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Abstract
Language models trained with Maximum Likelihood Estimation (MLE) have been considered as a mainstream solution in Natural
Language Generation (NLG) for years. Recently, various approaches with Generative Adversarial Nets (GANs) have also been
proposed. While offering exciting new prospects, GANs in NLG by far are nevertheless reportedly suffering from training instability
and mode collapse, and therefore outperformed by conventional MLE models. In this work, we propose techniques for improving GANs
in NLG, namely Best Student Forcing (BSF), a novel yet simple adversarial training mechanism in which generated sequences of high
quality are selected as temporary ground-truth to further train the generator. We also use an ensemble of discriminators to increase
training stability and sample diversity. Evaluation shows that the combination of BSF and multiple discriminators consistently performs
better than previous GAN approaches over various metrics, and outperforms a baseline MLE in terms of Fréchét Distance, a recently
proposed metric capturing both sample quality and diversity.
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1. Introduction
Natural Language Generation (NLG) is a critical sub-task
in many natural language processing tasks including ma-
chine translation, image captioning, and conversational sys-
tems. However, the generation of sequences that are seman-
tically coherent and grammatically correct is difficult. Neu-
ral networks trained with Maximum Likelihood Estimation
(MLE) over Ground-Truth (GT) sentences have shown im-
pressive results on many of these tasks (Karpathy and Fei-
Fei, 2015; Wu et al., 2016; Hu et al., 2017), and been con-
sidered as the mainstream solution in NLG.
Recently, generative models of Variational AutoEncoder
(VAE) are reportedly achieving inspiring results over M-
LE (Schmidt, 2019). In VAE, a pair of encoder-decoder
are trained simultaneously, while applies a latent loss typi-
cally based on KL-divergence of the encoded latent vector
from prior Gaussian distribution, in addition to reconstruc-
tion loss calculated by MLE. After training, the decoder
will do the generation job alone. Apparently, VAE models
should also be trained only with GT sentences.
Meanwhile, Generative Adversarial Nets (GANs) (Good-
fellow et al., 2014) have been introduced into NLG (Yu et
al., 2017; Che et al., 2017; Guo et al., 2017; Lin et al.,
2017), bringing in new possibility to train the model further
with guiding signals not directly from GT. However, vari-
ous reports indicate that language GANs have shown short-
comings in terms of training stability and sample diversi-
ty, which make them less competitive in performance with
conventional language models trained with MLE (Caccia et
al., 2018; Semenuita et al., 2018; Tevet et al., 2018; Zhu et
al., 2018), not to mention VAE. This fact motivates us to
work for improvement.
We propose Best Student Forcing (BSF) for adversarial

∗Denotes equal contribution

training for NLG, which uses generated sequences that the
discriminator perceives as being of high quality to further
train the generator in an MLE-like manner. This can be in-
terpreted as “forcing” the generative model to learn from
the “best student”. Theoretically, BSF could take any type
of non-adversarial NLG model as the generator, including
the decoder of VAE. We also introduce a dynamic ensem-
ble of multiple discriminators to alleviate mode collapse, a
common problem encountered by GANs, and increase sam-
ple diversity. Experiments that compare various GAN ap-
proaches for language generation and a baseline MLE mod-
el shows that BSF leads to significant improvements over
previous GAN approaches. In particular, our approach in
a multi-discriminator setting outperforms the baseline lan-
guage model trained with MLE over a recently proposed
metric, Fréchét Distance, that captures both sample quality
and diversity (Semenuita et al., 2018).
The rest of this paper is organized as follows: Section 2
discusses related work, Section 3 and Section 4 introduce
two technical proposals, Best Student Forcing and dynamic
ensembles of discriminators. This is followed by the exper-
iment setup, results and their analysis, and conclusion. We
highlight our main contributions as:

• A novel, simple, versatile and efficient adversarial
training method, Best Student Forcing, for discrete se-
quence generation.

• The introduction of a dynamic ensemble of discrim-
inators in GANs for language generation, reducing
mode collapse and increasing training stability.

