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Abstract
The vast amount of social communication distributed over various electronic media channels (tweets, blogs, emails, etc.), so-called
user-generated content (UGC), creates entirely new opportunities for today’s NLP research. Yet, data privacy concerns implied by
the unauthorized use of these text streams as a data resource are often neglected. In an attempt to reconciliate the diverging needs of
unconstrained raw data use and preservation of data privacy in digital communication, we here investigate the automatic recognition of
privacy-sensitive stretches of text in UGC and provide an algorithmic solution for the protection of personal data via pseudonymization.
Our focus is directed at the de-identification of emails where personally identifying information does not only refer to the sender but
also to those people, locations, dates, and other identifiers mentioned in greetings, boilerplates and the content-carrying body of emails.
We evaluate several de-identification procedures and systems on two hitherto non-anonymized German-language email corpora (CODE
ALLTAGS+d and CODE ALLTAGXL), and generate fully pseudonymized versions for both (CODE ALLTAG 2.0) in which personally
identifying information of all social actors addressed in these mails has been camouflaged (to the greatest extent possible).
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1. Introduction
With the rapidly increasing adoption of electronic interac-
tion platforms, we observe an unprecedented upsurge of
digitally transmitted private communication and exploding
volumes of so-called user-generated contents (UGC). As a
major characteristic of these new communication habits, a
sender’s individual email, post, comment is distributed to
an often (very) large number of addressees—the recipients
of an email, followers in social media, other users of a plat-
form etc.. Hence, hitherto private communication becomes
intentionally public.
In response to these changes, digital (social) media com-
munication has become a major focus of research in NLP.
Yet there seems to be a lack of awareness among NLP re-
searchers that the exploitation of natural language data from
such electronic communication channels, whether for com-
mercial, administrative or academic purposes, has to com-
ply with binding legal regulations (Wilson et al., 2016).
Dependent on each country’s legislation system, different
rules for privacy protection in raw text data are enforced
(cf., e.g., two recent analyses for the US (Mulligan et al.,
2019) and the EU (Hoofnagle et al., 2019)). Even privacy-
breach incidents in a legal grey zone can be harmful for the
actors involved (including NLP researchers).
This dilemma is evidenced dramatically in the so-called
AOL search data leak.1 In August of 2006, American On-
line (AOL) made a large query log collection freely acces-
sible on the Internet for a limited time. The data were ex-
tracted over three months from their search engine to sup-
port academic research. The collection included roughly
650k users issuing 20 million queries without any signifi-
cant anonymization of individual users. The result of this
release, among others, was the disclosure of private infor-

1Briefly described in https://en.wikipedia.org/
wiki/AOL_search_data_leak, accessed on Nov. 24, 2019.

mation for a number of AOL users. The most troubling
aspect of the data leak was the ease by which single individ-
uals could be pinpointed in the logs. Even ignoring social
security, driver license, and credit card numbers, the New
York Times demonstrated the ability to unlock the identity
of a real user.2 The outline of this incident and counter-
measures against this privacy crash are reported by Adar
(2007) from whom we adopted the case description as well.
While query logs from search engines might still be at the
lower end of the vulnerability chain for data privacy (still,
with drastic implications (Jones et al., 2007)), UGC bun-
dled in freely distributed corpora is clearly at its higher end,
since real names of persons, their gender, age, or locations,
etc. are dispersed all over such documents.3 Surprisingly,
despite its high relevance for NLP operating on UGC, the
topic of data privacy has long been neglected by the main-
stream of NLP research. While it has always been of ut-
most importance for medical NLP (Meystre, 2015), it has
received almost no attention in NLP’s non-medical camp
for a long time (for two early exceptions, cf. Rock (2001);
Medlock (2006)).
This naı̈ve perspective is beginning to change these days
with the ever-growing importance of ethical concerns re-
lated to the processing of social media texts (Thomas et
al., 2017; Scantamburlo and Pelillo, 2016; Flick, 2016;
De Choudhury and De, 2014; Grodzinsky and Tavani,
2010). However, there are currently no systematic actions
taken to hide personally sensitive information from down-
stream applications when dealing with chat, SMS, tweet,

2https://www.nytimes.com/2006/08/09/
technology/09aol.html, last accessed Nov. 24, 2019.

3In a famous study, Sweeney (2000) showed, e.g., that 87% (or
roughly 50%) of the population in the US could be uniquely iden-
tified based only on three data items, namely, 5-digit ZIP (or sym-
bolic name of the place of residence), gender, and date of birth,
using 1990 U.S. Census data.

https://en.wikipedia.org/wiki/AOL_search_data_leak
https://en.wikipedia.org/wiki/AOL_search_data_leak
https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.nytimes.com/2006/08/09/technology/09aol.html
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blog or email raw data.4 Since this attitude also faces legal
implications, a quest for the protection of individual data
privacy has been raised and, in the meantime, finds active
response in the most recent work of the NLP community
(Li et al., 2018; Coavoux et al., 2018; Elazar and Gold-
berg, 2018), including the design of privacy-preserving
Data Management Plans compliant with EU’s General Data
Protection Regulation (GDPR) (Kamocki et al., 2018).
In general, two basic approaches to eliminate privacy-
bearing data from raw text data can be distinguished. The
first one, anonymization, identifies instances of relevant
privacy categories (e.g., person names or dates) and re-
places sensitive strings by some artificial code (e.g., ‘xxx’).
This masking approach might be appropriate to eliminate
privacy-bearing data in the medical world, but is likely to be
inappropriate for most NLP applications since crucial dis-
criminative information and contextual clues will be erased
by such a scrubbing procedure.
The second approach, pseudonymization, preserves such
valuable information by substituting privacy-bearing text
strings with randomly generated alternative synthetic in-
stances from the same privacy type (e.g., the person name
‘Suzanne Walker’ is mapped to ‘Caroline Snyder’).5 As a
common denominator, the term de-identification subsumes
both, anonymization and pseudonymization.6

