture more global features of texts such as genre, topic, re-
ceiver, the authors’ intention or they miss to learn the pre-
cise meaning of a word in special domains such as medicine
(Sheikhshabbafghi et al., 2018; Lee et al., 2019). Also,
computing embedding models for highly regulated domains
is often hard and not feasible due to the lack of training
data (Berner, 2007; Starlinger et al., 2017) or high compu-
tational costs.

2.2. Specialized Text Embeddings
Neural topic modeling. Arnold et al. (2019) introduce
a specialized embedding using a coherent topic modeling
task for pre-training. This model encodes both structural
and topical facets of documents (see work of MacAvaney et
al. (2018)) and assigns each sentence in a document a dense
distributed representation of occurring latent topics (Blei,
2012). For this purpose, the model consolidates the topical
structure and context over the entire document. It leverages
sequence information on the granularity of paragraphs and
sentences using a Bidirectional LSTM architecture (Graves,
2012) with forget gates (Gers et al., 2000). In addition, this
model captures long-range topical information. However,
it does not focus on disambiguating single words. There-
fore, we suggest complementing universal text embeddings
(disambiguation task) with neural topic models (paragraph
classification task).

Neural entity embeddings. Pappu et al. (2017) and
Gillick et al. (2019) encode meanings of entities for entity
candidate retrieval and entity disambiguation tasks. The
model of Pappu et al. (2017) builds on ideas of Le and
Mikolov (2014) and models an entity using local token con-
text. It generalizes over multiple documents as well as co-
occurrences of entities in a document with a shared neu-
ral representation. This joint approach enables the model
to capture world knowledge regarding entities from train-
ing data. This approach delivers a vector representation for
each entity mention, encodes its relatedness to other entities
and takes local context into account. However, such entity
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embeddings capture facets of named entities but might fail
to encode topical structure or non-entity words. Hence, we
hypothesize entity embeddings might benefit from a com-
bination with topical embeddings.

Biomedical domain specialization. Sheikhshabbafghi et
al. (2018) show a domain adapted version of ELMo (Pe-
ters et al., 2018). Their contextualized word representation
performs better than a general-purpose variant even with
a smaller training set. However, this model cannot gen-
eralize to out of domain contexts. Therefore, Lee et al.
(2019) propose BioBERT, which is a BERT model adapted
to the biomedical domain. They initialize this model with
pre-trained weights of the original BERT. This method pre-
vents shortcomings of Sheikhshabbafghi et al. (2018) and
preserves the ability to generalize to other domains than
biomedical text.

2.3. Combining Embeddings
Multi-modal combinations. Previous research reports
that combining embeddings with training objective is effec-
tive, such as combining representations of data with differ-
ent modalities into a single shared vector space. For exam-
ple, Heinz et al. (2017) integrate customer and image data
in a shared vector space and show its effectiveness for rec-
ommending products. Wang et al. (2017) combine text and
image embeddings in the field of computer vision. They
employ a neighborhood preserving ranking loss to learn a
non-linear mapping between image and word embeddings
for image captioning tasks.

Combining neural text embeddings. To the best of our
knowledge, we are the first investigating effective combi-
nations of universal with specialized text embeddings in an
extensive study on 11 tasks. In contrast, most related work
focuses on novel combination methods.
Kiela et al. (2018) and Rettig et al. (2019) study methods
to automatically select universal purpose word embeddings
that are best suited for a particular task. Kiela et al. (2018)
use an attention mechanism to learn a task-specific mixture
mapping between multiple word embeddings dynamically.
In contrast, Rettig et al. (2019) report a method to com-
pare and rank word embeddings regarding their relevance
to a given domain. Muromägi et al. (2017) learn a linear
mapping to combine various word embeddings trained on
the same dataset with the same method but with different
random initialization into an ensemble. They use the ordi-
nary least squares problem and the orthogonal Procrustes
problem in their objective function. The method of Yin and
Schütze (2015) is similar to Muromägi et al. (2017) but
employs no orthogonality constraint on the objective func-
tion. Bollegala et al. (2018) introduce a local linear map-
ping method that takes local neighborhoods into account
when projecting source embeddings into a combined vector
space. This method has similarities to the work of Wang et
al. (2017). Coates and Bollegala (2018) presents a surpris-
ingly effective method to combine universal embeddings
by averaging word vectors and padding them with zeros to
compensate dimensionality mismatches. However, our fo-
cus lies in studying effective embedding combinations for
medical documents.

