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Abstract
An abundance of electronic health records (EHR) is produced every day within healthcare. The records possess valuable information
for research and future improvement of healthcare. Multiple efforts have been done to protect the integrity of patients while making
electronic health records usable for research by removing personally identifiable information in patient records. Supervised machine
learning approaches for de-identification of EHRs need annotated data for training, annotations that are costly in time and human
resources. The annotation costs for clinical text is even more costly as the process must be carried out in a protected environment with
a limited number of annotators who must have signed confidentiality agreements. In this paper is therefore, a semi-supervised method
proposed, for automatically creating high-quality training data. The study shows that the method can be used to improve recall from
84.75% to 89.20% without sacrificing precision to the same extent, dropping from 95.73% to 94.20%. The model’s recall is arguably
more important for de-identification than precision.
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1. Introduction
An abundance of electronic health records is produced ev-
ery day. They possess valuable information for research
and future improvement of medical care. A great majority
will, however, never be re-used for research. This is partly
due to the presence of sensitive data. Sensitive data may re-
veal the identity of individual patients. Sensitive data also
restricts the possibility to re-use the valuable information in
electronic health records for research. Sensitive data must,
therefore, be removed to protect the integrity of patients.
Multiple efforts have been done to protect the integrity of
patients while making electronic health records usable for
research by removing personally identifiable information
in patient records (Velupillai et al., 2009; Stubbs et al.,
2017; Dernoncourt et al., 2017). Personally identifiable in-
formation may, for example, be personal names, addresses,
phone numbers, dates and locations. Standard methods for
de-identification is Named Entity Recognition by identify-
ing personally identifiable information and then removing
them (Meystre, 2015). The American HIPAA Privacy Rule
states that a health record is de-identified if eighteen types
of identifiers are removed from the record (HIPAA, 2003).
De-identification systems are designed to identify and
remove this personally identifiable information (Velupillai
et al., 2009; Stubbs et al., 2015).

The annotation process for supervised machine learning
methods is costly (Haertel et al., 2008). The annotation
costs for clinical text is even more costly as the process
must be carried out in a protected environment with
a limited number of annotators who must have signed
confidentiality agreements. Dernoncourt et al. (2017)
estimated, from numbers presented in (Neamatullah et al.,
2008)1, that manual de-identification of the clinic MIMIC
dataset, would require at least two annotators and a total

1Neamatullah et al. (2008) implemented a rule-based Deid-
system in the programming language Perl. The system obtained a
recall of 0.943.

of 5,000 hours to annotate the whole 100-million-word
dataset. Semi-supervised learning would, on the other
hand, enable the usage of unlabelled electronic health
records and possibly reduce annotation costs while im-
proving de-identification accuracy.

An approach for improving annotation speed is described
in Hanauer et al. (2013). The study included bootstrapping
and iterative pre-annotation to make annotation faster and
the annotation speed was doubled with preserved quality.
Lingren et al. (2013) similarly showed that pre-annotation
may save time, but from 13.85% to 21.50% for each en-
tity. Rehbein et al. (2009), however, found no conclusive
evidence that pre-annotation can speed up the annotation
process, but it can increase the quality.
Semi-supervised learning is a research area that covers
several sub-areas, for example: Active learning, pre-
annotation, bootstrapping, co-training and self-learning.
The goal of semi-supervised learning is to take advantage
of unlabelled data to extend the labelled data. The ap-
proach carried out in this article is semi-supervised learning
with self-training with machine annotated entities, studying
whether it can be an option to annotating more data.
In this paper, the research question addressed is: Is it pos-
sible to use semi-supervised learning to obtain more high-
quality training data?