The focus of this paper will be on the identification of
instances of relevant privacy categories based on a struc-
tured type system of privacy categories (essential for both
approaches) and a privacy type-compliant substitution of
the original text mentions. We will demonstrate our ap-
proach on two variants of CODE ALLTAG (Krieg-Holz et
al., 2016), a German-language email corpus introduced at
LREC 2016 that, at that time, could not be made publicly
available due to possible privacy leakage. The current ver-
sion, CODE ALLTAG 2.0, is basically a pseudonymized
variant of CODE ALLTAG, now publicly available at
https://github.com/codealltag.
We start with a discussion of related work in Section 2
and then introduce the semantic types we consider as rel-
evant carriers of personal information in emails in Sec-
tion 3. Next, we provide an overview of the email cor-
pus our experiments are based on in Section 4, includ-
ing a brief description of manual annotation activities for
gold standards. In Section 5, we turn to the description
and evaluation of different approaches to recognizing pri-

4One of the rare exceptions is described by Jung et al. (2015)
for privacy-sensitive services on personal mobile devices.

5For medical applications, Bui et al. (2018) recently found no
advantage for pseudonymization over anonymization in terms of
system accuracy and impact on document readability.

6The distinction we make between de-identification and
anonymization differs from the one proposed by Meystre et al.
(2010) who equate de-identification and our understanding of
anonymization, while their understanding of the term ‘anonymiza-
tion’ is focused on medical data security concerns and implies that
the data cannot be linked to identify the patient. Our change of
terminology is motivated by the intention to strictly decouple the
linguistic layer of different forms of de-identification (masking of
or substituting privacy-relevant items) from data security concerns
(the potential of re-identification of individuals), the latter being
out of scope of NLP.

vacy-sensitive information, a task we treat primarily as a
named entity recognition problem. In Section 6, we present
the new pseudonymized version of CODE ALLTAG, CODE
ALLTAG 2.0. After that, we conclude with a summary of
our main contributions and an outlook into future work in
Section 7.

2. Related Work
The main thrust of work on de-identification has been per-
formed for clinical NLP.7 Main drivers of progress in this
field were two challenge tasks within the context of the
I2B2 (Informatics for Integrating Biology & the Bedside)
initiative8 which focused on 18 different types of Protected
Health Information (PHI) categories as required by US leg-
islation (HIPAA).9 The first of these challenge tasks was
launched in 2006 for 889 hospital discharge summaries
(Uzuner et al., 2007). The second was run in 2014 and
addressed an even broader set of PHI categories (Stubbs
et al., 2015a). The best system performances peaked in
the high 90s (F1 score) using classical machine learning
methods, Conditional Random Fields (CRFs) in particu-
lar, hand-written rules, or a hybrid mixture of both. As
a successor to I2B2, the CEGS-NGRID Shared Tasks and
Workshop on Challenges in NLP for Clinical Data created
a corpus of 1,000 manually de-identified psychiatric evalu-
ation records (Stubbs et al., 2017). Interestingly, for the au-
tomatic de-identification task performance values dropped
significantly down to 79.85 F1 for the best-performing sys-
tem indicating an only modest potential for domain and
text genre portability (moving from discharge summaries
to psychiatric evaluation records).
Recently, the deep learning wave has also hit the (clini-
cal) de-identification community. For this task, bidirec-
tional Long Short-Term Memory Networks (Bi-LSTMs)
became quite popular as evidenced by the work of Der-
noncourt et al. (2017b) who achieve an F1 score of 97.85
on the I2B2 2014 dataset, or Liu et al. (2017) who report
performance figures ranging from 95.11% over 96.98%
up to 98.28% micro F1 score under increasingly sloppier
matching criteria on the same dataset. Another direction
to prevent privacy leakage from clinical documents has re-
cently been proposed by Friedrich et al. (2019). They in-
troduce an adversarially learned representation of medical
text that allows privacy-preserving sharing of training data
for a de-identification classifier by transforming text non-
reversibly into a non-interpretable vector space represen-
tation as training data. Employing a simple LSTM-CRF
de-identification model they achieved an F1 score of 97.4%
on the I2B2 2014 reference dataset.
Yet, the focus of these studies lies on the recognition of
privacy-relevant text stretches not on pseudonymization, a
considerably more complex task (Stubbs et al., 2015b).

7Note that we have to distinguish between privacy protec-
tion for structured tabular data housed in (clinical) information
systems (for which k-anonymity (Sweeney, 2002) is a well-
known model to minimize a person’s re-identification risk) and
de-identification in unstructured verbal data we here focus on.