3. Medical Topic Classification Dataset
The capabilities of contextualized embeddings cannot be
measured with the SentEval framework because all of its
natural language understanding tasks are single sentence-
based. None of the tasks in SentEval evaluates the do-
main independence of the tested embeddings. To measure
such embeddings and their combinations, we extend Sent-
Eval with tasks that require to track contexts that span over
multiple sentences. Detecting coherent topics on document
passages is a challenging task that requires to keep track of
the overall context of a paragraph or even whole document.

3.1. The WikiSection Dataset
The WikiSection dataset (Arnold et al., 2019) consists of
38k comprehensively annotated Wikipedia articles D =
(S,L,H) with section and topic labels L and naturally con-
tained headings H with respect to all of its sentences S.
The dataset covers up to 30 topics about diseases (e.g.,
symptoms, treatments, diagnosis) or cities (e.g., history,
politics, economy, climate). The task is to split Wikipedia
articles dw into a sequence of distinct topic sections L =
[l1, ..., ln], so that each predicted section ln = (Sk, tj , hi)
contains a sequence of coherent sentences Sk = s1, ..., sm,
and is associated to a heading hi, and a topic label tj that
describes the common topic in these sentences.

3.2. Creating the PubMedSection Dataset
We introduce PubMedSection, a topic classification dataset
based on medical research articles. This task requires to
detect and classify structural topic facets in plain text and
is inspired by the WikiSection dataset. The PubMedSection
dataset consists of 51,500 PubMed articles section-wise an-
notated with topic labels. We construct PubMedSection
similar to the WikiSection dataset. Our focus is on the
disease subset of WikiSection with section-wise annotated
medical topics, which we aim to transfer to PubMed arti-
cles. Our initial PubMed collection consists of 2,142,050
articles with 29,522,566 headings. Steps to create the
dataset include learning a classifier for detecting articles in
PubMed similar to WikiSection and assigning labels.

Learning to classify relevant articles. Labeling such a
large dataset is time-consuming and costly. Following this,
we annotate the PubMedSection articles using distant su-
pervision (Mintz et al., 2009; Morgan et al., 2004) with
WikiSection as ground truth. For this purpose, we filter
the open-access subset of PubMed7 Dp for articles that
exhibit a high textual similarity to WikiSection for a suc-
cessful label transfer. We model a neural network based
non-linear binary classifier for this task8. First, we en-
code all headlines of the WikiSection diseases subset Hw =
{hw1, ..., hwn} as well as the headlines of the PubMed ar-
ticles Hp = {hp1, ..., hpn} with a fastText (Mikolov et
al., 2018) embedding model. For this step we train a
domain-specific fastText model on the full corpus of the
open-access subset of PubMed. Next, we use concatenated
fastText encoded word vectors of each article’s headlines

7https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
8https://github.com/DATEXIS/pubmedsection
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Name Embedding A Embedding B

FT+PA fastText Pappu
FT+SW fastText SECTOR (Wikipedia)
FT+SP fastText SECTOR (PubMed)
EL+FT ELMo fastText
EL+PA ELMo Pappu
EL+SW ELMo SECTOR (Wikipedia)
EL+SP ELMo SECTOR (PubMed)
SW+PA SECTOR (Wikipedia) Pappu
SP+PA SECTOR (PubMed) Pappu

Table 2: Surveyed embedding combinations.

Hw, Hp as input for our model. We choose a one-layer neu-
ral network with ReLu activation (Glorot et al., 2011) and
softmax output over more complex architectures to mini-
mize computational complexity. We train on 3200 human-
labeled examples for the headline structure similarity task.
We use the Xavier weight initialization (Glorot and Ben-
gio, 2010), and employ Adam (Kingma and Ba, 2015) with
stochastic gradient descent as optimizer and a multi-class
cross-entropy loss. Our hyperparameter search suggests an
L2 regularization (Ng, 2004) of 10−4, a learning rate of
10−5, a batch size of 128 and we set the training duration
to 60 epochs.