• A detailed evaluation with both traditional and recent-
ly proposed metrics which proves the capability of
above two and their combination.
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2. Related Work
The goal of NLG is to produce sequences of tokens
x0, x1, . . . xt which form syntactically correct and seman-
tically coherent sentences. Currently, many top-performing
models are RNN language models (Mikolov et al., 2010),
which are typically trained in a supervised fashion us-
ing MLE (also known as teacher forcing) (Williams and
Zipser, 1989). During MLE training, a θ-parametrized
RNN is trained to approximate P (xt|x0, x1 . . . xt−1) by
P̂ (xt|x0, x1 . . . xt−1, θ), by minimizing the multi-label
cross-entropy via the objective function:

Jθ(x) = −
T∑
t=1

log P̂ (xt|x0, x1 . . . xt−1, θ) (1)

However, MLE training is reported to be flawed due to
exposure bias, which arises from the model only seeing
ground-truth data during the training phase (teacher-forcing
mode) and therefore potentially misbehaving when being
fed sequence prefixes sampled from its own distribution
during the inference phase (free-running mode) (Lamb et
al., 2016; Ranzato et al., 2015). In order to mitigate ex-
posure bias, a method called Professor Forcing (Lamb et
al., 2016) proposes regularizing the difference between hid-
den states after encoding real and generated samples during
training, while Scheduled Sampling (Bengio et al., 2015)
applies a mixture of teacher-forcing and free-running mode
with a partially random scheme. However, Scheduled Sam-
pling has been shown to be inconsistent (Huszár, 2015).
Variational Auto Encoder (VAE) is one form of genera-
tive model, proposed by Kingma and Welling (2013). The
VAE model consists of a φ-parametrized encoder and a θ-
parametrized decoder. The whole model works by maxi-
mizing the marginal log-probability log pθ(x), which can
be achieved by maximizing its lower bound:

L = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||pθ(z)) (2)

where the first term is the reconstruction loss, computed by
MLE, and the KL divergence term works as a regularizer.
Recently, another class of generative models, GAN ap-
proaches, has been introduced into NLG. GANs (Good-
fellow et al., 2014) typically consist of a θ-parametrized
generator network Gθ and a φ-parametrized discrimi-
nator network Dφ, where Dφ is trained to distinguish
whether a sample comes from Gθ or from the ground-
truth, while Gθ is trained to maximize the discrimina-
tor’s perceived realness, thus “fooling” Dφ. Together,
their interaction can be expressed as a minimax game:
min
θ

max
φ

Ex∼pdata [log(Dφ(x))] + Ex∼Gθ [log(1−Dφ(x))].

In NLG tasks, GANs are particularly difficult to train s-
ince the output of Gθ is discrete and non-differentiable. A-
mong many approaches to overcome this, SeqGAN (Yu et
al., 2017) has drawn a lot of attention due to successful-
ly applying the REINFORCE (Policy Gradient) algorithm
(Sutton et al., 2000). From this perspective, NLG is inter-
preted as a sequential decision-making process, where se-
quence prefix x0, x1 . . . xt−1 is the state at time step t, and
the next token xt is the action to be selected from the ac-
tion space of the whole vocabulary, and the reward is based