2. Previous research
Self-training is likely the easiest method of using unlabelled
data and one of the first attempts of semi-supervised learn-
ing. Self-training essentially starts with building a single
classifier with labelled data, and then iteratively label un-
labelled data (Nigam and Ghani, 2000). The newly la-
belled predictions are combined with the actual training
data, treating the predictions as the truth and used to label
more unlabelled data (McClosky et al., 2006). Self-training
is normally not very effective. Since the classifier each time
uses its predictions to teach itself, there is a considerable
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risk that mistakes are reinforced throughout and amplified.

The Yarowsky Algorithm is an example of self-training,
which was initially used for word sense disambiguation
(Yarowsky, 1995). It makes the assumption that it is un-
likely for multiple occurrences of the same word to have
different meanings in the same discourse. This assump-
tion is used to select words with high confidence and then
adding words in the same discourse with the same sense to
the training data despite lower confidence.

Self-training has also been shown to improve results when
used for adapting data from one domain to another since it
does not rely as much on existing annotations (McClosky
et al., 2006). Wu et al. (2009) introduced a domain adap-
tive bootstrapping method with a selection criterion relying
on finding domain-specific and domain-independent non-
general instances which may work as a bridge between the
domains.

There are cases where self-training may lead to a substan-
tial deterioration of the accuracy in a system (Zhou et al.,
2012). If the unlabelled data favours one particular class
of data, the risk of over-fitting increases. Self-training also
likely to introduce noise, and with too much noise the clas-
sifier’s accuracy will deteriorate. There is also a risk that
the selected unlabelled data will not add more information,
leading to no improvements.

In theory, if the data size is enough the benefits of aug-
mented labelled data will over-weigh the noise introduction
(Zhou et al., 2012). It is, however, in practice close to im-
possible to estimate the required size as the exact hypoth-
esis space will be unknown. For that reason, it is neces-
sary to find the right data, which often is done by choosing
data which likely is labelled correctly. An overly conser-
vative model, however, risks not adding new knowledge.
Rosenberg et al. (2005) have applied self-training to object
detection systems with improvements over state-of-the-art
systems and benefits has also been seen for named entity
recognition (Kozareva et al., 2005).

Co-training is different from self-training in the sense that
it uses multiple classifiers with distinctive, different feature
sets with different views of the data. The predictions of
each classifier are used as an additional input to the other
classifier during each classifier. The intuition is that each
classifier provides extra, useful information to each other
while reducing the risk of amplified errors. According to
Blum and Mitchell (1998) co-training assumes that the two
views are individually sufficient for classification and that
the two views are conditionally independent of each other.
Later research argues that a weaker independence assump-
tion still holds (Dasgupta et al., 2002). A variation of this
is, for example, using different learning algorithms rather
than the same algorithm with different feature sets.

A study with active learning on the Stockholm EPR PHI
Corpus showed that selecting the most uncertain examples
resulted in lower predictive performance than random se-
lection or selecting the most certain examples (Boström
and Dalianis, 2012). Selecting the most certain examples
seemed to perform the best.

3. Methods and Data
3.1. Data
3.1.1. Stockholm EPR PHI Corpus
Stockholm EPR PHI Corpus2 consists of 98 patient records
in Swedish from five clinical units at Karolinska University
Hospital: Neurology, orthopaedia, infection, dental surgery
and nutrition containing approximately 200,000 tokens in
total (Dalianis and Velupillai, 2010). The corpus was man-
ually annotated by three annotators into 28 identifier classes
and is intended for training Named Entity Recognition for
de-identification systems (Velupillai et al., 2009). Some of
the 28 classes contained very few instances and therefore
were the 28 classes later merged into eighth conceptually
similar classes to be of practically use. This process is de-
scribed in (Dalianis and Velupillai, 2010). The eight classes
used in this study are: Age, Full date, Date part, First name,
Last name, Health care unit, Location, and Phone number.
The data only includes free text. The distribution is im-
balanced with roughly 3-4% of all tokens being part of a
personally identifiable entity and only 25% of all sections
includes at least one personally identifiable entity.
For this study the data from Stockholm EPR PHI Corpus
was divided into three sets: Training set (60%), develop-
ment set (10%) and test set (30%). The training set is
hereby referred to as L and the test set as E. Both of these
are manually annotated. The data in the training set and test
set are from different clinical units.
The labelled training data consists of 95,500 tokens from
the Stockholm EPR PHI Corpus. The data is from 2008
and includes patient records from 62 patients. The training
data uses electronic records from all clinical units except
the infection unit.
The labelled evaluation data consists of 54,700 tokens from
the Stockholm EPR PHI Corpus. The data is from 2008 and
includes records from 36 patients. The data comes from an
infection clinic.
10% of the data is used within the bootstrapping cycle to
determine the selection and stopping criterion. The data
consists of 20,488 tokens from a nutrition clinical unit.