Assigning WikiSection labels to PubMedSection. After
training, we sample the top 51,500 articles by their similar-
ity score from the filtered PubMed collection. Next, we cal-
culate the cosine similarity between every headline of each
article set (Dp, Dw) to estimate the probability that a topic
label for the PubMed headline could be generated from the
Wikisection labels. Next, we transfer the best fitting topic
labels from the best matching headline’s section in Wiki-
Section to the sampled PubMed article’s corresponding sec-
tion. After that, we split the dataset in a training subset with
50.000, a validation subset with 1000, and a test subset with
500 labeled articles. Finally, we validate the PubMedSec-
tion dataset with two human judges that evaluate 100 ran-
domly sampled articles for correctness.

4. Evaluation Methodology

Methodology overview. We evaluate the performance of
embeddings as well as their combinations. Our method-
ology follows the paradigm of probing tasks (van Aken et
al., 2019; Weston et al., 2015): We test combined embed-
dings on overall nine natural language understanding tasks
and data sets from SentEval as well as two tasks from the
WikiSection and the PubMedSection dataset. For probing
these eleven tasks, we train a linear classifier with single
or combined embeddings as input and observe properties
of different embedding types and their combinations. As
combination method we chose concatenation. Despite its
simplicity, concatenating embeddings has been shown to be
a strong baseline (Yin and Schütze, 2015; Coates and Bol-
legala, 2018; Kiela et al., 2018; Rettig et al., 2019). Other
combination methods are subject to our future research.

4.1. Text Embeddings and Combinations
We select a variety of universal and specialized embeddings
as shown in Table 1 for our experiments. Our evaluation
setting is sentence-based. Some of the surveyed embed-
dings are word vector oriented. Therefore, we follow Arora
et al. (2017) and Perone et al. (2018) and average word
vectors in a sentence for each of those word embeddings
to obtain a sentence embedding vector. The embeddings
employed are:

Random (RND) As a baseline, we compute random vec-
tors.

fastText (FT) (Mikolov et al., 2018) is word vector ori-
ented and trained on a language modeling task with word
and sub-word tokens.

ELMo (EL) by Peters et al. (2018) train a bi-directional
language modeling task with two stacked LSTMs that use
a Character-CNN to capture sub-word information.

BERT (BE) (Devlin et al., 2019) bases on the transformer
architecture (Vaswani et al., 2017) and masked language
modeling task pre-training.

Entity embedding (PA) Pappu et al. (2017) train an
embedding for a named entity disambiguation task with a
knowledge base as target, like Wikidata9 or UMLS10.

SECTOR Wikipedia (SW) Arnold et al. (2019) propose
a contextual topic embedding which is trained with section
headings from Wikipedia articles. They show that the latent
topic information contained in their SECTOR embedding
can be utilized to segment documents and to classify these
segments into up to 30 topics.

SECTOR PubMed (SP) Same as above but trained on
our novel PubMedSection dataset.

Embedding combinations. We choose the combinations
of embeddings presented in Table 2 for our experiments.
We assume that the most compelling improvements are ob-
tained when we combine combine specialized with univer-
sal text embeddings. We verify this assumption by eval-
uating if combining the two universal embeddings ELMo
and fastText is as effective as combinations with special-
ized embeddings. Additionally, we conduct experiments
with the combination of the entity embedding with both
SECTOR models.

Embedding models. We evaluate the following models
as provided by their authors: BERT Large (BE), ELMo
Original 5.5B (EL), fastText crawl-300d-2M-subword (FT),
Pappu (PA) and SECTOR SEC>H+emb@fullwiki (SW).
These models cover a wide variety of domains and topics.
This is contrary to our SECTOR PubMed (SP) model that
we train exclusively on medical research articles.

4.2. Tasks and Parameter
We use SentEval (Conneau and Kiela, 2018) to perform
an analysis of the effectiveness of each embedding com-
bination of natural language understanding tasks. We in-
tegrate the WikiSection dieseases and PubMedSection task

9https://www.wikidata.org
10https://www.nlm.nih.gov/research/umls/index.html
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into SentEval11 to obtain comparable results for our eval-
uation. Overall, we conduct our survey on the following
nine plus two medical tasks WikiSection and PubMedSec-
tion with ten-fold cross-validation.

Textual similarity: MRPC Paraphrase detection (Dolan
et al., 2004) on the Microsoft Research Paraphrase Cor-
pus which consists of sentences pair extracted from news
sources. It is a binary classification task of deciding
whether a sentence paraphrases the other or not.