on the discriminator’s perceived realness of the generated
sequence − full sequence D’s score is directly taken as re-
ward for the last time step, while average D’s score over
sequences generated with certain prefix in a Monte Carlo
roll-outs operation is taken as the reward for relevant inter-
mediate time steps.
Despite the promising result achieved by SeqGAN on tra-
ditional metrics, the above reward estimation method has
drawbacks. Firstly, sequences that are clearly recognized as
fake by the discriminator still receive non-negligible posi-
tive rewards, pushing the generator to learn from noise. On
the other hand, as the discriminator learns to fit the train-
ing data very strongly throughout adversarial training, even
sequences of relatively high quality receive small rewards,
making the generator unable to learn effectively from such
“vanishing” signals (Che et al., 2017). Attempts to alleviate
the vanishing rewards include RankGAN (Lin et al., 2017),
which changes the discriminator’s objective into a ranking
loss, and MaliGAN (Che et al., 2017), which changes the
objective of the generator to a normalized maximum like-
lihood optimization target. LeakGAN (Guo et al., 2017)
attempts to further improve results by using a hierarchical
RL architecture and “leaking” features from the discrimina-
tor to the generator during generation. In recently proposed
ARAML (Ke et al., 2019), the generator is updated by sam-
ples acquired from a stationary distribution in a weighted
MLE manner. Whereas the way to construct stationary dis-
tribution is very complicated.
Besides, Zhang et al. (2019) propose to select oracle sen-
tences in high BLEU scores to train Neural Machine Trans-
lation(NMT) system, and report encouraging results (main-
ly evaluated by BLEU, too). Their methodology is some-
how similar to ours, however, using BLEU score to measure
the quality of generated sentences is perhaps less suitable in
scenario of unconditional NLG than in conditional NMT.
Another focus of previous research is how sequence gener-
ation should be properly evaluated. As human evaluation is
unfeasible for large amounts of data, the most popular au-
tomatic metric used in recent years is n-gram based BLEU
(Papineni et al., 2002) or ROUGE (Lin, 2004). However, as
these metrics do not capture sample diversity, self-BLEU is
introduced (Zhu et al., 2018), and later a Boltzmann tem-
perature sweep (Caccia et al., 2018) is further proposed
to observe the dynamic balance between BLEU and self-
BLEU. Meanwhile, n-gram free metric Fréchét Distance
(Semenuita et al., 2018) is also proposed. On these new
metrics, previous GAN approaches are widely reported as
outperformed by a benchmark RNN trained by MLE (Cac-
cia et al., 2018; Semenuita et al., 2018; Tevet et al., 2018;
Zhu et al., 2018), although most of them build on MLE pre-
training. This fact stirs us to seek improvement.
On the other hand, almost all GAN approaches, not only
in NLG, suffer from mode collapse (Goodfellow, 2017), in
which the generator learns to cover just a small subset of
the original distribution, effectively only producing sam-
ples with very low diversity. Many efforts have been made
to tackle this phenomenon, but generally require significan-
t modification to the model architecture or training objec-
tive (Che et al., 2016; Arjovsky et al., 2017; Arjovsky and
Bottou, 2017). However, a recently proposed simple ap-
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Algorithm 1: Best Student Forcing (with a single discriminator)

1 Initialize Gθ, Dφ

2 Pre-train Gθ on real samples
3 Generate negative samples using Gθ for training Dφ

4 Pre-train Dφ via minimizing binary cross entropy
5 for adversarial epochs do
6 for generator iterations do
7 Generate M full sequences x(1) . . . x(M) ∼ Gθ
8 Select “Best Student”: x∗ := argmax{Dφ(x(m)) | 1 ≤ m ≤M}
9 Train Gθ by minimizing Jθ(x∗) = −

∑T
t=1 log P̂ (x∗t |x∗0, x∗1 . . . x∗t−1, θ)

10 end
11 for discriminator iterations do
12 Use current Gθ to generate negative samples and combine with real samples
13 Train Dφ by minimizing binary cross entropy
14 end
15 end

proach, Dropout-GAN (Mordido et al., 2018), suggests us-
ing multiple discriminators in GAN training and randomly
hiding some of them, as in the well-known dropout oper-
ation for neural network weights (Srivastava et al., 2014).
Many GAN approaches, including GANs for language gen-
eration, can easily be extended with Dropout-GAN.

3. Best Student Forcing
In this paper, we propose a novel training method for GAN-
s for discrete sequence generation, namely Best Student
Forcing (BSF). The basic idea of BSF can be described
as follows: we use the discriminator’s perceived realness
to identify sequences with particularly high quality, using
these as temporary “pseudo” ground-truth. The generator
is then trained with an MLE-like mechanism on these se-
lected sequences.
Specifically, once a batch of complete sequences is drawn
from the generator, the one which best “fools” the discrim-
inator by achieving the highest D’s score will be select-
ed. We then use this “best” sequence just as a ground-truth
sample and minimize the multi-label cross entropy between
the generator’s distribution and this sample. The genera-
tor is thus updating in a teacher-forcing manner but against
“pseudo” ground-truth sequences generated in free-running
mode instead of real data. All remaining sequences, which
are not of the highest D’s score, are simply ignored.
By only updating with the “best student”, BSF ensures that
sequences of lower quality receive no reward, preventing
the generator from essentially learning from noise. At the
same time, a strong training signal remains even as the
discriminator learns to distinguish samples more clearly,
avoiding the vanishing rewards problem. However, we are
fully aware that it is still possible that all sequences in a
batch are of comparatively low quality, and then BSF would
have to learn from the “least bad” option, which is not opti-
mal. Therefore, We recommend pre-training Gθ with MLE
as in previous GANs (Yu et al., 2017; Lin et al., 2017; Guo
et al., 2017) to allow the generator to produce decent result-
s when starting adversarial training. The full procedure of
BSF training is described in Algorithm 1.

