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Abstract
Dataset Retrieval is gaining importance due to a large amount of research data and the great demand for reusing scientific data.
Dataset Retrieval is mostly based on metadata, structured information about the primary data. Enriching these metadata with semantic
annotations based on Linked Open Data (LOD) enables datasets, publications and authors to be connected and expands the search on
semantically related terms. In this work, we introduce the BiodivTagger, an ontology-based Information Extraction pipeline, developed
for metadata from biodiversity research. The system recognizes biological, physical and chemical processes, environmental terms,
data parameters and phenotypes as well as materials and chemical compounds and links them to concepts in dedicated ontologies. To
evaluate our pipeline, we created a gold standard of 50 metadata files (QEMP corpus) selected from five different data repositories
in biodiversity research. To the best of our knowledge, this is the first annotated metadata corpus for biodiversity research data. The
results reveal a mixed picture. While materials and data parameters are properly matched to ontological concepts in most cases, some
ontological issues occurred for processes and environmental terms.

Keywords: Semantic Annotation, Ontology-Based Information Extraction, Gold Standard, Metadata, Biodiversity Research, Life
Sciences

1. Introduction
Metadata are an important source in Dataset Retrieval (Sir-
iJodha Khalsa, 2018) as they contain compressed informa-
tion about data collection objects, geographic location, au-
thor and temporal expressions in a structured and machine-
readable form. Driven by research fields such as Semantic
Publishing (Shadbolt et al., 2006) and initiatives such as
the FAIR principles (Wilkinson et al., 2016), metadata are
increasingly semantically enriched with Uniform Resource
Identifiers (URI) based on Linked Open Data (LOD) (Heath
and Bizer, 2011) to foster interoperability of information
about authors, papers and datasets. Scholars also benefit
from semantically enriched metadata in the retrieval pro-
cess as the search results can be expanded on related infor-
mation such as synonyms (Löffler et al., 2017).
One domain that requires such improved retrieval tech-
niques and ontological enhancement is biodiversity re-
search, a discipline dealing with the variety of species, the
genetic diversity and the diversity of functions, interactions
and ecosystems 1. Numerous text mining applications have
been developed to detect named entities such as species,
persons and geographic locations (Naderi et al., 2011),
(Cunningham et al., 2013). However, based on our pre-
vious research (Löffler et al., 2020), we figured that further
entity types are important to be considered, when search-
ing for datasets in biodiversity research. Besides organisms
and geographic locations, scholars are interested in habitats
and environmental information where the organisms occur.
Furthermore, biological, chemical and physical processes
influencing these environments or organisms, materials and

1https://www.idiv.de

chemical compounds as well as data parameters are fur-
ther important entity types in biodiversity research. The
introduction of the Essential Annotation Schema for Ecol-
ogy (Pfaff et al., 2017), a new metadata schema that was
particularly developed for search, also confirms that inter-
ests in biodiversity research go beyond species observation.
Our literature review (Section 2.) reveals that there are
very limited Information Extraction (IE) approaches that
are based on biodiversity metadata and that provide access
to the LOD cloud.
In this paper, we introduce the BiodivTagger, a text min-
ing pipeline using domain knowledge from selected ontolo-
gies to identify main entities in biodiversity research meta-
data. To evaluate our pipeline, we manually annotated 50
metadata files selected from five different biodiversity re-
search data repositories and projects. We annotated four
main entity types that are highly relevant for Dataset Re-
trieval tasks in this field, namely, phenotypic qualities and
characteristics that can be measured or observed (QUAL-
ITY), environmental terms (ENVIRONMENT), materials
and chemicals (MATERIAL) and biological, chemical and
physical processes (PROCESS). The pipeline and the gold
standard, called QEMP (Quality, Environment, Material,
Process) corpus, are publicly available in our github repos-
itory 2.
The contribution of this paper is twofold:

1. The QEMP gold standard corpus which we believe to
be the very first gold standard corpus created from bio-
diversity metadata.