8https://www.i2b2.org/
9https://www.hhs.gov/hipaa/

for-professionals/privacy/index.html

https://github.com/codealltag
https://www.i2b2.org/
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
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Carrell et al. (2013) examined this problem with the ‘Hid-
ing In Plain Sight’ approach: detected privacy-bearing
identifiers are replaced with realistic synthetic surrogates in
order to collectively render the few ‘leaked’ identifiers dif-
ficult to distinguish from the synthetic surrogates—a major
advantage for pseudonymization over anonymization. Tar-
geting English medical texts, SCRUB (Sweeney, 1996) was
one of the first surrogate generation systems followed by
work from Uzuner et al. (2007), Yeniterzi et al. (2010),
Deléger et al. (2014), Stubbs et al. (2015b), Stubbs and
Uzuner (2015), and Chen et al. (2019). Similar procedures
have been proposed for Swedish (Alfalahi et al., 2012) and
Danish (Pantazos et al., 2011) clinical corpora, yet not for
German ones, up until now.
The most radical departure to escape from the data pri-
vacy problem is to generate fully synthetic, i.e., artificial
textual ‘fake’ documents. Methodologically, this work is
rooted in generative adversarial networks (GAN) (Good-
fellow et al., 2014). In GANs, two networks, a discrimi-
nator model jointly learned with a generator model, play a
game-theoretical game in which the generator attempts to
generate realistic, but fake, data and the discriminator aims
to distinguish between the generated fake data and the real
data. This approach has already been applied to camou-
flage person-identifying demographic data (Li et al., 2018;
Elazar and Goldberg, 2018).
For the medical domain, Guan et al. (2019) and Choi et
al. (2017), e.g., take clinical features (diagnoses, treatment,
medication codes, etc.) as input and automatically generate
synthetic textual data incorporating these features as out-
put. Lee (2018) instead uses an encoder–decoder model, as
employed in many machine translation systems, for gener-
ating chief complaints from discrete variables in Electronic
Health Records (EHR), like age group, gender, and diag-
nosis. After being trained end-to-end on authentic records,
the model can generate realistic, privacy-neutral chief com-
plaint text. Most important from our perspective, such syn-
thetic texts include none of the PHI elements that was in the
training data, suggesting that such models can effectively
solve the de-identification problem by introducing compa-
rable, yet artificial documents as substitutes for authentic
clinical documents, rather than artificial mentions of PHI-
relevant entities (as pseudonymization does).
De-identification work outside the clinical domain is rare
and limited in scope. Minkov et al. (2005) aim at identify-
ing personal names, a subclass of PHI items, within emails
as a prerequisite for anonymization in informal texts using
a CRF classifier. Recently, Megyesi et al. (2018) report
on an anonymization study for a corpus of essays written
by second language (L2) learners of Swedish. While we
found no work dealing with the comprehensive anonymiza-
tion or even pseudonymization of emails and Twitter-style
social media data,10 anonymizing SMSes is a topic of ac-
tive research. Patel et al. (2013) introduce a system capable
of anonymizing SMS (Short Message Service) communi-
cation. Their study builds on 90,000 authentic French text

10Lüngen et al. (2017) report on manual anonymization efforts
for German chat data. Boufaden et al. (2005) describe a privacy
compliance engine that monitors emails generated in an organiza-
tion for violation of the privacy policy of this organization.

messages and uses dictionaries as well as decision trees as
machine learning technique. Their evaluation task is, how-
ever, very coarse-grained—select those SMSes from a test
corpus that either have to be anonymized or not. There
is no breakdown to PHI-like categories known from the
medical domain. Treurniet et al. (2012) consider privacy-
relevant data for a Dutch SMS corpus (52,913 messages,
in total) in greater detail. They automatically anonymized
all occurrences of dates, times, decimal amounts, and num-
bers with more than one digit (telephone numbers, bank ac-
counts, etc.), email addresses, URLs, and IP addresses. All
sensitive information was replaced with corresponding se-
mantic placeholder codes of the encountered semantic type
(e.g., each email address was replaced by the type sym-
bol EMAIL), not by an alternative semantic token, i.e., a
pseudonym. The same strategy was also chosen by Chen
and Kan (2013) for their SMS corpus that contains more
than 71,000 messages, focusing on English and Mandarin.
However, neither are the methods of automatic anonymiza-
tion described in detail, nor are performance figures of this
process reported in both papers (Chen and Kan (2013) only
mention the use of regular expressions for the anonymiza-
tion process).
In conclusion, pseudonymization has, to the best of our
knowledge, only been seriously applied to medical docu-
ments, up until now. Hence, our investigation opens this
study field for the first time ever to non-medical applica-
tions of pseudonymization.

3. Named Entity Types for De-Identification
The most relevant source and starting point for determin-
ing types of personally identifying information pieces in
written informal documents is a catalog of Personal Health
Information (PHI) items that has been derived from the
Health Information Privacy Act (HIPAA). PHI enumerates
altogether 18 privacy-sensitive information classes orga-
nized into eight main categories (Stubbs and Uzuner, 2015):

• Name includes the names of patients, doctors and user
names,

• Profession practiced by a person,
• Location includes rooms, clinical departments, hospi-

tal names, names of organizations, street names, city
names, state names, names of countries, ZIPs, etc.,

• Age of persons,
• Date expressions,
• Communication codes, e.g., phone or fax numbers,

email addresses, URLs, IP addresses,
• all sorts of IDs, such as Social Security number, med-

ical record number, account number, license number,
vehicle ID, device ID, biometric ID, etc.,

• any Other form of personally sensitive data.

While some of the above categories are useful for non-
medical anonymization procedures as well, others are
merely domain-specific, because they are intrinsically at-
tached to the clinical domain (such as the names of patients,
doctors or nurses, hospitals and their departments). Hence,
we adapted this list to email documents while, at the same
time, we tried to avoid over-fitting to this text genre.
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Figure 1: Hierarchy of privacy-bearing information (pi) en-
tity types relevant for emails (leaves in green)

