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Abstract
Natural Language Processing (NLP) can help unlock the vast troves of unstructured data in clinical text and thus improve healthcare
research. However, a big barrier to developments in this field is data access due to patient confidentiality which prohibits the sharing
of this data, resulting in small, fragmented and sequestered openly available datasets. Since NLP model development requires large
quantities of data, we aim to help side-step this roadblock by exploring the usage of Natural Language Generation in augmenting
datasets such that they can be used for NLP model development on downstream clinically relevant tasks. We propose a methodology
guiding the generation with structured patient information in a sequence-to-sequence manner. We experiment with state-of-the-art
Transformer models and demonstrate that our augmented dataset is capable of beating our baselines on a downstream classification task.
Finally, we also create a user interface and release the scripts to train generation models to stimulate further research in this area.
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1. Introduction

Natural Language Processing (NLP) has enormous poten-
tial to advance many aspects of healthcare by facilitating
the analysis of unstructured text (Esteva et al., 2019). How-
ever a key obstacle to the development of more powerful
NLP methods in the clinical domain is a lack of accessi-
ble data. This, coupled with the fact that state-of-the-art
(SOTA) neural models are well known to require very large
volumes of data in order to learn general and meaningful
patterns, means that progress is hindered in this area. Data
access is usually restricted due to the constraints on sharing
personal medical information for confidentiality reasons, be
they legal or ethical in nature (Chapman et al., 2011).
In the Machine Learning community, similar problems are
typically solved by using artificially generated data to aug-
ment or perhaps even replace an original dataset (Bach-
man, 2016) in e.g. image processing. However, similar
approaches to data augmentation are not easily applied to
NLP. With language being inherently more complex than
other domains, it is difficult to programmatically modify
a sentence or document without altering the meaning and
coherency. Natural Language Generation (NLG) can pro-
vide a more sophisticated approach to solving this problem
and has already done so, e.g. in machine-translation with
the technique known as back-translation (Sennrich et al.,
2016). With newer, more capable, NLG models - utilis-
ing the Transformer architecture (Vaswani et al., 2017) -
we posit that this general idea can now be extended beyond
machine translation to longer passages of text.
Indeed NLG is an active area of NLP research, however
there are still challenges to be addressed. The replace-
ment or augmentation of genuine training data with arti-
ficial training data remains understudied, particularly in the
medical domain. Attempting to achieve this manually, e.g.
Suominen et al. (2015), is a costly and unscalable approach.
Furthermore, the application of SOTA Transformer mod-
els for hierarchical generation beyond the sentence-level
also remains understudied. Since most research focuses
on shorter sentence-level texts, it is not clear whether these

models can form sufficiently long range dependencies to be
useful as a substitute for genuine training data. Therefore
we believe that applying NLG approaches to medical text
for augmentation purposes is a worthwhile research area in
order to ascertain its viability. In the long term, if success-
ful, we also aim to share this synthetic data with health-
care providers and researchers to promote methodological
research and advance the SOTA, helping realise the poten-
tial NLP has to offer in the medical domain.
We build on the approaches of Liu (2018) and Melamud and
Shivade (2019) in generating complex, hierarchical pas-
sages of text using a Transformer-based approach (Vaswani
et al., 2017). We do this in both high-resource and low-
resource scenarios to ensure that we assess the utility of
NLG data augmentation in a low resource setting - when it
is inherently most needed. We experiment with two Trans-
former architectures: the original vanilla architecture which
achieved SOTA machine-translation results (Lakew et al.,
2018), and the more recent GPT-2, composed of a stack of
Transformer decoders, which has achieved SOTA question-
answering, language modelling and common-sense reason-
ing results (Radford et al., 2019). We use this artificial
data in two clinically relevant downstream NLP tasks (un-
planned readmission prediction and phenotype classifica-
tion) to effectively assess its utility both as a standalone
dataset, and as part of an augmented dataset alongside the
original samples. Our ultimate aim is to ascertain whether
using SOTA Transformer models can generate new samples
of text that are useful for data augmentation purposes - par-
ticularly in low resource medical scenarios.
Our main contributions are as follows: (i) we introduce a
methodology to generate medical text for data augmenta-
tion; (ii) we demonstrate that our method shows promise
by achieving significant results over our baselines on the
readmission prediction task. This result is obtained using a
pretrained BioBERT model.
We hope that this will pave the way for healthcare profes-
sionals in the field to appropriate this technique for the ben-
efit of healthcare, stimulate further research, and enable the
creation of entirely synthetic shareable clinical notes.
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2. Related Work
Whilst NLG is an increasingly active area of NLP research,
current SOTA approaches have not been extensively ap-
plied to the generation of medical text. Where it has,
this has often been short excerpts of text as opposed to
longer passages usually found in Electronic Health Records
(EHRs) e.g. generation of imaging reports by Jing et al.
(2018) or the generation of X-ray captions by Spinks and
Moens (2018).
When it comes to the task of generating full EHRs, these
EHRs often do not include the free text associated with the
records (Choi et al., 2017), or the free text that is included is
very short, such as the approach of Lee (2018) which gener-
ates chief complaints limited to 18 tokens or less. The clos-
est published attempt to generate long passages of text in
EHRs that we are aware of, is that of Liu (2018) who train a
generative model using the public, de-identified MIMIC-III
dataset (Johnson et al., 2016) and achieve reasonably coher-
ent results on multiple measures, but do not perform any ex-
trinsic evaluation to assess the quality of this text on down-
stream tasks. Another similar work is that of Melamud
and Shivade (2019) who also utilise the MIMIC-III dataset
to generate long passages of text and go further to study
the utility of the artificial text in a number of downstream
NLP tasks. However they do not use SOTA approaches for
generation, opting for LSTMs over Transformers, and their
downstream tasks are not clinically focused. Lastly, they do
not study the utility of the synthetic text for augmentation
purposes, only as a standalone dataset.
The closest overall approach to our own is that of Wang et
al. (2019) who use the vanilla Transformer model to gener-
ate text and then evaluate using a phenotype classification
task and a temporal evaluation task. Their text generation,
however, is done at the sentence level before being joined
together to form a full EHR note. This is unlike the ap-
proaches of Liu (2018) and Melamud and Shivade (2019)
whose models output an entire EHR note in one iteration.
Finally, standard approaches to data augmentation are not
easily applied to NLP due to the inherent complexity of lan-
guage. Most approaches simply resort to randomly swap-
ping words. This replacement can be done with synonyms,
either by using a thesaurus (Zhang et al., 2015) or word
embedding similarity (Wang and Yang, 2015), or it can be
done with other entirely random words (Wang et al., 2018).
A recent approach from Wei and Zou (2019) known as
Easy Data Augmentation (EDA) combines some of these
approaches and has been shown to improve performance
for both convolutional and recurrent neural networks with
particularly strong results for smaller datasets. We use this
approach as a baseline for comparison against our NLG
models for augmentation.