2. The BiodivTagger, a text mining pipeline based on

2https://github.com/fusion-jena/BiodivTagger
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ontological information extraction that detects ENVI-
RONMENT, PROCESS, MATERIAL and QUALITY
entities.

The structure of the paper is as follows: Related work is
presented in Section 2. We describe our approach in Sec-
tion 3., followed by the evaluation in Section 4. The con-
clusion and future work are presented in Section 5.

2. Related Work
The advancement of Natural Language Processing (NLP)
techniques leads to the development of many different In-
formation Extraction tools for biological research. How-
ever, due to a specialized language in scientific communi-
cation in the Life Sciences, diverse content, imprecise and
inconsistent naming (Thessen et al., 2012; Ananiadou et al.,
2004), the extraction of biological entities remains a chal-
lenge.
Named Entity Recognition (NER) is the first step in an IE
task, as it provides the backbone for the subsequent se-
mantic text interpretation. In the biomedical domain, nu-
merous tools have already been developed to extract enti-
ties related to biomedicine such as diseases, chemical com-
pounds, genes, enzymes or proteins, e.g., (Cunningham et
al., 2013). Due to the increasing semantic domain knowl-
edge in the LOD cloud 3, a variety of approaches have also
been introduced that link detected entities to ontological
concepts (Jovanović and Bagheri, 2017). For instance, Bio-
portal (Jonquet et al., 2009) provides a graphical interface
and API to match terms and phrases to entries in biologi-
cal and biomedical ontologies. However, disambiguation or
determination of entity types are not provided yet. The suit-
ability of ontologies for NER tasks has already been studied
by (Gurulingappa et al., 2010). Their outcome reveals that
the usage of several ontologies lead to a good match of on-
tological concepts in biomedical literature.
Despite of numerous resources available for the biomed-
ical domain, unfortunately, very few studies focus on the
special needs for biodiversity research. Mainly, existing
tools concentrate on the extraction of taxonomic informa-
tion and species names, e.g., (Naderi et al., 2011), (Wood
et al., 2004) and TaxonFinder 4. The detection of morpho-
logical characters or phylogenetic attributes was studied by
(Balhoff et al., 2010; Eliason et al., 2019). Other relevant
entity types such as environmental terms or processes are
not investigated.
In order to evaluate IE tools, manually created gold stan-
dard corpora are required. Two of those which are closely
related to our work are both based on biodiversity literature:

1. The Bacteria Biotope (BB) (Deléger et al., 2016) cor-
pus is a result of the subtask of BioNLP task which
was first introduced in 2011 with the ambition to use
IE from scientific documents at a large scale in or-
der to automatically fill knowledge bases (Bossy et
al., 2012). The BB task consists of the extraction of
bacteria and their locations (habitats or geographical

3In March 2019, one-third of the registered datasets in the
LOD cloud were terminologies from the biological and biomedi-
cal domain: https://www.lod-cloud.net/

4http://taxonfinder.org/

places) from scientific literature, their categorization
according to the NCBI taxonomy 5 and OntoBiotope
ontology 6, and the linking of bacteria to their loca-
tions through localization events.

2. The COPIOUS corpus (Nguyen et al., 2019) is another
gold standard corpus in which geographical locations,
habitats, temporal expressions and person name enti-
ties from species occurrence records are annotated in
200 scientific documents.

To the best of our knowledge, there is neither an annotated
corpus for metadata of biodiversity research data, nor tools
available to detect further related entities such as materials,
processes and environmental terms. Furthermore, corpora
from biodiversity literature are not suitable for our overall
research goal of using the pipeline for improved Dataset
Retrieval as it is primarily based on metadata. Therefore, it
is also important to evaluate our pipeline on a corpus cre-
ated from biodiversity metadata only.
Moreover, publications and metadata differ in format and
size, and the complexity can vary greatly from basic entries
such as author, title and citation to detailed information on
measured data parameters and research methods used. In
addition, more research is needed in terms of the suitability
of ontologies for NER and IE tasks for applied domains.