From another perspective, BSF can be considered as ex-
tending the training set by adding “pseudo” ground-truth
picked by discriminator, which would be compatible with
any structural update of the generator, such as potential
replacement of RNN with Transformer (Vaswani et al.,
2017), or the decoder in VAE. Compared with previous
GAN approaches, we also consider BSF as a light-weight
approach. BSF does not add any extra training componen-
t and works with a typical GAN structure, while requiring
significantly fewer discriminator evaluations during train-
ing, as complete sequences are evaluated only once, in-
stead of needing to evaluate many roll-outs. This makes
BSF computationally efficient and easy to implement.

4. Dynamic Ensemble of Discriminators
In adversarial training, the quality of the feedback provided
by the discriminator is a requirement for successful learn-
ing. In our use case, this implies the scalar reward attributed
by Dφ to a fake sample must be a good indicator of sample
quality for Gθ to be able to produce realistic-looking sam-
ples. With a single discriminator, the discriminator may
“bias” on a certain pattern of sequences generated. Thus,
we propose to use an ensemble of different discriminators
and guide Gθ by averaging the scores of multiple discrim-
inators at the end of each batch, alleviating such kind of
“bias”, just as a paper would be better reviewed by multiple
reviewers rather than one.
In discriminator training iterations, different discriminators
in the ensemble are fed with different batches of both real
and fake samples for updating. It is expected that learn-
ing from different samples would avoid homogeneous be-
haviours among discriminators. In this work, the batch-
es are drawn randomly to make things simple, however, a
more strategical selection scheme might be introduced in
future, such as distributing sequences with different length
into different discriminator, to compensate so-called “long
sentence punishment”− since a shorter sentence is natural-
ly less error-prone.
Moreover, to further tackle the well-known mode collapse
problem in language GANs (Semenuita et al., 2018; Zhu
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min
θ

max
φ

∑K
i=k δk(Ex∼pdata [log(Dφk(x))] + Ex∼Gθ(·)[log(1−Dφk(x))])∑K

i=k δk
(3)

et al., 2018), we adopt the methodologies introduced in
Dropout-GAN (Mordido et al., 2018) and discard the D’s
score of a given discriminator with a probability d, or
dropout rate, leading to minimax game of adversarial train-
ing as shown in Eq. 3. This makes the ensemble of dis-
criminators “dynamic” at the end of every batch, that Gθ
has to please different discriminator sub-groups and mini-
mize its loss, ultimately making Gθ more general and less
prone to mode collapse. To the best of our knowledge, we
are the first to apply such techniques to the natural language
generation setting.

5. Experimental Setup
5.1. Dataset
In this work, we evaluate the ability of various models to
match the distribution of a text corpus. We perform all our
experiments on the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015), consisting of pairs
of sequences with a label representing certain semantic at-
tributes. We ignore these labels and keep all distinct se-
quences with the 5000 most common words in the dataset,
resulting in 500k sequences.

5.2. Models
We systematically compare BSF to SeqGAN (Yu et al.,
2017), RankGAN (Lin et al., 2017), and a conventional
language model trained with MLE. For fairness, all genera-
tor models consist of a single LSTM layer (Hochreiter and
Schmidhuber, 1997) with hidden and encoding/decoding u-
nits of size 256. Following SeqGAN (Yu et al., 2017), we
use a convolutional neural network (CNN) as described by
Zhang and LeCun (2015) with an added highway architec-
ture (Srivastava et al., 2015) as a discriminator. We com-
pare the performance of a single-discriminator approach
to using an ensemble of discriminators. We also evaluate
LeakGAN (Guo et al., 2017), but only evaluate its final out-
put, as the training process is quite different from others
due to LeakGAN’s special model structure. We also only
test LeakGAN in a single discriminator setting, as current
implementations (Guo et al., 2017; Zhu et al., 2018) are too
memory-intensive to run multiple discriminators.
To verify the universality of BSF, we also apply BSF to up-
date the generator pre-trained by VAE loss. The VAE mod-
el consists of one encoder and one decoder, both of which
are single LSTM layer, with hidden states of size 256 and
latent vectors of size 64. We use the VAE text generation
tool provided by Hu et al. (2019), in which KL annealing
and word dropout techniques have been applied. After pre-
training, we use the decoder of VAE as the generator and
an ensemble of discriminators to discriminate sentences.