3. Methodology
3.1. Data
We use EHRs from the publicly available MIMIC-III
database (Johnson et al., 2016), a large de-identified
database for critical care hospital admissions at the Beth
Israel Deaconess Medical Center, Boston MA. The version
used for this research is the latest version (v1.4) which com-
prises over 58,000 hospital admissions for 38,645 adults

and 7,875 neonates spanning June 2001 - October 2012.
We are particularly concerned with the NOTEEVENTS ta-
ble which comprehensively provides all the textual notes
written by doctors, nurses and other healthcare profession-
als during a patient’s stay. We focus solely on the Discharge
Summaries, which provide the richest content about the pa-
tient’s stay at the ICU.
The MIMIC-III database contains data only for neonates
and adult patients (defined as being >= 15 years of age).
For the purposes of this research, we remove the neonates
due to the fact we believe there would be considerable and
significant differences between the care of these two pa-
tients groups and this would be reflected in the discharge
summaries for these patients. After removing these pa-
tients, we are left with 55,404 discharge summaries for
37,400 unique patients.

3.1.1. Dataset Split
We split our full dataset of 55,404 discharge summaries into
training, validation and test datasets in the ratio 8:1:1. In
the low-resource scenario where we experiment with an ar-
tificially smaller dataset, we keep the same validation set
as the larger dataset and instead just shrink the size of the
training and test datasets.
In order to determine the size of our low-resource dataset,
we took inspiration from the recently introduced WikiText-
2 and WikiText-103 datasets (Merity et al., 2016). These
datasets are collated from Wikipedia entries and are often
used to benchmark general-domain language models. They
are named to reflect the number of words in each dataset
with WikiText-2 containing ∼2m words and WikiText-103
containing ∼103m words. In accordance with this nomen-
clature, we name our low-resource and full-resource bench-
marks, and henceforth refer to them as MimicText-9 and
MimicText-98 respectively. Breakdowns of these datasets
can be seen in Table 1.
In order to produce the training set for MimicText-9, we
sample 4000 notes from the MimicText-98 training set.
This results in∼9m words in our training dataset, however,
since Transformer models are limited to processing a max-
imum of 512 tokens and will truncate anything greater than
this number, in practice gives us ∼2m words - the same as
WikiText-2.
In order to produce the test set for MimicText-9, we reduce
the size as much as we possibly can without affecting our
downstream NLP tasks. The bottleneck in this case is the
phenotype classification task where we need to predict the
phenotypes for a curated dataset of∼1600 admissions. Due
to the fact that there are sometimes multiple ICU stays per
admission, this corresponds to 1,846 discharge summaries.
Reducing the size any more than this would adversely affect
this downstream task so we leave the test set at this size.