We, finally, came up with the set of privacy-bearing infor-
mation (henceforth, pi) entity types depicted in Figure 1. It
was designed to universally account for all types of emails,
irrespective of any particular natural language and email en-
coding. These entities are organized in a concise hierarchy
whose top level categories are SocialActor (ACTOR), Date
(DATE), FormalIdentifier (FID), Location (LOC), and Ad-
dress (ADD). We anticipate that this hierarchy can also be
further refined and accommodated other privacy-sensitive
text genres (blogs, tweets, SMS, etc.).
The category of SocialActor can further be divided into
Organization (ORG), which includes all types of legal ac-
tors such as companies, brands, institutions and agencies,
etc., Persons (PERSON), with subtypes FamilyName (FAM-
ILY) and GivenName (GIVEN), with another split into two
subcategories, namely FemaleName (FEMALE) and Male-
Name (MALE), both including nicknames and initials. Fi-
nally, UserName (USER) covers all kinds of invented user
names for IT systems and platforms.
Date (DATE) covers all sorts of date descriptions, e.g., date
of birth, year of death, starting and ending dates of con-
tracts, etc..
The category of FormalIdentifier (FID) includes Password
(PASS) as user-provided artificial character string for all
kinds of technical appliances, and UniqueFormalIdentifier
(UFID) to capture persons (students, customers, employ-
ees, members of social security systems (SSN), authors
(ORCHID), etc.), computer systems (IP addresses), or other
artifacts (e.g., IBAN, DOI).
The Location (LOC) category subsumes StreetName
(STREET), StreetNumber (STREETNO), ZipCode (ZIP),
and CityName (CITY) which stands for villages, towns,
cities, metropolitan areas (e.g., ‘Larger London’) and re-
gions smaller than a state (e.g., ‘Bay Area’); it also includes
derivations of these names (e.g., ‘Roman’).
Address (ADD) encompasses EmailAddress (EMAIL),
PhoneNumber (PHONE), including fax numbers, and URL
(URL), as well as other forms of domain names.
Unlike studies in clinical NLP (Stubbs et al., 2015b), we
did not take mentions of age or profession into account, be-
cause these information units are very rare in emails (yet
they often occur, with high relevance, in clinical reports).
Furthermore, unspecific dates like ‘Christmas’11 or ‘next
week’ and geographical information such as landmarks,
rivers or lakes were not tagged for de-identification since
their contribution to possible re-identification is fairly lim-
ited due to their generality.

11Yet, in ‘Christmas 2019’, e.g., the year ‘2019’ will be tagged
as DATE.

In Figure 2, we illustrate our workflow for pseudonymiza-
tion with an email excerpt highlighting different mentions
of pi entity types by different colors.

Figure 2: Workflow from an original email via the recog-
nition of privacy-sensitive information units (pi) to its
pseudonymized form containing synthetic substitutes for pi
entities (German original (left), English translation (right))

4. Named Entity Annotation in Emails
Our work is based on CODE ALLTAG (Krieg-Holz et al.,
2016), a resource composed of two non-overlapping col-
lections of emails. The larger portion, CODE ALLTAGXL,
was extracted from various archived Internet Usenet News-
groups and consists of 1,469,469 German-language emails
that merely underwent some rudimentary data cleans-
ing.12 This huge data set is complemented by a much
smaller number of 1,390 German-language emails, CODE
ALLTAGS+d, collected on the basis of voluntary email do-
nation. The donors have provided their explicit consent
that, after de-identification, their emails may be made pub-
licly available. Sharing the entire corpus would create lots
of opportunities for NLP research, since public access to
private emails is generally forbidden.13

For our experiments, we exploited both data resources dif-
ferently. We manually annotated CODE ALLTAGS+d with
the privacy-bearing categories from Section 3 for training
and testing. Furthermore, we annotated 1,000 randomly
picked emails from CODE ALLTAGXL by hand to evaluate
our classifier trained on CODE ALLTAGS+d on the much
noisier XL corpus; the latter contains less personal infor-
mation than the former (see Table 1).

12A similar and simultaneously conducted corpus-building ini-
tiative is described by Schröck and Lüngen (2015).

13One of the rare exceptions is the ENRON corpus (Klimt and
Yang, 2004) whose non-anonymized content was released for
open inspection by order of US judges in the course of the de-
struction of the Enron company. For yet another example, cf.
the AVOCADO RESEARCH EMAIL COLLECTION, available from
LDC2015T03. Both corpora contain English language only.



4470

CODE ALLTAGS+d CODE ALLTAGXL

# emails 1,390 1,000
# tokens 151,229 94,664
# pi entities 8,866 3,231
# pi tokens 12,649 3,549

Table 1: Privacy-bearing information in CODE
ALLTAGS+d and the 1,000 email sample from CODE
ALLTAGXL; ‘#’ stands for ‘number of’

4.1. CODE ALLTAGS+d

For the manual annotation campaign,14 we set up a team
of three annotators who tagged equally sized parts of the
corpus, according to the privacy-bearing (pi) categories de-
scribed in Section 3 (see Figure 1). Annotation was per-
formed on the entity level. Therefore, we did not have to
care about token boundaries in the surrogate generation step
and, thus, no special handling for compounds and multi-
token entities was required.
In order to measure inter-annotator agreement (IAA), the
annotators worked on 50 identical emails randomly se-
lected from the corpus within the same annotation phase
as the entire corpus. Table 2 shows Cohen’s κ (Cohen,
1960) as a measure for IAA for the pairs of annotators cal-
culated on the entities represented by the BIO annotation
scheme.15 Hence, not only the token label itself but also
matching starting and ending points of an entity are taken
into account. The agreement is quite high, especially be-
tween annotator 1 and 3.