Textual similarity: SICK-E Sentences Involving Com-
positional Knowledge-Entailment (Marelli et al., 2014) is
a 3 classes natural language inference classification task
based on sentences collected from Flickr image captions
and the Microsoft Research Video Description Corpus.

Sentiment analysis: MPQA Multi-Perspective Question
Answering (Wiebe et al., 2005) is a binary sentiment clas-
sification task on a news dataset from the world press.

Sentiment analysis: SST-2 Stanford Sentiment Analysis
(Socher et al., 2013) is a binary sentiment classification task
on a movie review data set.

Sentiment analysis: SST-5 Stanford Sentiment Analysis
(Socher et al., 2013) is fine-grained 5 class sentiment analy-
sis task based on the same corpus as SST-2 (movie review).

Sentiment analysis: CR Customer Reviews (Hu and
Liu, 2004) is a binary sentiment analysis task based on
product reviews.

Sentiment analysis: MR Movie Reviews (Pang and Lee,
2005) is a binary sentiment analysis data set on movie re-
views.

Classification: SUBJ Subjectivity vs. Objectivity (Pang
and Lee, 2004) is a classification task of subjectivity and
objectivity on movie reviews.

Classification: TREC Text Retrieval Conference Ques-
tion Answering (Voorhees and Tice, 2000) 6 class question
type classification. The corpus consists mostly of newswire
and newspaper articles.

Coherent topic classification: WikS WikiSection dis-
eases (Arnold et al., 2019) is a 27 class topic classification
task sourced from the medical subset of Wikipedia.

Coherent topic classification: PubS PubMedSection is
a novel 27 class topic classifcation task based on medi-
cal research articles from PubMed. We randomly sample
the PubMedSection training set down to 2200 articles since
evaluating with the whole training set is prohibitively time-
consuming.

Evaluation parameters. We use the parameters provided
by Conneau and Kiela (2018), as shown in Table 3.

5. Experimental Results and Discussion
Table 4 overviews the results of seven single embeddings
as well as nine embedding combinations on eleven evalua-
tion tasks. Table 5 shows accuracy scores for single model
performance and of combined embedding models. Finally,
Table 6 reveals the delta of each surveyed embedding com-
binations’ score regarding their source embedding scores.

11https://github.com/DATEXIS/SentEval-k8s

Parameter Value

KFOLD 10
CLASSIFIER NHID 0
CLASSIFIER OPTIM Adam
CLASSIFIER BATCHSIZE 64
CLASSIFIER TENACITY 5
CLASSIFIER EPOCHSIZE 4
CLASSIFIER DROPOUT 0

Table 3: Parameters used in evaluation with SentEval as
suggested by Conneau and Kiela (2018).

Model Strong + Minor + Minor - Strong -

Language Model combined with Topic Model
EL+SW 7 2 1 1
EL+SP 5 3 2 1
FT+SW 6 3 0 2
FT+SP 7 2 2 0

Language Model combined with Entity Embedding
EL+PA 0 6 4 1
FT+PA 6 5 0 0

Topic Model combined with Entity Embedding
SW+PA 5 2 1 3
SP+PA 6 4 0 1

Language Model + Contextualized Language Model
EL+FT 0 8 3 0

Table 4: This table shows the effectiveness classification in
tasks for each surveyed embedding combination. We count
a model combination as ”Strong+” if it advances in more
than one percentage point in accuracy compared to both of
its base models. Accordingly, we count a result as ”Mi-
nor+” if the improvement is smaller than one percentage
point. ”Minor-” and ”Strong-” are similarly defined for per-
formance decreases.

5.1. Language Models plus Topic Models
We observe an significant increase in accuracy scores in 35
out of 44 experiments (see Table 4) which qualify in 25
cases for the ”Strong+” category when combining a lan-
guage modeling based embedding with a topic embedding.
Moreover, we report EL+SP as the overall best performing
model with a macro accuracy across all tasks of 75.83. We
conclude that language modeling and topic modeling pre-
training tasks capture complementary information.