3. Methodology
Numerous ontologies have been developed in biology and
biomedicine in the past decade. Most of them are avail-
able in open data repositories such as Bioportal 7 or the
GFBio Terminology Service 8. Initiatives such as the OBO
Foundry 9 aim to provide terminologies that are interlinked
and that adhere to several principles including open use
and strictly-tailored content. This well-structured domain
knowledge can be used as ontological gazetteers in IE tasks.
In the following, we introduce the selected entity types, ex-
plain what ontologies are used and provide an overview of
the architecture.

3.1. Important Entity Types in Biodiversity
Dataset Search

In our previous research (Löffler et al., 2020), we explored
what information biodiversity researchers are interested in
when searching for datasets. The outcome reveals that
species, environmental terms, processes, chemical com-
pounds and materials, geographic locations, data types and
data parameters (quality) are main categories in biodiver-
sity dataset search. As a variety of taggers and approaches
exist to determine species or geographic locations in tex-
tual resources, we did not consider these entity types. For
data types, very few ontologies exist. Therefore, we also
left them out in our development. Table 1 introduces the
identified entity types that are considered in the following

5https://www.ncbi.nlm.nih.gov/taxonomy
6http://2016.bionlp-st.org/tasks/bb2
7https://bioportal.bioontology.org/
8https://terminologies.gfbio.org
9http://www.obofoundry.org/
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Environment Process Material Quality
Description Organisms live in Envi-

ronments, e.g., habitats,
ecosystems, including
man-made environments,
adjectives describing
the environment and all
environmental features.

Biological, chemical and
physical Processes are
classified in this category.
They are re-occurring
events transforming ma-
terials or organisms due
to chemical reactions or
other influencing factors.

All chemical
compounds,
natural ele-
ments and
other materials
are grouped
under Material.

An organism can be described with par-
ticular characteristics (trait, phenotype)
that can be observed, measured or com-
puted. In addition, materials, environ-
ments and processes are also measured
with specific data parameters. It also in-
cludes biological activities or phenom-
ena that can be measured.

Examples groundwater, grassland,
glasshouse, garden, sub-
tropical, tropic

nitrogen cycling, decom-
position, weather, earth-
quake

carbon, H2O,
wood, sand,
sediments

length, age, growth rate, reproduction
rate, carbon content

Table 1: Important entity types in biodiversity research.

approach. We concentrate on the detection of environmen-
tal terms such as habitats or environmental features (ENVI-
RONMENT), biological, chemical and physical processes
(PROCESS), chemical compounds and materials (MATE-
RIAL), phenotypic qualities and characteristics that can be
measured or observed (QUALITY).

3.2. Ontology Selection
Figure 1 presents the ontologies used. In order to form on-
tological gazetteers, we carefully selected terminologies or
parts of them from OBO Foundry and assigned them to the
identified entity types. That diminishes the risk of too broad
terms and also ensures a light-weight disambiguation. In
order to determine environmental terms, we utilize parts of
the ENVO ontology (Buttigieg et al., 2013). As ENVO
has a broad scope and comprises also processes, materi-
als and quality concepts, we fetch only concepts starting
from nodes that correspond to our definition of Environ-
ment. The same applies for PATO 10 to detect phenotypic
qualities. PATO also contains concepts that are too broad
for our purpose, and therefore, we utilize only concepts
from specific nodes. Process entities are obtained from sev-
eral ontologies, e.g., ENVO, Gene Ontology (GO) 11 and
UBERON 12. For detecting materials, we use the Chemi-
cal Entities of Biological Interest (ChEBI) 13 and parts of
ENVO describing environmental materials.