A1 - A2 A2 - A3 A3 - A1
0.925 0.933 0.958

Table 2: Cohen’s κ for BIO tags on CODE ALLTAGS+d

Based on these 50 emails the annotators also examined and
discussed differences of their annotations and decided on
the gold standard by majority vote, which we applied for
further evaluation to measure precision, recall and F1 score.
Table 3 shows the outcomes regarding BIO tags per anno-
tator and the overall result calculated over the joint anno-
tations of the annotators. We took the averages from the
outcomes of the single categories weighted by the number
of true instances for each label.
An error analysis revealed that, besides mostly acciden-
tal errors, a higher disagreement on tagging ORGs (due
to overlap or confusion with city or product names and
rather generic organizations)16 and an uncertainty regarding
DATEs could be observed. The latter problem was solved
by the decision to treat all dates as pi regardless of their

14We used the BRAT tool (http://brat.nlplab.org/)
for annotation (Stenetorp et al., 2012).

15‘B’ preceding a token’s tag stands for the Beginning of an
entity, ‘I’ for its continuation (Inside), and ‘O’ for any stretch of
text that does not belong to an entity (Outside).

16Stubbs and Uzuner (2015) also report confusions of organi-
zations with other subcategories from their location class (depart-
ment, hospital) and Stubbs et al. (2017) witness an uncertainty for
tagging quasi-generic organizations.

specificity. As a consequence, one of the three annota-
tors worked through the entire corpus to re-tag each DATE
and, if necessary, also re-tag ORGs according to the find-
ings from the error analysis. The outcome of this revision
constituted the final gold standard annotations of CODE
ALLTAGS+d for the de-identification task.

Prec Rec F1

A1 98.06 95.63 96.72
A2 87.67 77.92 80.36
A3 94.14 84.79 86.82
A1+A2+A3 93.37 86.11 88.66

Table 3: Weighted average of Prec(ision), Rec(all) and F1

score in respect to the gold standard for BIO tags of CODE
ALLTAGS+d

4.2. CODE ALLTAGXL

The manual annotation process for the 1,000 emails from
CODE ALLTAGXL corresponds to the one described for
CODE ALLTAGS+d, except for the updated annotation
guidelines according to the results of the error analysis re-
ported above. This annotation campaign involved five an-
notators (Cohen’s κ for this set-up is displayed in Table 4).

A1-A2 A1-A3 A1-A4 A1-A5 A2-A3
0.898 0.902 0.917 0.858 0.933

A2-A4 A2-A5 A3-A4 A3-A5 A4-A5
0.952 0.848 0.942 0.900 0.881

Table 4: Cohen’s κ for BIO tags on CodE AlltagXL

They also settled for a gold standard in a consolidation
meeting afterwards. Again, nearly all annotation differ-
ences are due to overlooked personal information. We also
found several disagreements regarding the gender of person
names, because CODE ALLTAGXL contains quite a few ini-
tials or even names that are gender-neutral. The outcome
of this examination constituted the final gold standard an-
notations for CODE ALLTAGXL. Table 5 shows the scores
per annotator and the overall result calculated over the joint
annotations of the five annotators. Again, we took the av-
erages from the outcomes of the single categories weighted
by the number of true instances for each label.

CODE ALLTAGXL Prec Rec F1

A1 95.53 82.46 87.98
A2 94.89 94.46 94.43
A3 93.98 91.38 92.50
A4 98.20 95.69 96.80
A5 90.36 87.69 88.26
A1+A2+A3+A4+A5 94.58 90.34 92.28

Table 5: Weighted average of Prec(ision), Rec(all) and F1

score in respect to gold standard of CODE ALLTAGXL

5. Recognition of Privacy-Sensitive Entities
With respect to the structure of emails, we first experi-
mented with different ways of segmenting the emails into

http://brat.nlplab.org/


4471

sequences and tokenization.17 For that, we compared SO-
MAJO (Proisl and Uhrig, 2016), a tokenizer and sentence
splitter for German and English Web and social media texts,
with SPACY18 and found that the latter yielded better results
for our task than the former. Also, taking the lines in the
emails as sequences rather than the segmented sentences
and keeping the tokenization as is improved performance.

5.1. Recognition Models for pi Entity Mentions
For automatically recognizing privacy-bearing (pi) entity
mentions, we experimented with several systems.19

GERMANER and GERMAN NER. We ran out of the
box GERMANER (Benikova et al., 2015), a CRF-based
tagger primarily developed for the task of named entity
recognition (NER), and GERMAN NER (Riedl and Padó,
2018), a combination of BiLSTM and CRF that utilizes
character embeddings as well.

NEURONER+token(+seq). We adapted NEURONER, a
system particularly designed for clinical de-identification
(Dernoncourt et al., 2017b; Dernoncourt et al., 2017a).
It is based on BiLSTMs (Hochreiter and Schmidhuber,
1997) and shares many similarities with the model pro-
posed by Lample et al. (2016). Lee et al. (2016) en-
hanced NEURONER with manually engineered features by
concatenating the output of a feed-forward neural network
run on a binary feature vector comprising the token’s fea-
tures to the character embedding and the pre-trained to-
ken embedding of a token.20 We adopted this approach
(NEURONER+token) and decided for similar token fea-
tures (see Table 6) utilizing SPACY and various lexicon
look-ups.21

Additionally, we take the structure of emails into account
(NEURONER+token+seq). Lampert et al. (2009) define
nine different zones, such as greeting, signoff, signature,
new text from the sender of the email or advertising etc.,
and present an algorithm to automatically classify these
parts. Since we presume that there is a higher likelihood

17We revised tokenization (without messing up sentence seg-
mentation and parsing) originating from the tools to account for
entities which only span part of the token. We split tokens on
‘-/&@’ except for URLs, email addresses and punctuation marks.