3.2. Experimental Setup
We treat our text generation task as a conditional language
modelling problem. More specifically, we model the task
as a seq2seq problem where we generate discharge sum-
maries conditioned on some input representing key infor-
mation regarding the patient and their ICU stay following
the approach of Liu (2018) generating each summary at the
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Train Valid Test
MimicText-9

Notes 4000 5,447 1,846
Words 9,048,735 12,187,184 4,446,003

MimicText-98
Notes 44,230 5,447 5,727
Words 98,243,403 12,187,184 13,332,263

Train Valid Test
WikiText-2

Articles 600 60 60
Words 2,088,628 217,646 245,569

WikiText-103
Articles 28,475 60 60
Words 103,227,021 217,646 245,569

Table 1: Dataset comparison of MimicText vs WikiText

full note level. This leaves the attention mechanism of the
model to entirely ascertain what portions of the input are
relevant to what portions of the output. We believe that this
is a viable approach given the advanced Transformer archi-
tecture we are using. In order to extract the relevant content
from a patient’s history, we explore the rest of the MIMIC-
III dataset. Drawing on the approach of Liu (2018), we ex-
periment with various configurations of the following con-
text data classes in addition to a hint representing the first
10 tokens of the note. We settle on using all of the below
data classes in the following order:

1. Demographic data (G.A.E.): This is static data
which is found at the subject level. We extract gen-
der and ethnicity, and compute the age at the time of
the note using the date of birth of the patient and the
date of the note.

2. Diagnoses (D): Intuitively, one can assume that diag-
noses are a key element regarding a subject’s stay in
the ICU and would be extremely pertinent for writing
the discharge summary. We include all International
Classification of Diseases, Ninth Revision (ICD-9)
codes for diagnoses pertaining to a patient’s hospital
admission ordered by priority, with the highest prior-
ity items first.

3. Procedures (P): Similar to diagnoses, procedures are
also a key element of a subject’s stay in the ICU. Again
these are ICD-9 procedures but are instead ranked in
the order in which they were performed.

4. Medications (M): Medications prescribed to the pa-
tient within a 24hr context window prior to discharge
are included as context data. We include the name of
the drug, the strength and the units.

5. Microbiology Tests (T): Nosocomial infections are
those which are contracted during a hospital admis-
sion and and have a prevalence of 15% (Sydnor and
Perl, 2011). We include the results of tests which test
for these infections within a 72hr context window in-
cluding the location of the test on the subject and the
list of organisms detected at that location (if any).

6. Laboratory Tests (L): Lastly, we also include lab
tests measuring normal bodily functions within a 24hr
context window. We extract the name of the test, the
value, its unit of measurement, and, if available, the
flag saying whether or not this value is abnormal.

An example instantiation of this input context data is illus-
trated in Figure 1.

First ten tokens ... <H>
M <G>
65 <A>
white <E>
other pulmonary embolism and infarction | acute kidney failure ,

unspecified | diarrhea | hypotension , unspecified <D>
other endoscopy of small intestine | gastroenterostomy without gastrectomy

<P>
warfarin , 1mg Tablet | polysaccharide iron complex , 150MG | bisacodyl ,

10MG SUPP | milk of magnesia , 30ML UDCUP <M>
blood culture : None | urine : staphylococcus species | mrsa screen : None

| blood culture : None <T>
Calcium, Total , 10.0 , mg/dL | Bicarbonate , 25 , mEq/L | Hematocrit ,

28.7 , \% , abnormal <L>

Figure 1: Example instantiation of input context for condi-
tional generation

3.3. Pre-processing
We use the ScispaCy tokenizer (Neumann et al., 2019) to
tokenize our text. ScispaCy is a specialised NLP library
for processing biomedical texts which is built on top of the
robust spaCy library1. We use the medium sized version of
the library to tokenize our text: en core sci md.
Additionally we convert all text to lower case and re-
move words which occur 3 times or fewer in our vocab-
ulary. These out-of-vocabulary words are replaced with
“< UNK >”. We also replace all newline characters with
a new token “< PAR >” representing a paragraph. This is
due to the requirement that the input to our models must
be in one line, however we do not wish to lose information
regarding formatting of the note. Hence we replace it with
a different token allowing us to recreate the formatting in
post-processing.

3.4. Text Generation Models
As mentioned, we model the generation of text as a seq2seq
problem. Whilst language models can be used standalone
to generate text, we generally prefer to use conditional lan-
guage models e.g. seq2seq. These usually consist of two
architectures in an encoder-decoder format (Sutskever et
al., 2014) where a source sequence is encoded into a latent
space before being decoded to the target sequence. Trans-
formers follow this paradigm having 6 encoder and 6 de-
coder layers, whilst GPT-2 instead only consists of Trans-
former decoder layers.
We use the vanilla Transformer implementation from the
tensor2tensor2 library (Vaswani et al., 2018) and we
train each of our models for 3-4 epochs using a batch size of
4096 tokens and 4 Tesla K80 GPU chips, each having 12GB
of RAM. We do this for both MimicText-9 and MimicText-
98 using the ‘transformer base’ hyperparameters provided