5.3. Metrics
We intend to keep completeness and consistency with pre-
vious works by calculating BLEU scores between 10,000
generated samples and ground-truth for quality evaluation,

along with self-BLEU scores, which was introduced to
measure model collapse in terms of repeated n-grams with-
in generated samples themselves. As another measure for
sample diversity, we also show the absolute number of u-
nique 4-grams. Furthermore, we also evaluate BLEU and
self-BLEU scores under a recently proposed Boltzmann
temperature sweep (Caccia et al., 2018). Please note that
all above-mentioned metrics are actually based on n-grams.
However, only using n-gram based metrics is challenged
by Semenuita et al. (2018) as “insufficient”. Alternately,
Semenuita et al. (2018) proposed Fréchét Distance (FD)
and claimed that FD is very well-correlated with human
judgment of sample quality while also capturing mode col-
lapse for language GANs. FD is actually a generalization of
the Fréchét Inception Distance (FID) (Heusel et al., 2017),
a widely accepted metric for GAN performance in com-
puter vision research. By using an independent model for
extracting features, FD measures the distance between the
distributions of features extracted from real and generated
data. Following Semenuita et al. (2018), we use the pub-
licly available pre-trained InferSent model v2 (Conneau et
al., 2017) as the feature extractor. The feature distribution
distance is calculated by:

FD(r, g) = ‖µr−µg‖22+Tr(Σr+Σg−2(ΣrΣg)
0.5) (4)

where µr and µg denote the mean features of real and gen-
erated samples respectively, while Σr and Σg denote the
corresponding covariance matrices of the features. We cal-
culate FD on 10,000 generated samples and 10,000 real
samples. In this work, we include FD as one of the ma-
jor evaluation metrics.

5.4. Training Details
All considered GAN approaches to sequence generation re-
ly on pre-training the generator with MLE such that it is
possible to draw reasonable sequences from the generator’s
distribution. Otherwise, it would be a daunting task to pro-
duce a sequence that can not immediately be clearly distin-
guished as fake by a discriminator. In our experiment, the
generator is pre-trained using MLE until convergence. We
then switch to adversarial training for the GAN approaches
and train for an additional 400 epochs. When employing
BSF to the decoder of VAE, the VAE model is pre-trained
by its loss function until convergence. Then the decoder is
used as the generator, to which BSF adversarial training is
applied for 40 epochs.
Besides model architecture, size, and learning rate, which
are kept constant across all evaluated models, the remain-
ing hyperparameters are the number of roll-outs, the ini-
tial discriminator strength (the number of discriminator pre-
training epochs), and the number of discriminator iterations
per adversarial epoch. We performed a grid search with 100
trials per model over these hyperparameters, and then ran
the best configuration per model seven times to obtain the
results presented in this work.
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Figure 1: FD comparison throughout training, showing
mean and standard deviation over 7 runs. The dashed lines
represent the end of pre-training and corresponding mean
FD. BSF with multiple discriminators shows the best sta-
bility and keeps improving after pre-training.

6. Experimental Result and Analysis
In this section, we would like to present the experimental
result and then make some analysis for discussion. Fig. 1
displays FD values throughout the training process of Se-
qGAN and our proposed BSF on SNLI dataset, with MLE
pre-training as a baseline. The curves in Fig. 1 clearly
show that SeqGAN immediately performs worse accord-
ing to FD after switching to adversarial training, while BSF
shows stability and can further improve FD over MLE in a
multi-discriminator setting.
Highlighting the general effect of using multiple discrim-
inators in adversarial NLG, Fig. 2 presents the standard
deviations and the average FDs over 7 runs of BSF, Seq-
GAN and RankGAN with varying numbers of discrimina-
tors. For all models, adding more discriminators (from 1 to
15) shows positive effects on training stability (lower stan-
dard deviation) and sample diversity (generally lower FD),
while BSF benefits the most.
Table 1 illustrates performances over more metrics based
on 10,000 samples generated at the end of each model’s
training. BSF (with 10 discriminators) exhibits the best
FD, slightly but statistically significantly (p < 0.0005) out-
performing baseline MLE and way better than other GAN
approaches. While SeqGAN and LeakGAN show higher
BLEU scores, just same as what others reported (Semenui-
ta et al., 2018; Zhu et al., 2018), but their smaller numbers
of unique 4-grams suggest that the high BLEU could prob-
ably attribute to a small variety of samples generated, so do
their higher Self-BLEU scores. Meanwhile, proposed B-
SF achieves lowest Self-BLEU and the highest number of
unique 4-grams, which would also suggest better sample
diversity.
Previous work has observed that SeqGAN does not match
the target distribution in terms of sequence length, collaps-
ing onto short and simple sentences (Zhu et al., 2018; Se-
menuita et al., 2018). Matching the distribution of sequence
length is another potential indicator of how capable a model
is to fit the training data. Fig. 3 shows the estimated distri-
bution of sequence lengths from different models. It clear-
ly shows that BSF matches the original distribution (SNLI)
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Figure 3: Figure showing probabilities of sentence lengths
occurring, as approximated by 10,000 samples.
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Figure 4: Boltzmann temperature sweeping of different
models with temperature parameters α ∈ [0.7, 1.3]. Lower
is better for both axis.