ELMo plus SECTOR yields a substantial increase in ac-
curacy. The combination of EL and SW yields ”Strong+”
results (see Table 4) for 7 of the 11 downstream tasks. We
observe only a considerable performance loss of 3.8 per-
centage points for the TREC task. For the three other mea-
surements of this model, the performance increases slightly
for two tasks by less than 0.33 accuracy points and de-
creases for the SICK-E task by 0.06 accuracy points (see
also Table 6). EL and SP also yields strong results, with
five tasks for which the source models encode complemen-
tary information. We observe only one ”Strong-” loss in
performance of the SST-5 task of 1.62 and report for all
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Textual Similarity Sentiment Analysis Classification

Model MRPC SICK-E MPQA SST-2 SST-5 CR MR SUBJ TREC WikS PubS

RND 66.49 56.69 68.77 49.92 23.39 63.76 49.48 49.60 20.60 15.24 24.99
FT 69.86 74.35 86.69 78.69 39.68 72.00 74.68 90.22 76.00 39.11 28.15
PA 72.17 76.62 85.31 77.43 40.00 74.09 72.90 89.65 78.80 39.84 28.04
SW 67.71 67.30 84.30 65.68 34.80 80.34 77.56 97.84 69.60 29.82 29.27
SP 67.19 56.48 96.85 71.28 37.65 76.19 82.91 95.61 66.20 46.84 39.43
BE 69.16 75.75 86.91 89.57 49.37 90.07 84.84 95.83 93.20 44.94 31.12
EL 73.68 79.54 90.00 85.01 47.19 83.39 80.66 94.56 92.40 43.09 30.85

Language Model combined with Topic Model
EL+SW 73.86 79.48 92.58 85.34 49.59 87.23 86.25 99.17 88.60 45.05 32.11
EL+SP 74.61 78.87 96.14 86.66 45.57 84.53 87.03 97.26 92.80 50.86 39.76
FT+SW 70.78 74.51 90.35 76.28 40.18 82.91 83.49 98.13 73.60 42.64 31.24
FT+SP 70.96 74.33 97.34 77.81 43.71 80.69 87.11 97.27 78.60 49.60 39.85

Language Model combined with Entity Embedding
EL+PA 73.45 79.81 90.27 85.94 45.97 83.47 80.91 94.40 92.80 42.67 30.70
FT+PA 72.99 79.07 87.03 81.11 41.95 76.42 75.54 91.17 84.80 41.36 28.78

Topic Model combined with Entity Embedding
SW+PA 71.65 74.79 89.92 75.40 40.68 82.89 83.60 98.43 77.60 43.18 31.16
SP+PA 72.70 77.15 97.16 75.95 44.34 81.14 87.05 97.36 85.80 50.13 39.63

Language Model combined with Contextualized Language Model
EL+FT 73.33 79.91 90.19 85.78 46.65 83.76 80.79 94.46 93.00 43.24 30.97

SOTA 93.00c 87.80d 93.30b 96.80c 64.40e 87.45a 96.21c 95.70f 98.07a 56.70g -

Table 5: This table shows the accuracy score of single model approaches and the best embedding combinations for
each task. We highlight the overall best score with bold numbers while numbers in italic denote the best single model
results. Additionally, we gathered recent results on our surveys tasks in the SOTA row, which are reported by the following
publications: (Cer et al., 2018)a, (Zhao et al., 2015)b, (Yang et al., 2019)c, (Subramanian et al., 2018)d, (Patro et al., 2018)e,
(Tang and de Sa, 2018)f and (Arnold et al., 2019)g on section-wide topic classification. We do not take SOTA results into
account when highlighting best results since they are obtained with specialized models.

remaining tasks a fluctuation in performance between ”Mi-
nor+” and ”Minor-”.

fastText and SECTOR encode complementary features.
Results for fastText plus SECTOR are nearly analogue to
ELMo, except that we observe an even higher performance
increase on average as shown in Table 6. We note that tasks
MRPC, SICK-E, SST-2 do not benefit from the features
captured in SW and SP. Surprisingly, the situation for the
fine-grained sentiment classification task SST-5 is different
compared to results of the binary sentiment analysis task
SST-2. We observe a considerable accuracy increase for the
model combination EL+SW and FT+SP, a small increase
for FT+SW, and a performance decrease for EL+SP.