3.1.2. Health Bank
The research infrastructure Health Bank3 (The Swedish
Health Record Research Bank) where also Stockholm EPR
PHI Corpus is contained, encompasses also a considerably
larger corpus with records from 512 clinical units from
Karolinska University Hospital from over two million pa-
tients (Dalianis et al., 2015). The whole corpus contains
over 500 million tokens and includes both structured and
unstructured information.
The unlabelled data used in this study is a subset of Health
Bank of 100,000 sentences with a total of around 2,000,000
tokens. The data comes from a collection of different clin-
ical units including cardiologist units, the language and
speech pathology clinic and orthopaedic units and is mainly
from 2008 and 2009. The unlabelled dataset contains 20
times more tokens than the training data. There may be an

2This research has been approved by the Swedish Ethical Re-
view Authority under permission no. 2019-05679.

3Health Bank, http://www.dsv.su.se/healthbank

http://www.dsv.su.se/healthbank
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overlap in clinical units between the labelled and unlabelled
data with the same medical professionals occurring in both
the unlabelled and labelled data.

3.2. Conditional Random Fields
Conditional Random Fields (CRFs) with linear chain is a
probabilistic framework for labelling and segmenting se-
quential data and was first introduced by Lafferty et al.
(2001). It predicts sequences of labels based on sequences
in the input. A set of features is typically defined to ex-
tract features for each word in a sentence. The CRF tries
to determine weights that will maximise the likelihood of
leading to the labels in the training data.
The marginal probability specifies the model’s confidence
in each label of an input sequence, without the regard of
the outcome other variables and can be used to measure a
models’ confidence in its predicted labelling (Sutton and
McCallum, 2012). This can be computed through Con-
strained Forward-Backward, described in Culotta and Mc-
Callum (2004).
The linear-chain Conditional Random Fields model is im-
plemented with sklearn-CRFSuite4.

3.3. Unigram Tagger
The unigram tagger is used as a baseline and is a vocabulary
based tagger. During training, the tagger adds every token
to its vocabulary together with its label. The system pre-
dicts labels based on which label a token has been assigned
to the most often. If the word has not been sen before it is
tagged as not being personally identifiable information.
The concept is the same as NLTK’s Unigram Tagger5. Al-
though this is implemented in Scikit-learn.
The model is used as a baseline to indicate how a simple
method would work and to enable comparison to other data
sets. The tagger is meant to somewhat indicate the difficulty
of the task.

3.3.1. Feature Set
The CRF is based on experiments with feature sets de-
scribed in (Berg and Dalianis, 2019) except for a few al-
tered regular expressions and no lemma or part of speech
information used.
Each token is, first of all, itself a feature. Further lexi-
cal features used are parts of words. It also uses ortho-
graphic information to identify capitalisation, punctuation,
pure numbers or a mix of numbers and letters. It also uses
regular expressions to identify dates and phone numbers as
well as binary dictionary features of whether a word ex-
ists in lists for first names, last names, hospitals and loca-
tions. Lexical information is also available for neighbour-
ing words.

3.4. Bootstrapping Cycle
3.4.1. Input
There are three data sets used in this study: The labelled set
L, the unlabelled set U and the labelled evaluation set E.