1www.spacy.io
2https://github.com/tensorflow/tensor2tensor

www.spacy.io
https://github.com/tensorflow/tensor2tensor
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by tensor2tensor. We experiment with various combina-
tions of input contexts using this vanilla Transformer to as-
certain the optimal input context to use for the GPT-2 model
and all downstream tasks. We decode using a beam size of
4 and alpha of 0.6 (default values).
We use the Tensorflow GPT-2 implementation directly from
the OpenAI repository3. We fine-tune the pretrained “GPT-
2 small” model (12 decoder layers) on both MimicText-98
and MimicText-9. We choose to focus only the small model
for quicker and cheaper training due to its fewer parame-
ters. We use the fine-tuning scripts provided by nshepperd4.
We train the model for 60,000 steps using a batch size of
2 samples (2048 tokens) and 1 Tesla K80 GPU chip. We
decode using a temperature of 1 and top-k of 40 (default
values).
Since GPT-2 consists of only a stack of decoders, without
any encoders, the problem needs modification for seq2seq
tasks. Therefore, we follow the approach of the authors
(Radford et al., 2019) who demonstrate that seq2seq tasks
can be modelled by the introduction of a special token to
help the model infer the desired task. We follow this frame-
work and fine-tune the GPT-2 model using a context of ex-
amples pairs of the format context data = target
note before conditioning the model with a prompt of
context data = to generate target note at infer-
ence time.

3.5. Intrinsic Evaluation
The intrinsic evaluation step allows us to determine the
shallow proximity of the generated text to the original. We
report negative perplexity (neg. PPL), BLEU, ROUGE-2
and ROUGE-L. BLEU (Papineni et al., 2002) measures n-
gram precision between generated and original text, while
ROUGE-2 – bigram recall, and ROUGE-L – the longest
in-sequence common n-gram recall. Negative PPL re-
flects the confidence of the model in the produced output
(the higher the value the higher the confidence). For the
BLEU score, we use the implementation provided by ten-
sor2tensor, while for ROUGE we use pyrouge5 - a python
wrapper for the commonly used original ROUGE package
from Lin (2004).
Tables 2 and 3 show our intrinsic evaluation results for
models trained on MimicText-98 and MimicText-9 respec-
tively. For both datasets, we train the vanilla Transformer
model and GPT-2. We can see that the Transformer model
outputs text significantly closer to the real text than GPT-2
on MimicText-98 whilst GPT-2 produces outputs closer to
the real text than our Transformer model on MimicText-9.

Model Neg. PPL BLEU ROUGE-2 ROUGE-L
Transformer -2.117 4.76 0.3306 0.5942
GPT-2 -2.357 0.06 0.1350 0.1716

Table 2: Instrinsic Results for MimicText-98 test set

3https://github.com/openai/gpt-2
4https://github.com/nshepperd/gpt-2
5https://github.com/bheinzerling/pyrouge

Model Neg. PPL BLEU ROUGE-2 ROUGE-L
Transformer -2.474 0.10 0.3048 0.5699
GPT-2 -2.759 0.10 0.1309 0.1788

Table 3: Intrinsic Results for MimicText-9 test set

We hypothesise that for MimicText-98, there is enough data
for the Transformer model to learn meaningful relation-
ships and represent them in its output. Hence, the output
is closer to the real text. For MimicText-9 however, there
is not enough data for the Transformer model to learn these
relationships, hence the considerably lower metrics across
the board. For GPT-2 however, we see reasonably simi-
lar metrics for both MimicText-98 and MimicText-9. Since
GPT-2 has been pre-trained on 40GB of internet text data, it
has already learnt to model the English language and there-
fore needs considerably less data to achieve reasonable re-
sults and effectively learn how to write a discharge sum-
mary.

3.6. Downstream Tasks
3.6.1. Unplanned Readmission Prediction
For this task, we attempt to reproduce the work of Rajkomar
et al. (2018) who perform a suite of various clinically rel-
evant tasks such as mortality prediction, 30-day unplanned
readmission, prolonged length of stay and final discharge
diagnoses using EHR data from two hospitals in the US.
Rajkomar et al. (2018) use the entire data from the EHR
to do this whereas we focus solely on using the discharge
summaries. The authors report the AUC scores 0.93-0.94,
0.75-76, 0.85-0.86 and 0.90 respectively for those tasks.
Since our only data point is, by definition, at the end of
the subject’s stay, most of these tasks become either unfea-
sible or trivial. In our view, the only remaining relevant
task is the 30-day unplanned readmission prediction, which
is also incidentally the hardest task judging by the reported
aformentioned AUC scores.
We label each discharge summary as either positive or neg-
ative depending on whether the patient then has a readmis-
sion within 30 days. Since we are only concerned with un-
planned readmissions, as these the are the only ones where
there is clinical value in predicting their occurrence, we fil-
ter for only the EMERGENCY and URGENT admission
types (ignoring ELECTIVE and NEWBORN).
In order to ensure that our data for this task has not been
seen by any of our text generation models before, we use
the MimicText test sets to form the entire dataset for this
task. We split the MimicText test sets for both MimicText-
9 and MimicText-98 in the ratio 8:1:1 to form our training,
validation and test sets for this task.
Samples where there is an unplanned readmission within
30 days only make up 6% of the discharge summaries in
our entire dataset. In order to effectively deal with this
imbalance, we ensure these instances are stratified across
our training, validation and test sets. After splitting our
dataset, we also then upsample our positive samples in the
training set only, since heavy imbalance during training is
well known to result in poor classification performance. To
avoid losing any data, we opt to oversample our underrepre-

https://github.com/openai/gpt-2
https://github.com/nshepperd/gpt-2
https://github.com/bheinzerling/pyrouge
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Train Valid Test
MimicText-9