18https://spacy.io/
19Experiments with BERT’s contextual embeddings (Devlin et

al., 2019) are in progress.
20We used FASTTEXT word embeddings (Grave et al., 2018)

based on COMMON CRAWL and WIKIPEDIA.
21Female and male given names are taken from ftp:

//ftp.heise.de/pub/ct/listings/0717-182.
zip, German surnames come from http://www.
namenforschung.net/fileadmin/user_upload/
dfa/Inhaltsverzeichnisse_etc/Index_Band_
I-V_Gesamt_Stand_September_2016.pdf, locations
from http://download.geonames.org/export/
dump/allCountries.zip, German company names are
imported from https://www.datendieter.de/item/
Liste_von_deutschen_Firmennamen_.txt (obtained
from OpenStreetMap http://www.openstreetmap.org);
finally, street names originate from http://www.
datendieter.de/item/Liste_von_deutschen_
Strassennamen_.csv and http://www.statistik.
at/strasse/suchmaske.jsp.

Token Features
typographic

is punctuation character, is left punctuation mark, is
right punctuation mark (e.g. ‘)’), is bracket, is quote,
is currency, is digit, contains digit, is alphabetic
character, contains alphabetic character, is special
character (no punctuation or alphanumerical
character), contains special character, is all upper
case, is all lower case, is title case, is mixed case

lexical
URL, email address, stop word, surname,
female given name, male given name,
city name, street name, organization name

POS tag
Universal Dependencies v2 tags1

Sequence Features
number of tokens, number of characters, number of
preceding newlines, number of following newlines,
position (number of the sequence in the document

normalized by the document’s length)
1 https://universaldependencies.org/u/pos/index.html

Table 6: Token features used for the binary token feature
vector (NEURONER+token); sequence features for the se-
quence feature vector in NEURONER+token+seq

to find pi information in some zones than in others, we ap-
ply basics of their approach on the sequence level, roughly
adopting some of their features (Table 6). Also Liu et al.
(2017), among others, use sentence information (number of
words, unmatched brackets, end punctuation) and section
information especially by adding a hidden layer concatenat-
ing these features with the output of the token BiLSTM. In
contrast, our feature vectors of a document’s sequences are
fed to a BiLSTM and the output is concatenated directly to
a corresponding token embedding that has been constructed
the same way as in NEURONER+token.

BPEMB(+char). We considered BPEMB subword em-
beddings (Heinzerling and Strube, 2018) based on Byte
Pair Encoding (BPE) (Sennrich et al., 2016), building on
the results from Heinzerling and Strube (2019) who ob-
tained higher scores for NER on the German part of the
WIKIANN dataset (Pan et al., 2017) using BPEMB stand-
alone rather than (in combination) with BERT’s contextual
embeddings (Devlin et al., 2019). We applied BPEMB em-
beddings solely (BPEMB) and in combination with char-
acter embeddings (BPEMB+char).22 For that, we used the
FLAIR (Akbik et al., 2018) library and its sequence tagger.

5.2. Performance on CODE ALLTAGS+d

Table 7 shows the results of the classifiers from Section 5.1
for a 10-fold cross-validation on CODE ALLTAGS+d. GER-
MANER, GERMAN NER and BPEMB without character
embeddings performed worse (in terms of F1 score) than
the best performing model BPEMB+char. Yet, there is no
statistically significant difference between BPEMB+char
and NEURONER+token or NEURONER+token+seq. The

22We took the 100-dimensional BPEMB with vocabulary size
100,000.

https://spacy.io/
ftp://ftp.heise.de/pub/ct/listings/0717-182.zip
ftp://ftp.heise.de/pub/ct/listings/0717-182.zip
ftp://ftp.heise.de/pub/ct/listings/0717-182.zip
http://www.namenforschung.net/fileadmin/user_upload/dfa/Inhaltsverzeichnisse_etc/Index_Band_I-V_Gesamt_Stand_September_2016.pdf
http://www.namenforschung.net/fileadmin/user_upload/dfa/Inhaltsverzeichnisse_etc/Index_Band_I-V_Gesamt_Stand_September_2016.pdf
http://www.namenforschung.net/fileadmin/user_upload/dfa/Inhaltsverzeichnisse_etc/Index_Band_I-V_Gesamt_Stand_September_2016.pdf
http://www.namenforschung.net/fileadmin/user_upload/dfa/Inhaltsverzeichnisse_etc/Index_Band_I-V_Gesamt_Stand_September_2016.pdf
http://download.geonames.org/export/dump/allCountries.zip
http://download.geonames.org/export/dump/allCountries.zip
https://www.datendieter.de/item/Liste_von_deutschen_Firmennamen_.txt
https://www.datendieter.de/item/Liste_von_deutschen_Firmennamen_.txt
http://www.openstreetmap.org
http://www.datendieter.de/item/Liste_von_deutschen_Strassennamen_.csv
http://www.datendieter.de/item/Liste_von_deutschen_Strassennamen_.csv
http://www.datendieter.de/item/Liste_von_deutschen_Strassennamen_.csv
http://www.statistik.at/strasse/suchmaske.jsp
http://www.statistik.at/strasse/suchmaske.jsp
https://universaldependencies.org/u/pos/index.html
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pi Recognition Model Prec Rec F1

GERMANER 93.68 83.62 88.04*
GERMAN NER 88.66 80.63 83.99**
NEURONER+token 89.46 86.99 88.17
NEURONER+token+seq 90.87 87.27 88.99
BPEMB 90.52 86.65 88.31*
BPEMB+char 91.37 87.18 89.03

Table 7: Weighted average of Prec(ision), Rec(all) and
F1 score of the selected pi recognition models on CODE
ALLTAGS+d (10-fold cross-validation); statistically signifi-
cant differences (using the two-sided Wilcoxon signed-rank
test on F1) are marked with ‘*’ and ‘**’ for p < 0.05 and
0.01, respectively relative to BPEMB+char

latter achieved a slightly lower F1 score, with a slightly
higher recall. In conclusion, we utilized BPEMB+char for
the task of de-identifying CODE ALLTAGXL.