closely than other GAN approaches.
Meanwhile, a Boltzmann temperature sweep is proposed to
evaluate a language model over whole quality-diversity s-
pace. According to Fig. 4, MLE performs the best over a
temperature sweep, while BSF is better than other GAN ap-
proaches. The circles in Fig. 4 indicate where temperature
parameter α = 1, where the samples are actually generated.
For the generator pre-trained by VAE loss, its generation
result comparison before and after adversarial training is
listed in Table 2. We can see that both BLEU and Self-
BLEU score increase after BSF training, indicating higher
quality but less diversity in generated sentences. The larger
FD also shows the same tendency. This is explainable, s-
ince the latent space after training is close to standard Gaus-
sian distribution, and BSF training intensifies latent vectors
corresponding to higher-quality sentence, resulting in less
diversity. It will be interesting for future work to figure out
how to use BSF to push the whole latent space closer to
standard Gaussian, rather than some local areas.
In terms of human evaluation, only a small subset of actu-
al samples can be presented here. Table 3 shows generat-
ed samples containing the verb “throw(s)”. BSF seems to
achieve better generation performance than others, taking
into consideration grammar, semantics and diversity. For
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Figure 2: The effects of using multiple discriminators when training with BSF (left), SeqGAN (middle) and RankGAN
(right). Using multiple discriminators leads to better performance (lower FD) and more training stability (lower variance).

MLE SeqGAN-10D RankGAN-10D LeakGAN-1D BSF-10D
FD ↓ 0.141 ± 0.001 0.192 ± 0.007 0.180 ± 0.008 0.572 ± 0.112 0.138 ± 0.001
4-Grams ↑ 53.6k ± 0.95k 44.2k ± 1.49k 48.2k ± 1.42k 24.9k ± 2.21k 53.9k ± 0.38k
BLEU3 ↑ 0.922 ± 0.002 0.925 ± 0.004 0.919 ± 0.004 0.932 ± 0.034 0.914 ± 0.001
BLEU4 ↑ 0.819 ± 0.003 0.826 ± 0.006 0.811 ± 0.007 0.832 ± 0.051 0.805 ± 0.002
BLEU5 ↑ 0.687 ± 0.004 0.699 ± 0.007 0.675 ± 0.009 0.741 ± 0.071 0.671 ± 0.002
Self-BLEU3 ↓ 0.663 ± 0.005 0.690 ± 0.007 0.678 ± 0.009 0.699 ± 0.030 0.654 ± 0.005
Self-BLEU4 ↓ 0.472 ± 0.004 0.502 ± 0.010 0.483 ± 0.010 0.555 ± 0.023 0.463 ± 0.007
Self-BLEU5 ↓ 0.305 ± 0.002 0.333 ± 0.009 0.313 ± 0.009 0.447 ± 0.041 0.299 ± 0.007

Table 1: Metric comparison for different models, showing mean and standard deviation over seven runs. ↑ means higher is
better, ↓ means lower is better.