Original 2,412 185 185
Original 2x 4,824 185 185
Original EDA 4,824 185 185
Synthetic 2,412 185 185
Original + Synthetic 4,824 185 185

MimicText-98
Original 7,998 573 573
Original 2x 15,996 573 573
Original EDA 15,996 573 573
Synthetic 7,998 573 573
Original + Synthetic 15,996 573 573

Table 4: MimicText-9 and MimicText-98 dataset sizes for
the Readmission Classification task

sented class (the readmissions) to be equal in number to the
overrepresented class (non-readmissions). This then forms
our primary baseline, which we call the ‘Original’ data.
This upsampling is performed for all datasets in this task.
Table 4 shows the final dataset sizes for all permutations.
We perform the classification using BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al.,
2019) and a variant of BERT, termed BioBERT (Lee et al.,
2019). BERT is a recent Transformer-based architecture
which has achieved SOTA results across numerous NLP
tasks whilst BioBERT is a version of BERT pretrained on
biomedical corpora demonstrating SOTA results (includ-
ing significant improvements over BERT) on biomedical
text mining tasks. We use BioBERT v1.1 (+ PubMed 1M)
which takes an already pretrained BERT-base and trains it
for a further 1M steps on the 4.5B word PubMed corpus6.
We use the PyTorch (Paszke et al., 2017) implementation
of BERT provided by the pytorch-transformers li-
brary7 and train both BERT and BioBERT using the train-
ing scripts provided by the fast-BERT library8, built on
top of pytorch-transformers. We compare the performance
of our synthetic data as input to the models both standalone
and combined with the original data comparing against our
3 baselines: the original data, the original data augmented
with a copy of itself (i.e. duplicated, mimicking a very
bad generation model simply reproducing the original data
without adding any variation to it) and the original data aug-
mented with a copy of itself modified using the EDA tech-
nique described in Section 2. Therefore, we end up with 8
sets of results for each of our text-generation models and 12
sets of results for our baselines. We train the larger datasets
for 6 epochs and the smaller datasets for 3 epochs.

3.6.2. Phenotype Classification
Our phenotype classification task is borrowed from
Gehrmann et al. (2018) and is the same task conducted by
Wang et al. (2019). We model this as a multilabel classi-
fication task where subjects are categorised as demonstrat-
ing up to 13 different phenotypes ranging from the likes of

6https://www.ncbi.nlm.nih.gov/pubmed/
7https://github.com/huggingface/pytorch-transformers
8https://github.com/kaushaltrivedi/fast-bert

Obesity and Alcohol Abuse to Advanced Cancer and De-
pression. The dataset is a carefully curated subset of 1610
discharge summaries from MIMIC-III with the annotations
made by a panel of medical professionals.
Although the dataset is a subset of MIMIC-III, the au-
thors initially actually used MIMIC-II to collect the data.
Due to some structural differences between MIMIC-III and
MIMIC-II, we could not identify the exact discharge sum-
maries for hospital admissions where there was > 1 dis-
charge summary per admission (i.e. multiple ICU stays). In
these cases, we kept all the discharge summaries pertaining
to an admission on the assumption that the subjects will be
exhibiting the same phenotypes for all the ICU stays in a
given admission. This resulted in an increase of the dataset
size from 1,610 to 1,846. This was then split in the ratio
8:1:1 to form our training, validation and test sets respec-
tively. Due to the large number of different classes, and
the relatively small size of the dataset, it was infeasible to
ensure stratification of classes, so the splits were simply
performed randomly.
Again, we perform the classification using the BERT and
BioBERT models and for each of our text generation mod-
els, we compare the performance of our synthetic data as
input to the models both standalone and combined with the
original data for our models trained on MimicText-98. As
mentioned, since we have a curated dataset for this task, we
do not explore the low-resource scenario and therefore text
trained on MimicText-9 is not used in this task. We com-
pare the results against our 3 baselines: the original data,
the original data augmented with a copy of itself (i.e. du-
plicated) and the original data augmented with a copy of it-
self modified using the EDA technique. We do this for both
BERT and BioBERT models training the larger datasets for
10 epochs and the smaller datasets for 20 epochs. There-
fore, we end up with 8 sets of results for each of our text-
generation models and 6 sets of results for our baselines.