5.3. Performance on CODE ALLTAGXL

As Table 8 reveals, performance plummeted when applying
the BPEMB+char model trained on CODE ALLTAGS+d to
the 1,000 emails drawn from CODE ALLTAGXL (row 1).
This is due to the fact that CODE ALLTAGXL is much nois-
ier and far less structured than CODE ALLTAGS+d. Train-
ing and testing on CODE ALLTAGXL (row 3) yielded better
results, but they are still far behind the ones we achieved
on CODE ALLTAGS+d (row 4, repeated from Table 7). As
CODE ALLTAGXL contains less entities and some cate-
gories appear only rarely and are thus more difficult to
learn, we joined both corpora to benefit from the higher
amount and diversity of entities in CODE ALLTAGS+d.
We merged both corpora for training while testing solely
on the quarter of CODE ALLTAGXL left out from train-
ing in a 4-fold cross-validation setting. Omitting CODE
ALLTAGS+d from testing prevents getting too high scores
due to the larger proportion of tokens and pi entities in
CODE ALLTAGS+d (those are obviously easier to classify
as the outcome reveals). Hence, this setting allows more
realistic results in respect to the recognition of pi entities
on the entire CODE ALLTAGXL afterwards. Compared to
training exclusively on CODE ALLTAGXL including CODE
ALLTAGS+d improved performance, reaching an overall F1

score of 70.96 (row 2).

Training Testing Prec Rec F1

S+d XL 63.53 53.26 56.28
S+d + 3

4 XL 1
4 XL 76.16 68.07 70.96

XL 78.17 62.74 68.62
S+d 91.37 87.18 89.03

Table 8: Weighted average of Prec(ision), Rec(all) and F1

score for training on CODE ALLTAGS+d (denoted as ‘S+d’)
and evaluation on CODE ALLTAGXL (denoted as ‘XL’,
3 runs) and for CODE ALLTAGS+d merged with CODE
ALLTAGXL, with 4-fold cross-validation solely on the lat-
ter, as well as for 10-fold cross-validation exclusively on
CODE ALLTAGXL and CODE ALLTAGS+d, respectively

6. Pseudonymized CODE ALLTAG 2.0
After applying a BPEMB+char model trained on CODE
ALLTAGS+d and the 1,000 emails from CODE ALLTAGXL

(as specified in the second row of Table 8) to the remain-
ing part of the latter corpus we substituted the recognized
pi entities with type-preserving surrogates as described in
Eder et al. (2019) (and illustrated in Figure 2 above).23

The two portions of the pseudonymized version of CODE
ALLTAG, CODE ALLTAGpS+d and CODE ALLTAGpXL

constitute CODE ALLTAG 2.0. Table 9 shows quantita-
tive properties of CODE ALLTAGpS+d as well as of CODE
ALLTAGpXL (based on processing with SPACY), with splits
into seven categories (Finance, German, Movies, Philoso-
phy, Teens, Travels and Events) (Krieg-Holz et al., 2016).
Note that the number of emails in CODE ALLTAGpS+d

is smaller than the amount of emails used for training in
Section 5, because we are not allowed to distribute emails
that were not written by the donors themselves. CODE
ALLTAGpS+d comprises 4,104 pi entities, while CODE
ALLTAGpXL contains over 8,3M pis altogether (Table 10).

6.1. Demographic Data for CODE ALLTAGpS+d

As detailed in Krieg-Holz et al. (2016) the donors of the
emails from CODE ALLTAGS+d were asked to complete a
questionnaire after submitting an email. We thus collected
demographic data including gender, age, language and
regional provenance, educational and professional back-
ground, frequency of writing texts and proficiency of email-
ing. For privacy reasons, we provide this information in an
aggregated manner only.
Roughly 73% of the emails from CODE ALLTAGpS+d were
written by females; more than two thirds were donated by
persons between 18 and 34 years old (see Figure 3 (a)). Re-
garding language provenance most of the donated emails
were written by native speakers of German (close to 92%)
and two thirds also speak German dialects. With 39% daily
and 45% weekly writing frequency, the majority of emails
were sent by donors with strong writing experience as part
of their daily routines (cf. Figure 3 (b)). Further, most of
them have a long-standing experience using email as a com-
munication medium (Figure 3 (c)).

7. Conclusion
The pseudonymization of privacy-sensitive information has
almost exclusively been a topic of research in the medical
NLP domain. However, privacy concerns also become in-
creasingly relevant for user-generated content spread over
social media. Our investigation opens this study field for
the first time ever to a non-medical application, the de-
identification of email corpora.
We distinguish two steps in this process. First, privacy-
relevant information pieces have to be identified. We treat
this task primarily as a named entity recognition problem
and devise an entity hierarchy that captures the relevant
named entity types for the de-identification of emails.
We evaluated several system architectures for the task
of automatically recognizing these entities on CODE

23The code for the generation of surrogates is available at
https://github.com/ee-2/SurrogateGeneration.

https://github.com/ee-2/SurrogateGeneration
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# emails # sentences # tokens # tokens* # types* # lemmas*
Finance 174,271 4,668,397 32,448,628 16,993,163 1,336,645 1,292,513
German 240,703 1,987,861 15,835,884 6,781,721 784,992 737,933
Movies 205,856 3,153,523 26,386,837 12,527,035 1,001,364 952,693
Philosophy 209,322 4,077,644 43,496,863 16,770,793 1,160,975 1,097,913
Teens 238,977 2,401,965 12,532,029 5,716,143 580,081 551,368
Travels 154,040 1,813,318 15,404,633 7,462,448 744,206 711,323
Events 246,300 3,232,851 28,260,682 11,763,229 961,800 910,021∑