VAE VAE+BSF
FD ↓ 0.144 ± 0.001 0.150 ± 0.006
4-Grams ↑ 53.2k ± 0.02k 51.6k ± 0.19k
BLEU3 ↑ 0.906 ± 0.001 0.912 ± 0.006
BLEU4 ↑ 0.775 ± 0.001 0.788 ± 0.003
BLEU5 ↑ 0.613 ± 0.002 0.632 ± 0.020
Self-BLEU3 ↓ 0.657 ± 0.002 0.660 ± 0.007
Self-BLEU4 ↓ 0.445 ± 0.003 0.451 ± 0.008
Self-BLEU5 ↓ 0.292 ± 0.003 0.296 ± 0.006

Table 2: Metric comparison for different models. ↑ means
higher is better, ↓ means lower is better.

example, the last sentence generated by MLE and the first
sentence generated by VAE are apparently wrong in seman-
tics but correct in grammar. And BSF tends to generate
more diverse phrases related to “throw(s) a ball”. Never-
theless, we are crystal clear that only a few dozens samples
are far from enough to sufficiently represent the whole set,
so we make all generated samples from our experiments
available for public evaluation 1

Besides the generally positive outcomes, we also encoun-
tered some problems during BSF set up and want to present
them here for discussion. For example, even with a high
number of discriminators, the D’s score still cannot reliably
indicate the quality of sentence generated. This is reflected
by selecting “best student” from a large number of candi-

110,000 samples from each model involved
in evaluation are provided in the following link:
https://drive.google.com/drive/folders/
1bVuerqXi69o8UGX1BV0AtnFlB3CdVz3Z, will be online
together with source code upon publication.

dates (e.g. 64) resulting in worse performance than using
a smaller number. Practically, we found 16 as the optimal
option in our case. Also, there is no clear standard that how
can we define a “best student”, perhaps setting an absolute
threshold on D’s score might also be applicable if the dis-
criminators are considered as generally trustworthy. More-
over, we also tested saving “best students” as a part of fake
samples to train discriminators in next epoch, but without
getting an improvement. All these facts suggest that there
is still quite a lot to do in future.

7. Conclusion
In this work, we focus on improving GANs for language
generation. We tackle the problems of training instabili-
ty, mode collapse, and sample quality exhibited in previous
related work by proposing Best Student Forcing and us-
ing multiple discriminators. Evaluation shows that (1) BSF
consistently outperforms existing GAN approaches; (2) im-
plementing multiple discriminators generally improves the
performances of all language GANs; (3) BSF with a multi-
discriminator setting performs better than baseline MLE
over recently proposed Fréchét Distance, but still needs to
improve over a Boltzmann temperature sweep.
Our future work will first focus on getting a more profound
understanding of how the signal from an ensemble of dis-
criminators can be an even more accurate estimation of true
sequence quality. We would also attempt with more vari-
ants of BSF, especially the token-wise architecture, in order
to further improve adversarial training effects on language
generation task. On the other hand, we plan to implemen-
t human evaluation for samples generated from differen-
t models by using some public crowd-sourcing platforms.

https://drive.google.com/drive/folders/1bVuerqXi69o8UGX1BV0AtnFlB3CdVz3Z
https://drive.google.com/drive/folders/1bVuerqXi69o8UGX1BV0AtnFlB3CdVz3Z
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MLE a woman and child throw a large box .
children throw a red ball into a pond under an outside market .
a sport player makes a up throw as a crowd watches .
the woman throws the ball .
someone is going to the best bar to throw a ball at a baseball game
the man prepares to throw a ball before a large group of people .
a boy throws rocks into a lake .
volleyball players throw the ball .
a boy wearing white shorts and a blue shirt prepares to throw the huge grass .

MLE+BSF the woman is going to throw the stick to his dog for the dog .
the best player prepares to throw the ball in rugby .
a young man stands by a girl who is raised about to throw a snow .
baseball player in a black uniform is about to throw the ball .
the child throws a football in the sports field .
the boy is hitting a throw the bowling ball .
people using the street , they throw boxes into a opposite ways .
a man throws a basketball .
one man throws a ball into the ground .

SeqGAN the girl and man throw the matching jacket the man .
two woman are doing a weekend throw .
a boy throws a football around during the sunny day .
the child throws the football .
two boys throw a ball
a boy playing basketball is getting ready to throw a basketball .
the pitcher is going to throw a strike .
guy getting ready to throw a baseball on a field .
a girl is about to throw a football .