4. Results
4.1. Readmission Prediction
For the Readmission Prediction task, we report Accuracy,
AUC and F1 scores for both our BERT and BioBERT clas-
sification models. Additionally, due to the aformentioned
difficulty of this task, we also include the metrics recall and
precision in order to obtain some more granular information
regarding the performance of our models. Table 5 shows
our results.
Looking at MimicText-98, our first observation is the strong
performance of the BioBERT model for the ‘Combined’
data generated from our Transformer model. This beats
the ‘Original’ baseline on most metrics, including ones that
matter most in classification tasks - AUC, recall and F1.
And indeed in 2/3 of these metrics, the results are signifi-
cant at the 90% or 95% confidence level. These results also
highlight the flaws of accuracy as a metric for an imbal-
anced classification problem. This is particularly evident
from the two most accurate models which have precision,
recall and F1 values of exactly zero, showing they did not
even predict a single positive sample correctly, which also
highlights the difficulty of this task.

https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/huggingface/pytorch-transformers
https://github.com/kaushaltrivedi/fast-bert
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Dataset Model MimicText-98 MimicText-9
AUC Acc. Prec. Recall F1 AUC Acc. Prec. Recall F1

Base-
line

Original BioBERT 0.6060 0.8691 0.4615* 0.1644 0.2424 0.4673 0.7838 0.3125 0.1471 0.2000
BERT 0.5914 0.8621 0.3500 0.0959 0.1505 0.5027 0.5405 0.1600 0.3529 0.2202

Original
2x

BioBERT 0.6115 0.8325 0.2195 0.1233 0.1579 0.5319 0.7622 0.2222 0.1176 0.1538
BERT 0.5775 0.8447 0.2143 0.0822 0.1188 0.4901 0.6811 0.0968 0.0882 0.0923

Original
EDA

BioBERT 0.6142 0.8464 0.2727 0.1233 0.1698 0.6428 0.7730 0.3000 0.1765 0.2222
BERT 0.4404 0.8726 0.0000 0.0000 0.0000 0.4965 0.8162 0.0000 0.0000 0.0000

Trans-
former

Synthetic BioBERT 0.5206 0.8674 0.2000 0.0137 0.0256 0.5273 0.8162 0.0000 0.0000 0.0000
BERT 0.4479 0.8464 0.1053 0.0274 0.0435 0.5045 0.8162 0.0000 0.0000 0.0000

Combined BioBERT 0.6690 0.8534 0.3878 0.2603** 0.3115* 0.5275 0.6162 0.1967 0.3529 0.2526
BERT 0.5356 0.8569 0.2632 0.0685 0.1087 0.4599 0.8162 0.0000 0.0000 0.0000

GPT-2
Synthetic BioBERT 0.4803 0.8709 0.3333 0.0137 0.0263 0.5860 0.5892 0.2162 0.4706* 0.2963

BERT 0.4878 0.8551 0.1429 0.0274 0.0460 0.5164 0.8162 0.0000 0.0000 0.0000

Combined BioBERT 0.5807 0.8447 0.2500 0.1096 0.1524 0.5223 0.7243 0.2703 0.2941 0.2817
BERT 0.5163 0.8726 0.0000 0.0000 0.0000 0.5228 0.8162 0.0000 0.0000 0.0000

Table 5: Readmission prediction results for MimicText-98 and MimicText-9. Results for the best model in each category
are highlighted in bold. * = significance at the 90% confidence level. ** = significance at the 95% confidence level

These results show promise for using the Transformer
model to augment our original dataset. However, inter-
estingly, this benefit only manifests itself when classifying
with the BioBERT model. We see significant improvements
for most datasets at the 95% confidence level for using
BioBERT over BERT, but we did not anticipate this sheer
increase in improvement for the Transformer augmented
dataset. In fact, the BERT version of this model consid-
erably underperforms the BERT model for the ‘Original’
dataset, and yet the BioBERT model significantly outper-
forms the ‘Original’ BioBERT model as well as all other
baselines and our GPT-2 models.
We hypothesise that this significant improvement is due to
the fact that the synthetic data adds just the optimal amount
of noise to our original dataset, allowing our BioBERT
model to learn more general relationships and avoid over-
fitting the training dataset. Crucially however, we believe
it is the pretraining undertaken by BioBERT on biomedical
data which allows it to do this, as evident by the lacklustre
performance demonstrated by BERT.
For MimicText-9, as expected, our baseline and Trans-
former models perform significantly worse due to the sig-
nificantly smaller dataset. Our GPT-2 model is the best per-
former demonstrating significant recall values at the 90%
confidence level for the synthetic text. We hypothesise this
performance is due to the extensive pretraining of the GPT-
2 model. Furthermore, as expected, all our BioBERT mod-
els outperform our BERT models across the board. Overall,
it appears that using the Transformer model for augmen-
tation in the low resource scenario is not a viable option.
We cannot say for certain whether using GPT-2 or EDA
could positively impact our results. However, it appears
that our EDA baseline generally performs even worse than
our Transformer and GPT-2 augmentations and the Original
data itself for both MimicText-98 and MimicText-9.
Overall, we believe that our synthetic text could have use-
ful implications for augmenting datasets to improve perfor-
mance on downstream clinically relevant tasks. Performing
a qualitative evaluation on our samples, whilst our samples

generally resemble a standard discharge summary with a
relatively consistent narrative, there are often inaccuracies
that are even apparent to the untrained eye, e.g. references
to broken hips for a fall patient despite an x-ray of the area
being mentioned as unremarkable. It is our hypothesis that
these inaccuracies can provide an optimal amount of noise
when using a model that has been pretrained on biomedi-
cal texts, thus allowing them to better generalise. However,
this noise proves too much for models that have only been
pretrained on non-medical text.