3.3. Architecture
Our approach is based on the widely used text mining
framework GATE (Cunningham et al., 2013) that already
provides basic text mining functions and offers various plu-
gins for the Life Sciences. Figure 2 presents the overall
workflow.
At first, the metadata documents go through a text extrac-
tion phase in which the XML structure is removed. After-
wards, in a pre-processing phase, syntactical steps such as
tokenization, sentence splitting and Part-Of-Speech (POS)
tagging are executed. The results are token annotations in-
cluding the identification of noun entities, verbs and adjec-
tives. In order to use all inflected forms of nouns (singular
vs. plural), we lemmatize the document’s text. In this syn-
tactical phase, we mainly use GATE’s in-build processing

10http://purl.obolibrary.org/obo/pato.owl
11http://geneontology.org/
12http://uberon.org
13https://www.ebi.ac.uk/chebi/

steps and the ANNIE pipeline that in addition also extracts
general named entities such as Person, Location, Date and
Time. Our own contribution is represented in the follow-
ing semantic analysis. Each entity type is formed by large
ontological gazetteer lists. GATE’s Large Knowledge Base
(LKB) Gazetteer plugin offers an easy access to any remote
knowledge base with a SPARQL 14 interface. However, in
order not to be dependent on external providers, we down-
loaded and host all ontologies in our own GraphDB 15 triple
store. The SPARQL queries, an excerpt is provided in List-
ing 1, are stored in text files. The LKB plugin takes the
stored queries, sends them to the SPARQL interface and
receives a list of ontology concepts with URIs and labels.

Listing 1: Excerpt from a SPARQL query to retrieve all
concepts and subconcepts for entity type Environment

prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>
prefix obo: <http://purl.obolibrary.org/obo/>
prefix oboInOwl: <http://www.geneontology.org/formats/oboInOwl#>

SELECT DISTINCT ?la ?entity
FROM NAMED <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>
WHERE {

#environmental system
{ GRAPH <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>{

?entity rdfs:subClassOf∗<http://purl.obolibrary.org/obo/ENVO 01000254>.
{ ?entity rdfs:label ?la.}
UNION
{ ?entity oboInOwl:hasRelatedSynonym ?la.}
UNION
{?entity oboInOwl:hasExactSynonym ?la.}
}
}

#environmental feature
UNION{

GRAPH <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>{
?entity rdfs:subClassOf∗<http://purl.obolibrary.org/obo/ENVO 00002297>
{ ?entity rdfs:label ?la.}
UNION
{?entity oboInOwl:hasRelatedSynonym ?la.}
UNION
{?entity oboInOwl:hasExactSynonym ?la.}
}
}
#environmental condition
UNION {[...]}
#immaterial entity
UNION {[...]}
}

As synonyms have the same meaning as the given
term, we also consider semantic relations such as
hasRelatedSynonym, hasExactSynonym. Once
the ontological lists are received, per entity type, trans-
ducers match the document’s tokens against the list en-
tries, link them to their corresponding resource URI and
create a semantic annotation. The look up is performed
using case-insensitive, word order-sensitive and all possi-
ble string matches as constraints. We use GATE’s Chem-

14https://www.w3.org/TR/rdf-sparql-query/
15http://graphdb.ontotext.com/
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http://graphdb.ontotext.com/
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Figure 1: Ontologies and their concepts used, from which all sub-nodes and concepts with labels and synonyms are re-
trieved.

Figure 2: This figure presents the overall flow. Subse-
quently, the processing resources are executed.

ical Tagger (Cunningham et al., 2013) to identify chemi-
cal compounds and elements. In addition, by means of the
LKB, we link the annotated terms to concepts in the CHEBI
ontology. As environmental materials are also contained
in ENVO, the Material LKB fetches these concepts and
the transducer adds them to MATERIAL. We allow several
URI concepts per annotation. For instance, “grassland” is
linked to eight URI concepts in total as each sub-class, e.g.,

“prairie”, contains “grassland” as synonym. However, we
eliminate Named Entities such as Person, Location, Organi-
zation, Date, Time and Address as they would lead to mis-
matches. The cleaning step also removes other wrongly
annotated elements such as latitude and longitude (erro-
neously, N is labeled with nitrogen).