EL+SP outperforms EL+SW in the medical domain.
Corresponding to the differing training domains of the SW
and SP model, we can observe a more substantial increase
in performance for the combination of EL and SP in both
medical tasks WikiSection-Diseases and PubMedSection
compared to the combination of EL and SW. Likewise, we
observe a similar situation for the combination of fastText
(FT) with SW and SP. This can be explained by the fact
that SP is trained on medical research articles and therefore
closer to the target domain than SW.

New SOTA for MPQA and SUBJ tasks. Table 5 shows
that embedding combinations EL+SP (96.14 acc) and
FT+SP (97.34 acc) outperform the current state of the art

in the MPQA task (see Zhao et al. (2015) 93.30 acc). An
analogue EL+SW, drastically outperforms the current state
of the art (see (Tang and de Sa, 2018) 95.70 acc) in the
SUBJ task with 99.17 accuracy measure. Following this
result, we conclude that the differing pre-training task cap-
tures complementary features that lead to improved evalu-
ation results.

Different pre-training tasks capture complementary
features. We verify the complementary nature of the pre-
training tasks with an additional experiment. We evaluate
the SUBJ task again with a fastText model that was, similar
to SW, exclusively trained on Wikipedia (Bojanowski et al.,
2017). With this setting, we control if the objective writing
style in Wikipedia is the cause of our good results. We ob-
serve only a small increase in accuracy for the Wikipedia
based model (90.98 Acc) compared to the FastText model
trained on the Common Crawl (90.22 Acc). Following this
result, we conclude that different pre-training tasks of FT
and SW capture complementary features that lead to im-
proved evaluation results. We explain the complementary
nature of these combinations with the document-wide con-
text that topic models encode. Topic models need to keep
track of the context coherently over whole documents while
respecting local topic shifts. That is contrary to language
modeling based embeddings that often focus mainly on lo-
cal context spanning over nearby sentences.
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Textual Similarity Sentiment Analysis Classification

Comb. ∆ MRPC SICK-E MPQA SST-2 SST-5 CR MR SUBJ TREC WikiS PubS

Language Model combined with Topic Model
EL+SW∆EL 0.18 -0.06 2.58 0.33 2.40 3.84 5.59 4.61 -3.80 1.96 1.26
EL+SW∆SW 6.15 12.18 8.28 19.66 14.79 6.89 8.69 1.33 19.00 15.23 2.84
EL+SP∆EL 0.93 -0.67 6.14 1.65 -1.62 1.14 6.37 2.70 0.40 7.77 8.91
EL+SP∆SP 7.42 22.39 -0.71 15.38 7.92 8.34 4.12 1.65 26.60 4.02 0.33
FT+SW∆FT 0.92 0.16 3.66 -2.41 0.50 10.91 8.81 7.91 -2.40 3.53 3.09
FT+SW∆SW 6.15 12.18 8.28 19.66 14.79 6.89 8.69 1.33 19.00 15.23 2.84
FT+SP∆FT 1.10 -0.02 10.65 -0.88 4.03 8.69 12.43 7.05 2.60 10.49 11.70
FT+SP∆SP 3.77 17.85 0.49 6.53 6.06 4.50 4.20 1.66 12.40 2.76 0.42

Language Model combined with Entity Embedding
FT+PA∆FT 3.13 4.72 0.34 2.42 2.27 4.42 0.86 0.95 8.80 2.25 0.63
FT+PA∆PA 0.82 2.45 1.72 3.68 1.95 2.33 2.64 1.52 6.00 1.52 0.74
EL+PA∆EL -0.23 0.27 0.27 0.93 -1.22 0.08 0.25 -0.16 0.40 -0.42 -0.15
EL+PA∆PA 1.28 3.19 4.96 8.51 5.97 9.38 8.01 4.75 14.00 2.83 2.66

Topic Model combined with Entity Embedding
SW+PA∆SW 3.94 7.49 5.62 9.72 5.88 2.55 6.04 0.59 8.00 13.36 1.89
SW+PA∆PA -0.52 -1.83 4.61 -2.03 0.68 8.80 10.70 8.78 -1.20 3.34 3.12
SP+PA∆SP 5.51 20.67 0.31 4.67 6.69 4.95 4.14 1.75 19.60 3.29 0.20
SP+PA∆PA 0.53 0.53 11.85 -1.48 4.34 7.05 14.15 7.71 7.00 10.29 11.59

Language Model combined with Contextualized Language Model
EL+FT∆EL -0.35 0.37 0.19 0.77 -0.54 0.37 0.13 -0.10 0.60 0.15 0.12
EL+FT∆FT 3.47 5.56 3.50 7.09 6.97 11.76 6.11 4.24 17.00 4.13 2.82

Table 6: This table shows the delta in accuracy score of each model combination with respect to the respective single model
accuracy score. We highlight numbers in green if an embedding combination yields improved scores compared to both
source embeddings.