VAE a football player is about to throw his leg off the wall .
a baseball player prepares to throw the ball .
the player throws the hockey ball .
a guy in a red sweater throws an apple at the railing .
a person prepares to throw .
a man watches another guy throw a football .
the woman is about to throw flowers at the snowboarder
a hockey player jumps to throw the ball to the player .
an older man in a yellow shirt throw a stick.

VAE+BSF a man wearing an orange and red uniform is attempting to throw the javelin .
the brothers throw a ball at the park .
the girls are about to throw the football to the house
a girl is playing about to throw something to a car
a man in a purple shirt is about to throw a bowling ball .
a boy throws a ball .
a woman throws a tennis ball .
the man throws a football at the golf course .
young boy in a white t-shirt throws a snowball in his mouth .

Table 3: Generated samples that contain the word “throw(s)” (in bold font) among different approaches trained with SNLI
dataset, a pattern of sport-like “throw a ball” is highlighted by underline. Only the first 9 samples from each approach are
presented here due to space limitation, and samples are presented by the original order as they were generated. “MLE+BSF”
indicates generator pre-trained by MLE, “VAE+BSF” denotes generator pre-trained by VAE loss, then both of them trained
by BSF with 10 discriminators. The full sample packages are available online, along with the ground-truth package.

8. Bibliographical References
Arjovsky, M. and Bottou, L. (2017). Towards principled

methods for training generative adversarial networks. In-
ternational Conference on Learning Representations (I-
CLR).

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein generative adversarial networks. In International

Conference on Machine Learning, pages 214–223.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).
Scheduled sampling for sequence prediction with recur-
rent neural networks. In C. Cortes, et al., editors, Ad-
vances in Neural Information Processing Systems 28,
pages 1171–1179. Curran Associates, Inc.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.



4687

(2015). A large annotated corpus for learning natural
language inference. arXiv preprint arXiv:1508.05326.

Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau,
J., and Charlin, L. (2018). Language gans falling short.
arXiv preprint arXiv:1811.02549.

Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W. (2016).
Mode regularized generative adversarial networks. CoR-
R, abs/1612.02136.

Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W., Song, Y.,
and Bengio, Y. (2017). Maximum-likelihood augment-
ed discrete generative adversarial networks. CoRR, ab-
s/1702.07983.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bor-
des, A. (2017). Supervised learning of universal sen-
tence representations from natural language inference
data. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages
670–680, Copenhagen, Denmark, September. Associa-
tion for Computational Linguistics.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. In Z. Ghahra-
mani, et al., editors, Advances in Neural Information
Processing Systems 27, pages 2672–2680. Curran Asso-
ciates, Inc.

Goodfellow, I. J. (2017). NIPS 2016 tutorial: Generative
adversarial networks. CoRR, abs/1701.00160.

Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., and Wang,
J. (2017). Long text generation via adversarial training
with leaked information. CoRR, abs/1709.08624.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., K-
lambauer, G., and Hochreiter, S. (2017). Gans trained
by a two time-scale update rule converge to a nash equi-
librium. CoRR, abs/1706.08500.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8):1735–1780.

Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., and Xing,
E. P. (2017). Controllable text generation. CoRR, ab-
s/1703.00955.

Hu, Z., Shi, H., Tan, B., Wang, W., Yang, Z., Zhao, T., He,
J., Qin, L., Wang, D., et al. (2019). Texar: A modular-
ized, versatile, and extensible toolkit for text generation.
In ACL 2019, System Demonstrations.

Huszár, F. (2015). How (not) to Train your Generative
Model: Scheduled Sampling, Likelihood, Adversary?
ArXiv e-prints, November.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic
alignments for generating image descriptions. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 3128–3137.

Ke, P., Huang, F., Huang, M., and Zhu, X. (2019). Araml:
A stable adversarial training framework for text genera-
tion. arXiv preprint arXiv:1908.07195.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Lamb, A. M., GOYAL, A. G. A. P., Zhang, Y., Zhang, S.,
Courville, A. C., and Bengio, Y. (2016). Professor forc-
ing: A new algorithm for training recurrent networks.

In Advances In Neural Information Processing Systems,
pages 4601–4609.

Lin, K., Li, D., He, X., Zhang, Z., and Sun, M.-T. (2017).
Adversarial ranking for language generation. In Ad-
vances in Neural Information Processing Systems, pages
3155–3165.

Lin, C.-Y. (2004). Rouge: A package for automatic evalu-
ation of summaries. Text Summarization Branches Out.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
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