4. Evaluation & Results
Due to the lack of semantically annotated metadata corpora
in biodiversity research, we created an own gold standard
(Subsection 4.1.) to evaluate our text mining pipeline. We
compared the generated annotations of the pipeline with the
manually labeled annotation set (Subsection 4.2.) and dis-
cuss the results in Subsection 4.3.

4.1. Dataset
Metadata descriptions can greatly vary from sparse con-
tent mentioning only author, title and identifier to very de-
tailed information on data structure, units and methodol-
ogy. This diversity becomes even stronger by the vari-
ety of metadata standards across different research disci-
plines. In order to reflect this heterogeneity and diversity
of biological datasets, we selected 50 publicly available
metadata from five different data repositories and project
databases with various metadata formats. The corpus con-
tains 10 files each from Dryad 16 (a generic data repos-
itory) in Dublin Core 17 format, PANGAEA 18 (a data
archive for environmental data) in an extended Dublin
Core format called PanMD 19 and three project-related por-
tals and databases such as BEFChina 20 (a joint Chinese-
German-Swiss biodiversity research project) in EML21 for-

16https://v1.datadryad.org/
17https://dublincore.org/
18https://www.pangaea.de/
19https://wiki.pangaea.de/wiki/Metadata
20http://china.befdata.biow.uni-leipzig.de/
21https://knb.ecoinformatics.org/tools/eml

https://v1.datadryad.org/
https://dublincore.org/
https://www.pangaea.de/
https://wiki.pangaea.de/wiki/Metadata
http://china.befdata.biow.uni-leipzig.de/
https://knb.ecoinformatics.org/tools/eml
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Figure 3: Screenshot of GATE’s graphical editor presenting the generated semantic annotations with their matching URI
concepts for a dataset from BEFChina (Germany and Erfmeier, 2019)

mat, iDiv 22 (The German Centre for Integrative Biodiver-
sity Research Halle-Jena-Leipzig) and the Biodiversity Ex-
ploratories 23 (a large, long-running functional biodiversity
research project in Germany), both providing an own XML
based metadata schema. Listing 2 presents an excerpt of a
metadata file from BEFChina in EML format.

Annotation Guidelines: We considered only noun enti-
ties and adjectives as they mainly correspond to biodiver-
sity terms. In case of compound nouns using the indica-
tions described below, we determined whether they need
to stay together and are specifically relevant to biodiver-
sity research such as “climate change”, “oxygen uptake”
and “carbon cycling”, or whether they are too specific such
as “benthic oxygen uptake”. In this case, not only the
whole phrase was labeled but also the nested entities, e.g.,
benthic [ENVIRONMENT], oxygen uptake [PROCESS].
However, as oxygen itself is a chemical element, in ad-
dition, it was labeled with [MATERIAL]. In order to de-
cide whether a term is domain-specific, we allowed the an-
notators to use various sources such as BioPortal 24 and
BiodiversityA-Z 25. In addition, annotators took reference
from a result sheet of our previous research (Löffler et al.,
2020), which contains around 600 biodiversity terms anno-
tated from 9 biodiversity researchers. We left out abbrevia-
tions and units but permitted several annotations per entity
type on the same phrase or term. For instance, “biomass”
was annotated with MATERIAL and QUALITY as both
meanings do apply. However, “water” was only annotated
in its first, simple meaning MATERIAL. As “water” is also
a habitat for species, we considered this case only if con-
crete habitats such as ocean, sea or river were mentioned in
the datasets.