CODE ALLTAGpXL 1,469,469 21,335,559 174,365,556 78,014,532 4,506,550 4,411,765
CODE ALLTAGpS+d 800 7,975 87,384 33,483 13,925 12,146

Table 9: Quantitative breakdown of CODE ALLTAGpXL and CODE ALLTAGpS+d; ‘#’ stands for ‘number of’; ‘*’ denotes
punctuation marks and stop words excluded

Entity Finance German Movies Philosophy Teens Travels Events
∑

pXL pS+d

ORG 210,617 26,988 89,987 34,974 17,652 69,288 93,508 543,014 336
FAMILY 225,006 264,255 344,185 299,713 296,528 121,282 298,906 1,849,875 954
FEMALE 64,913 56,763 85,914 55,005 79,145 48,889 48,849 439,478 831
MALE 296,171 383,742 510,450 367,763 400,244 234,425 367,092 2,559,887 507
USER 351 67 226 213 44 1,872 3,003 5,776 2
DATE 369,014 103,556 104,375 68,248 65,520 51,203 114,816 876,732 282
PASS 14 3 8 22 3 22 31 103 1
UFID 89,915 4,111 9,956 4,678 5,444 4,668 5,665 124,437 91
STREET 15,351 5,706 4,970 4,986 4,914 6,292 12,827 55,046 96
STREETNO 40,258 1,378 4,239 4,174 1,527 3,850 9,626 65,052 108
CITY 197,078 57,373 66,175 29,628 20,012 152,302 82,482 605,050 486
ZIP 16,307 610 3,939 2,634 1,132 3,355 6,728 34,705 74
EMAIL 67,333 21,235 63,321 70,533 121,479 42,248 40,765 426,914 56
PHONE 51,858 6,837 11,245 5,515 4,830 9,256 6,777 96,318 139
URL 103,994 137,082 95,305 69,295 45,438 89,082 134,610 674,806 141∑

1,748,180 1,069,706 1,394,295 1,017,381 1,063,912 838,034 1,225,685 8,357,193 4,104

Table 10: pi entities in numbers for each category of CODE ALLTAGpXL as well as for the entire CODE ALLTAGpXL

(pXL) and CODE ALLTAGpS+d (pS+d)

Figure 3: Distribution of email donors (CODE ALLTAGpS+d) by age (a), frequency of writing texts (b) and email experience
in years (c)

ALLTAGS+d, a small, yet well-curated German email cor-
pus, with roughly 1k emails and applied the best perform-
ing model to CODE ALLTAGXL, another German email
corpus, with roughly 1,5M emails. The recognition results
for the latter corpus are degraded due to a high noise level
and OOV problems. Hence, determining a more robust
recognition model will require further work.

In a second step, we transform privacy-bearing entities
from their original form into an entity type-preserving vari-
ant and thus create pseudonym forms. We finally come up
with the pseudonymized German email corpus CODE ALL-
TAG 2.0 which is composed of CODE ALLTAGpS+d and
CODE ALLTAGpXL. This corpus is available at https:
//github.com/codealltag.

https://github.com/codealltag
https://github.com/codealltag
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et al., editors, ACL 2019 — Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics. Florence, Italy, July 28 - August 2, 2019,
pages 273–291, Stroudsburg/PA. Association for Com-
putational Linguistics (ACL).

Hochreiter, S. and Schmidhuber, H. J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Hoofnagle, C. J., van der Sloot, B., and Zuiderveen Borge-
sius, F. (2019). The European Union General Data Pro-
tection Regulation: what it is and what it means. Infor-
mation & Communications Technology Law, 28(1):65–
98.

Jones, R., Kumar, R., Pang, B., and Tomkins, A. D.
(2007). “I know what you did last summer”: query logs
and user privacy. In CIKM 2007 — Proceedings of the
16th ACM Conference on Information and Knowledge
Management. Lisbon, Portugal, 6-10 November 2007,
pages 909–914, New York/NY. Association for Comput-
ing Machinery (ACM).

Jung, Y., Stratos, K., and Carloni, L. P. (2015). LN-
ANNOTE: an alternative approach to information extrac-
tion from emails using locally-customized named-entity
recognition. In Aldo Gangemi, et al., editors, WWW
2015 — Proceedings of the 24th International Confer-
ence on World Wide Web. Florence, Italy, May 18–22,
2015, pages 538–548, New York/NY. Association for
Computing Machinery (ACM).

Kamocki, P., Mapelli, V., and Choukri, K. (2018). Data
Management Plan (DMP) for language data under the
new General Data Protection Regulation (GDPR). In
Nicoletta Calzolari, et al., editors, LREC 2018 — Pro-
ceedings of the 11th International Conference on Lan-
guage Resources and Evaluation. Miyazaki, Japan, May
7-12, 2018, pages 135–139, Paris. European Language
Resources Association (ELRA).

Klimt, B. and Yang, Y. (2004). The ENRON corpus: a
new dataset for email classification research. In Jean-
François Boulicaut, et al., editors, Machine Learning.
ECML 2004 – Proceedings of the 15th European Con-
ference on Machine Learning, Pisa, Italy, September 20-
24, 2004, number 3201 in Lecture Notes in Computer
Science, pages 217–226, Berlin, Heidelberg. Springer.

Krieg-Holz, U., Schuschnig, C., Matthies, F., Redling, B.,
and Hahn, U. (2016). CODE ALLTAG: a German-
language e-mail corpus. In Nicoletta Calzolari, et al.,
editors, LREC 2016 — Proceedings of the 10th Interna-
tional Conference on Language Resources and Evalua-
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