5.2. Combinations with Entity Embeddings

Table 4 shows ”Strong+” increases in accuracy for 17 out
of 44 experiments for embedding combinations that include
the surveyed entity embedding (PA).

Topic plus entity embeddings outperform. We exam-
ine the combination of the topic (SW, SP) and entity em-
beddings (PA) in Tables 4 and 6. Intuitively, it seems rea-
sonable to assume that topic embeddings focus more on
structure than on the meaning of single words and, there-
fore, capture complementary knowledge. Our results prove
this assumption with 17 out of 22 experiments that show
an increase in performance and 11 scores, that qualify as
”Strong+.” Similar to the results when combining topic and
language models, we explain the performance gains with
the complementary nature of the entity disambiguation and
topic modeling pre-training tasks. Additionally, we note
that PA does not encode any contextual information at pre-
diction time while SW and SP do. Following this, it is
reasonable to assume that the combinations SP+PA and
SW+PA are generally beneficial.

Combining fastText and Pappu is beneficial. For 6 out
of 11 tasks is our complementary constraint in Table 4 ful-
filled, the remaining tasks have a ”Minor+” accuracy in-
crease, lower than one percentage point. We observe that
FT+PA is a beneficial combination since no task has a drop
in accuracy.

ELMo already captures features encoded by Pappu.
On the contrary, we observe no accuracy gain over one per-
centage point for EL+PA. We observe six times a minor
increase, four times a minor decrease and one time strong
decrease. As reported in Table 6 this strong decrease is
accounted to the SST-5 task with a loss of 1.22 percentage
point compared to the single model result of EL. Overall we
observe that this combination yields results that are com-
parable to the single model performance of EL (see Table
4.2.). This result suggests that the contextualized nature of
EL already captures the features encoded by PA.

5.3. Baseline and Domain Transfer
To validate our results, we survey if adding more semanti-
cally meaningful dimensions to a vector is sufficient to ob-
tain results comparable to our experiments. Therefore, we
evaluate combining a contextualized (ELMo) with a tradi-
tional language model (fastText). Next, we report the re-
sults of the single model evaluation of contextualized and
traditional language models on WikiSection and PubMed-
Section. Finally, we survey if we can enrich a universal em-
bedding (ELMo or fastText) with domain-specific features
(SP) without losing its domain independence.

ELMo plus fastText has no effect. We report no result
which qualifies as either ”Strong+” nor ”Strong-” in Table
4 for EL+FT. In six out of nine cases, we observe a slight
increase in accuracy, and in three cases, minor decreases.
Intuitively it is sound to assume that contextualized em-
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beddings (EL) should not benefit from static word embed-
ding (FT) methods. Correspondingly, we evaluate, on the
one hand, the combination EL+FT in order to investigate
this intuition and, on the other hand, to obtain a baseline.
Consequently, we conclude that adding more semantically
meaningful dimensions to text representations alone is not
sufficient to achieve good results comparable to the other
surveyed combinations.

Classical embeddings perform surprisingly well in
multi-sentence tasks. Table 5 reports surprisingly well
results for non-contextualized embeddings (FT and PA)
in the WikiSection and PubMedSection tasks. Their best
results on WikiSection (39.84 acc) and PubMedSection
(28.15 acc) are quite close to the contextualized universal
embeddings BE and EL (WikS: 44.94 acc, PubS: 30.85
acc). These results are contrary to our initial assumption
that the contextualized embeddings would vastly outper-
form FT and PA on multi-sentence based tasks.