Listing 2: Excerpt from a BEFChina metadata file in EML
metadata format (Germany and Erfmeier, 2019)

<eml:eml [...]><dataset id=’577’>
<alternateIdentifier>http://china.befdata.biow.uni−leipzig.de/datasets/577</alternateIdentifier>
<title>Main Experiment: Seedling addition experiment − growth and biomass data</title>

22https://idata.idiv.de/
23https://www.bexis.uni-jena.de
24https://bioportal.bioontology.org/annotator
25https://www.biodiversitya-z.org

<creator id=’markus ger’>
<individualName>
<givenName>Markus</givenName><surName>Germany</surName>
</individualName>
[...]
<abstract>
<para>While coexistence in plant communities is frequently explained
by effects of resource niche partitioning, the Janzen−Connell (J−C)
hypothesis is an alternative approach that has been assumed as a
major ecological mechanism explaining high species richness levels,
in particular, in tropical forest ecosystems. [...]</para>
</abstract>
<keywordSet>
<keyword>janzen connell</keyword>
<keyword>Main Experiment</keyword>
<keyword>seedling addition</keyword>
<keyword>seedling performance</keyword>
[...]
<keyword>Leaves Dam</keyword>
<keyword>Leaves Dead</keyword>
<keyword>Damage pro</keyword>
<keyword>Biomass Above</keyword>
<keyword>Biomass Below<
[...]
</dataset></eml>

Annotation Process: Four authors of this work per-
formed the manual labeling. All annotators are PhD stu-
dents in computer science, and two of them have additional
experience in Biodiversity Informatics. In addition, a Post-
Doc in biology gave advice with respect to the definitions
of the entity types and also guided the annotators on the
complex terms. GATE was used for the gold standard cre-
ation as it provides various functions for manual annotation
tasks as well as support in merging different annotation sets
into one final set.
The greatest challenge was to train the group properly to
get a common understanding of the entity types. Hence,
training took place in several phases over a period of two
months:

• Trial round: At first, the overall goal and the entity
types were presented to the annotators. They got fa-
miliar with GATE, the metadata files and their struc-
ture. Each annotator labeled 5 files individually and
the results were discussed within the group. After-
wards, the initial annotation guidelines were refined.

• Pilot phase: In this phase, the annotators were
grouped in teams of two. Four files were double-
annotated per annotator team. Afterwards, the results
again were discussed to finalize the annotation guide-
lines.

• Main phase: In the main annotation phase, each an-
notator pair received 25 metadata files. At first, the

https://idata.idiv.de/
https://www.bexis.uni-jena.de
https://bioportal.bioontology.org/annotator
https://www.biodiversitya-z.org
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Dryad Pangea BEFChina Biodiv. Explo. iDiv Total
All Token 3943 14069 47388 22817 4640 92857

ENVIRONMENT 71 135 643 390 166 1405
MATERIAL 17 283 1132 254 27 1713
PROCESS 50 74 45 43 39 251
QUALITY 72 202 1359 232 123 1988

Total 210 694 3179 919 355 5357

Table 2: QEMP corpus statistics: the total number of anno-
tated tokens per entity type and data source.

files were annotated separately. Afterwards, they were
swapped and labeled by the second annotator. The
Inter-Annotator-Agreement measures are reported in
out github repository. The F-score values are low for
some files because, despite a thorough training, bio-
logical entities remain fuzzy and difficult to annotate.
In case of disagreements, we collected the terms in
a list and discussed them with a biodiversity expert
who took the final annotation decision. Afterwards,
the biodiversity expert’s decisions were incorporated
into the files.

Corpus Statistics: In total, 5357 tokens were annotated.
Table 2 presents the overall statistics of the QEMP corpus.
It points out that PROCESS annotations are rare (4.6% of
the annotated tokens). The other three entity types vary
between 26.22% for ENVIRONMENT, 31.9% for MATE-
RIAL to 37.1% for QUALITY. Figure 4 illustrates the dis-
tribution of the entity types over all tokens per repository.
The picture confirms the diversity of the content. For in-
stance, materials occur more often in BEFChina and PAN-
GAEA than in the other repositories.

Figure 4: Distribution of entity types over all tokens per
data repository.

4.2. Results
A screenshot from the results in GATE’s graphical inter-
face is presented in Figure 3. The right panel contains the
created annotations. The URI concepts are displayed in the
bottom panel. We ran the pipeline on the QEMP corpus and
compared the pipeline results with the manually created an-
notations.