4.2. Phenotype Classification
Due to the sheer volume of results for each of our 13 phe-
notypes, we only report a summary in this section detailing
accuracy, AUC and F1 scores. Table 6 shows our average
results across the 13 phenotypes for MimicText-98. In ac-
cordance with the literature, we report a macro-weighted
AUC and a micro-weighted F1 for our average results us-
ing the implementations from scikit-learn9.
Our first observation is that our results are all very sim-
ilar across all our metrics. Indeed we can not identify a
model which is significantly better than all the rest at the
95% or even 90% confidence level for any of our metrics.
This leads us to hypothesise that this task might be too easy
and that even weaker models are able to relatively accu-
rately identify the phenotypes of patients from their dis-
charge summaries. However, we still note that our baseline
models report the highest values across our metrics, espe-
cially our ‘Original’ data using the BioBERT model which
reports the best accuracy and F1 scores.
In addition, we also cannot conclusively say that the
‘Original’ data performs better than when it is augmented
with our Transformer or GPT-2 models (‘Original + Syn-
thetic’) at the 95% confidence level when comparing the
same model (i.e. only comparing BERT with BERT and
BioBERT with BioBERT). What we can conclusively say
however is that the ‘Original + Synthetic’ datasets signifi-
cantly outperform our ‘Synthetic’ datasets for both Trans-

9https://scikit-learn.org

https://scikit-learn.org
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Dataset Model Acc. AUC F1

Base-
line

Original BioBERT 0.9005 0.7737 0.4863
BERT 0.8864 0.7632 0.4326

Original
2x

BioBERT 0.8921 0.7743 0.4760
BERT 0.8841 0.7578 0.3984

Original
EDA

BioBERT 0.8932 0.7491 0.3797
BERT 0.8841 0.7497 0.4278

Trans-
former

Synthetic BioBERT 0.8754 0.6680 0.1183
BERT 0.8716 0.6638 0.0865

Combined BioBERT 0.8887 0.7693 0.3909
BERT 0.8860 0.7588 0.3450

GPT-2
Synthetic BioBERT 0.88716 0.5818 0.1289

BERT 0.8704 0.5961 0.0907

Combined BioBERT 0.8906 0.7398 0.3571
BERT 0.8868 0.7486 0.3318

Table 6: Phenotype Classification results for MimicText-
98 showing average accuracy, AUC and F1 scores. Bold
results indicate the best model for that metric.

former and GPT-2 models. Our final observation is that
BioBERT generally outperforms BERT across most met-
rics, regardless of the dataset - reinforcing the results from
our readmission prediction task. We do not include our
Transformer and GPT-2 results for MimicText-9. This
is due to the fact that we are using a curated dataset
of the same size and therefore this comparison between
MimicText-9 and MimicText-98 is not useful in this in-
stance.
We posit that this task is more sensitive to the exact in-
accuracies in our synthetic text compared to the readmis-
sion prediction task. Since we are predicting phenotypes,
our models will be attending heavily to the actual words of
these phenotypes and other closely related words - which
do not necessarily always reflect the true phenotypes of
the patient. For example, one sample has alternating ref-
erences to both hypertension and hypotension in the same
note. Logically, this would impact our model predictions
for ’Advanced Heart Disease’ and possibly other pheno-
types. Our results indicate this noise does not lead to better
generalisation and simply reduces performance. However,
our readmission prediction task is a more complex problem
which can manifest itself in the text in myriad more abstract
ways. It appears that our models can represent these man-
ifestations sufficiently capably, despite minor inaccuracies,
so as to boost overall performance on the task.

5. Discussion
5.1. Contributions
We show that the vanilla Transformer architecture is able to
adequately learn a hierarchical, long passage seq2seq task
when trained on a large enough dataset (MimicText-98).
Whilst this artificial text is by itself of poorer quality than
the original text, we find that when it is used to augment our
original dataset, it can boost results on downstream tasks,
specifically the readmission prediction task. We hypothe-
sise this is due to it introducing sufficient noise that allows
the models to avoid overfitting and generalise better. Fur-
thermore, where this is not the case, it still achieves results