Domain specificity. We observe 18 times a ”Strong+” in-
crease in accuracy for the 33 experiments that involve SP,
which is trained on PubMed abstracts (see Table 6 and Ta-
ble 4). Therefore, we can confirm the observation of Lee
et al. (2019) and Sheikhshabbafghi et al. (2018) that in-
domain text representations perform better on biomedical
texts than universal representations. Moreover, we can
show that it is possible to transfer the domain adaption
into a combined embedding without experiencing catas-
trophic forgetting since we only observe three out of the 18
”Strong+” increases in the medical tasks (WikS, PubS). For
example, as shown in Table 5 the combinations of EL+SP
and SP+PA deliver the best results in our evaluation for the
WikiSection disease task while being in the top three sur-
veyed embedding combinations.

5.4. Discussion
Adding topic models helps for most tasks. Our results
suggest that adding topic models to either language models
or entity embeddings is beneficial for the overall perfor-
mance of most investigated classification tasks. This ob-
servation can be explained by the topical and structural in-
formation captured in these models. Moreover, these topi-
cal models capture the coherent flow of topics across long-
range dependencies while taking local topic shifts into ac-
count. Therefore, neurons in these models may be able
to capture long-range dependencies from long documents.
This information seems to be complementary to informa-
tion from universal text embeddings or entity embeddings,
with a comparably short context window.

Textual similarity tasks do not benefit much. We ob-
serve for textual similarity tasks only for very few sce-
narios a ”Strong+” improvement when combining embed-
dings. We argue that existing universal embeddings, such
as ELMo or fastText, already represent sufficient features
from local features close to the target word.

Concatenation is simple but easily interpretable. Our
study is limited to concatenation as the operator for com-
bining embeddings. This simple operator has a significant
disadvantage in raising the dimensionality. Additionally, it
is not leveraging the originating correlations in combined

embedding spaces. However, despite these shortcomings,
this operator permits to survey for effective embedding
combinations in an explainable manner.

Different pre-training tasks encode different features.
Our study confirms that embeddings trained with differ-
ent pre-training tasks can encode complementary features.
Combinations of specialized and universal embeddings of-
ten result in domain-independent performance increases.

6. Conclusion
To the best of our knowledge, we are the first investigating
effective combinations of universal with specialized text
embeddings in an extensive study on 11 tasks. Our compre-
hensive analysis shows that combining universal and spe-
cialized embeddings yields vastly improved results in many
downstream tasks. Furthermore, we set a new state of the
art for two tasks in SentEval by combining embeddings. We
extend SentEval to the medical domain by integrating the
WikiSection-Diseases and the novel PubMedSection task,
covering 51,500 labeled PubMed articles.
Future research includes investigating features covered by
specialized embeddings, such as presented by Arnold et al.
(2020), that universal embeddings might miss, including re-
cent models such as BERT (Devlin et al., 2019) or GPT2
(Radford et al., 2019). A deeper and also linguistically mo-
tivated understanding might lead to better choices for em-
bedding combinations or new directions for designing pre-
training tasks. Also, we will investigate further embedding
combination methods for two and more embeddings.
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and Löser, A. (2019). SECTOR: A Neural Model for
Coherent Topic Segmentation and Classification. TACL,
7:169–184, March.

Arnold, S., van Aken, B., Grundmann, P., Gers, F. A.,
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Fusing Vector Space Models for Domain-Specific Ap-
plications. In ICTAI 2019. IEEE.

Sheikhshabbafghi, G., Birol, I., and Sarkar, A. (2018).
In-domain Context-aware Token Embeddings Improve
Biomedical Named Entity Recognition. In Proceedings

of the Ninth International Workshop on Health Text Min-
ing and Information Analysis, pages 160–164. ACL.

Socher, R., Wu, A. P. J., Chuang, J., Manning, C. D., Ng,
A. Y., and Potts, C. (2013). Recursive Deep Models for
Semantic Compositionality Over a Sentiment Treebank.
In EMNLP’13, pages 1631–1642. ACL.

Starlinger, J., Kittner, M., Blankenstein, O., and Leser, U.
(2017). How to improve information extraction from
German medical records. it - Information Technology,
59(4), January.

Subramanian, S., Trischler, A., Bengio, Y., and Pal, C. J.
(2018). Learning General Purpose Distributed Sentence
Representations via Large Scale Multi-task Learning. In
International Conference on Learning Representations,
Vancouver, BC, Canada.

Tang, S. and de Sa, V. R. (2018). Improving Sentence
Representations with Multi-view Frameworks. In IRASL
Colocated at NeurIPS, page 13, Montréal, Canada, De-
cember.
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