Measurements: Precision, Recall and F-score are com-
mon metrics in Information Retrieval tasks (Manning et al.,
2008). As introduced by (Maynard et al., 2006), they can be

adapted for evaluations of ontology-based IE tasks. In this
case, statistics are calculated in terms of ‘Correct’ (exact
match), ‘Missing’ (no ontological concept found), ‘Spuri-
ous’ (additional match in the ontology but not labeled in
the gold standard) and ‘Partial’ (ontological concepts cover
named entities only partially) matches. Thus, Precision,
Recall and F-Measure in ontology-based tasks can be de-
fined as follows:

Precision =
Correct + 1

2 Partial
Correct +Spurious+Partial

(1)

Recall =
Correct + 1

2 Partial
Correct +Missing+Partial

(2)

F-Measure =
(β 2 +1)P+R
(β 2P)+R

(3)

β denotes the weighting of Precision versus Recall. If Pre-
cision and Recall should be weighted equally, β is 1. In
order to put more emphasis on the precision, β is set to
0.5. If it is set to 2, the recall is twice as weighted as the
precision.
We also computed Macro and Micro measurement as global
metrics to give an overview of the whole performance.
Macro measurement denotes a single value by averaging
the desired metric, giving all categories an equal weight.
However, for unbalanced datasets micro measurement is
preferred as it treats the corpus as a very large document
(McCowan et al., 2004).
We wrote a Python script to calculate the above presented
metrics and to process the corpus in a batch mode. A cor-
rect match was counted if an annotation is labeled with the
correct entity type and possess at least one URI concept. In
a partial match, the span of the ontology concept only par-
tially covered the originally labeled term but the entity type
was correctly assigned. If no URI concept could be found,
it was counted as ‘Missing’. All concepts that were addi-
tionally labeled by the pipeline were considered as ‘Spuri-
ous’ in the metrics. The script is publicly available in our
github repository.

Outcomes: The Precision denotes how many items the
system detects are correct, whereas the Recall measures
how many of the items that should have been returned
where actually returned. In contrast to Information Re-
trieval tasks, where usually the Precision is considered to
be the more important value, in annotation tasks, the Recall
has at least the same impact. Table 3 presents the results
over all documents per entity type. The values vary be-
tween 0.423 and 0.589 for the Precision and 0.38 and 0.74
for the Recall. The Precision values are not that high as nu-
merous additional terms were annotated by the pipeline. In
particular, for processes we received twice the number of
spurious terms as correct matches. Furthermore, the Recall
is low, too, as many process terms could not be matched to
an entry in an ontology. Despite the fact that the ontologi-
cal gazetteer for PROCESS already contain five ontologies,
this picture reveals that this entity type is currently not well
covered by the selected ontologies. In terms of the Recall
value for environmental terms, the value is low as some
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Correct Missing Spurious Partial Precision Recall F-Score
ENVIRONMENT 647 720 559 22 0.536 0.474 0.503

PROCESS 89 148 123 9 0.423 0.38 0.4
MATERIAL 1111 591 1016 2 0.522 0.653 0.58
QUALITY 1414 472 974 75 0.589 0.74 0.656

Macro 0.518 0.562 0.535
Micro 0.549 0.625 0.585

Table 3: Statistics and metrics of the annotated tokens over
all documents per entity type with an equal weight of Pre-
cision and Recall.