comparable to that of the Original dataset and other aug-
mentation baselines.
Conversely, we show that the vanilla Transformer architec-
ture is not able to do this on a small dataset (MimicText-
9). The quality of this artificial text is too poor which re-
sults in lower performance on our downstream evaluation
tasks. This indicates that it is not always be suitable for
data augmentation in low-resource scenarios. The GPT-2
model on the other hand shows promising results in these
cases achieving comparable results with our baselines. We
believe this is due to the extensive pretraining it has under-
gone meaning it needs less data to learn this transformation.
However, we also show that the GPT-2 model is not ideal
for long passage seq2seq tasks as demonstrated by its
lower performance compared to the Transformer model
on MimicText-98 and the fact that there is very little dif-
ference between its models trained on MimicText-98 and
MimicText-9. Our results suggest that this is due to the fact
that it does not rely on the encoder-decoder paradigm like
the Transformer and is better suited to conditional language
modelling as opposed to seq2seq tasks.
Lastly, we demonstrate the utility of BioBERT as an al-
ternative to BERT for certain clinical NLP tasks. For our
datasets, we show that it almost always achieves better re-
sults than BERT. Indeed, our results in the readmission pre-
diction task also indicate that a classification model pre-
trained on biomedical data such as BioBERT may not only
be helpful, but possibly also necessary to harness the statis-
tical power of our synthetic data.

5.2. Models and Interface
We also create a user interface and intend to release the
trained models for the research community in order to help
stimulate further research in this area. The models have
been submitted for release on the PhysioNet10 website. Our
interface is displayed in Figure 2. The left side is where the
user can input the patient information discussed in Section
3.2, whilst the right hand side depicts a blurred out version
of the output Discharge Summary. This is done for confi-
dentiality reasons and adherence to the MIMIC-III terms of
use. Instructions to reproduce our models and the code for
this interface are provided on GitHub11.

5.3. Applications
In addition to bettering clinical outcomes, an important
possible application of this research is its potential to re-
duce the significant time spent by clinicians writing clini-
cal notes, as also highlighted by Liu (2018). According to
a study by Sinsky et al. (2016), physicians spend almost
two hours of their time doing administrative work for every
hour of time spent with patients. The bulk of this time-
consuming administrative work is the inputting of clinical
notes into EHR software detailing patient history, assess-
ment, treatment plan, etc. – all of which are in the discharge
summaries we have been focusing on. This imposes a sig-
nificant burden on clinicians and healthcare providers as a
whole, resulting in an array of downstream effects such as

10www.physionet.org
11https://github.com/amin-nejad/mimic-text-generation;

https://github.com/amin-nejad/mimic-website

www.physionet.org
https://github.com/amin-nejad/mimic-text-generation
https://github.com/amin-nejad/mimic-website
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Figure 2: Model interface

longer patient waiting times, overworked clinicians and ul-
timately a misallocation of resources. We aspire that this
work will also contribute to the goal of NLP-assisted note-
writing by clinicians, thus saving time, money and improv-
ing both clinician and patient satisfaction (Friedberg et al.,
2014; Shanafelt et al., 2016).

5.4. Future Work
We only experiment with the vanilla Transformer model
and GPT-2-small. However, we would like to see this re-
search extended to larger architectures, particularly ones
which have shown superior performance in modelling long
range dependencies such as the Transformer with Mem-
ory Compressed Attentioned (Liu et al., 2018) and the re-
cently introduced Transformer-XL (Dai et al., 2019). In
addition, we would also like to explore further pretraining.
The GPT-2 model we trained showed promise in the low-
resource scenario due to its heavy pretraining but ultimately
fell short overall due to its lack of encoders. We would like
to continue our experiments with pretrained transformer
models, thus combining the two best qualities of the Trans-
former and GPT-2 models with which we experimented.
This would be particularly promising, if we also ensured the
pretraining was done on biomedical data in a similar fash-
ion to BioBERT. We posit that a BioTransformer would do
the same for language generation on biomedical tasks such
as producing discharge summaries.
A big barrier to advancing NLP in healthcare is maintain-
ing the privacy of patients. Whilst this is in fact the very
motivation for our research, it is also susceptible to its ef-
fects. We are still not at a stage yet where we can re-
lease de-identified patient data publicly, whether this gen-
uine or synthetic, due to their unquantified susceptibility to
re-identification attacks. Therefore, even if we develop a
model which shows strong performance in generating syn-
thetic clinical notes, these notes cannot be easily shared
with the wider research community. We welcome more
research in this field that incorporates susceptibility to re-
identification attacks.

6. Conclusion
In this paper, we have explored the use of SOTA Trans-
former models for the purposes of medical text augmenta-
tion. Specifically, we focused on the vanilla Transformer
and GPT-2 models to generate discharge summaries from
the MIMIC-III dataset, modelled as a seq2seq task. We
initially explore different ways to represent our input con-
text data before moving on to evaluate our output discharge
summaries. We assess the quality of this synthetic data
both standalone and augmented with the original data on
two downstream clinically relevant NLP tasks: readmission
prediction and phenotype classification. We compare our
results against the original data as well as a more conven-
tional data augmentation baseline using word replacement
known as EDA.
Our results show that whilst the synthetic data is gener-
ally of poorer quality, it can yield results significantly better
than our baselines on the readmission prediction task. Cru-
cially, we also show that these results only manifest them-
selves when using the BioBERT model, which has been
pretrained on biomedical documents. Our research demon-
strates some promising results but further work is needed in
this area to ascertain the viability of this approach to medi-
cal data augmentation.
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