Correct Missing Spurious Partial Precision Recall F-Score
Dryad 128 76 86 3 0.574 0.589 0.563

PANGAEA 404 268 322 14 0.524 0.603 0.551
Biodiv. Explo. 571 308 696 26 0.476 0.619 0.514

BEFChina 1921 1169 1418 52 0.566 0.657 0.596
idiv 237 110 150 13 0.614 0.741 0.652

Table 4: Statistics and metrics of the annotated tokens over
all entity types per data repository.

terms were found in the ontology but under a different en-
tity type. For instance, the term ‘soil’ was labeled as EN-
VIRONMENT in the gold standard but was only found as
a MATERIAL in the ontology. As many datasets describe
soil measurements, the number of missing terms is much
higher than the correct ones. (In our repository, we provide
a list of terms, were we identified a wrong classification in
the ontology as well as a list of terms where no entry could
be found.) However, we received good results for the Recall
of MATERIAL and QUALITY entity types. That denotes
that most terms that need to be labeled actually could be
matched to a concept in an ontology.
To study the effect of the different dataset descriptions and
various dataset length, we computed Precision and Recall
per data repository (Table 4). Datasets from PANGAEA,
Dryad and iDiv were smaller in terms of size and descrip-
tions than datasets from Bexis and BEFChina. However,
the results reveal that there is no significant difference be-
tween shorter and longer datasets. Only the results for idiv
datasets are a bit higher than for the others. As 8 out of 10
idiv files come from the same research group with an over-
all good ontological term coverage, we assume, that this
good result influenced the Recall positively. Comparing the
generic repository Dryad with the domain-specific archive
PANGAEA and the biodiversity projects, the results point
out that the datasets from the projects got higher Recall val-
ues than the ones from the data archives. That confirms our
selection of ontologies and their suitability for semantic an-
notation of biodiversity research data.

4.3. Discussion
The aim of this research was to examine if biological on-
tologies are suitable for Information Extraction and Named
Entity Recognition tasks. As the LOD cloud nowadays al-
ready contains numerous biological terminologies, we as-
sumed that the domain knowledge of a certain research field
should be covered by several domain ontologies. However,
regular maintenance and interoperability play a crucial role
in ontology management. Hence, we only considered ter-
minologies that are maintained by large research communi-
ties, that are strictly tailored to a specific scope and that are
interlinked among each other.
Our results basically confirm our assumption. For biodiver-

sity research, most entity types already reached good Recall
values which denotes an overall good coverage of biodi-
versity terms in ontologies. This also holds for the results
across the different data repositories and projects. However,
our approach is highly dependent on a certain ontology ver-
sion. If concepts and sub-concepts are moved, removed or
renamed, all SELECT statements in the SPARQL queries
need to be updated. Therefore, all used ontologies are cur-
rently cached and are provided locally in the pipeline.
Nevertheless, the Recall values leave room for improve-
ment. Currently, there are still a large amount of missing
terms. In particular, for biological, chemical and physical
processes the ontological coverage is low. Here, the bio-
diversity research community should put more effort into
extending existing terminologies. Furthermore, for some
terms we noticed wrong classifications which also lowered
the Recall. The Precision values are also not that high as
numerous additional terms and phrases were returned from
the ontological gazetteers. In most cases, these additional
annotations are too broad terms such as “position” or “con-
tent”. In the SPARQL statements, we already excluded spe-
cific nodes that contain too broad terms. Obviously, this
needs further revision. For instance, machine learning ap-
proaches could be applied to remove unimportant terms and
to gain higher precision values. However, that would re-
quire a much larger corpus of manually labeled datasets for
training.

5. Conclusion
In this work, we introduced the BiodivTagger, a text min-
ing pipeline that annotates main entities in metadata of bio-
diversity research data, namely, environmental terms, bi-
ological, chemical and physical processes, materials and
chemicals, phenotypic qualities and characteristics that can
be measured. We evaluated the pipeline with a manually
created gold standard, the QEMP corpus, which is the first
annotated biological metadata corpus. Our results confirm
our assumption that several domain ontologies from a valid
source for the representation of domain knowledge can be
used for IE tasks. However, a few ontological issues as well
as pipeline issues remain. Numerous broad terms were an-
notated and for some environmental terms we discovered a
wrong classification. In particular, processes received very
less matches in ontologies. Here, we need to further ana-
lyze whether the integration of additional ontologies would
improve the results.
In a next step, we will add more datasets to the corpus to
apply machine learning techniques that will support the re-
moval of the spurious annotations.
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