4Linear-chain CRF, https://sklearn-crfsuite.
readthedocs.io/en/latest/

5NLTK, Natural Language Toolkit, https://www.nltk.
org

Figure 1: Figure over the three different data sets: The la-
belled set L, the unlabelled set U and the labelled evalua-
tion set E.

The Stockholm EPR PHI Corpus is used for the labelled
sets L and E, and a subset of the text in Health Bank is
used for the unlabelled set U , see Figure 1. The extracted
unlabelled dataset is 20 times larger than the manually la-
belled training data.
Initially, only L is included in the training set. The training
set is used to train the CRF classifier. The trained classi-
fier is used to obtain machine labelled sentences L′ and the
confidence of the label for each token in the sentence. If the
label is above the set threshold for each token in a sentence,
the token is added to L. The CRF is then retrained with the
augmented set of both manually labelled and machine la-
belled sentences. This process of selection is repeated until
all unlabelled sentences are processed, no more data meets
the threshold or the F1 score has deteriorated for the devel-
opment set for n times. n is set to 3 in this case.

3.4.2. Selection metric
The selection metric used to rank and select classified un-
labelled instances for the next iteration is crucial to the per-
formance of self-training (Wang et al., 2008).
The method considers the uncertainty of the estimated la-
bels of the unlabelled data. The method assumes that the
labels with high conditional scores are more likely to be
true than lower scores. The added data is selected based
on two properties: High marginal scores for the chosen la-
bel combined with low marginal scores for the other labels.
The confidence threshold is decided based on the marginal
scores for the development set for each iteration. Differ-
ent marginal score thresholds are set for non-identifiable
and identifiable tokens. Since tokens belonging to identifi-
able classes are a minority in the dataset. The inclusion of
falsely labelled non identifying tokens are assumed to neg-
atively affect recall, while the inclusion of tokens falsely
labelled as identifying is assumed to primarily affect pre-
cision. The identifiable classes is a minority, and there-
fore likely to have lower confidence. As the focus is on
finding identifying information, the selection threshold for
these classes is therefore set separately from the threshold
for the nonsensitive information.

3.4.3. Simple self-training method
The self-training method with selection, S, is also com-
pared to a self-training method without selection, NS. All
automatically labelled data is included.

https://sklearn-crfsuite.readthedocs.io/en/latest/
https://sklearn-crfsuite.readthedocs.io/en/latest/
https://www.nltk.org
https://www.nltk.org
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3.5. Evaluation
The models are evaluated as a named entity recognition task
with micro-averaged recall, precision and F1 score. The re-
call is the ratio of correctly identified positive instances to
all the instances in the actual class. Precision is the ratio of
correctly identified positive instances to all the positive in-
stances. F1 is the weighted average of recall and precision.
Additionally, leakage scores are calculated. While recall
correlates with exposure of identifiable information, not all
recall errors cause this (Hirschman and Aberdeen, 2010).
The leakage measurement is used to measure the number
of identifiable terms not redacted in the de-identification
process. The measurement for leakage is the ratio of iden-
tifiable information identified as non-identifiable to all the
identifiable data. The leakage measurement used does not
take into account the specificity and privacy risk of the leak.
The leak of a patient’s phone number has the same weight
as a leak of "," in "Neurology Unit, Huddinge".

4. Result
As a first step, the training data was iteratively added 10%
at a time and evaluated on. As seen in Figure 2, an increase
in the recall can be seen when adding more manually la-
belled training data, but the precision decreases slightly af-
ter the seventh iteration. No changes can be seen for Age,
see Figure 3, after the second iteration where the first exam-
ple of Age is seen. The age expressions in the training data
only contain one example that does not follow the same
format, and it seems that in an early stage learns that for-
mat. The model’s ability to predict full dates does not either
seem to considerably improve with time. Most dates follow
the same pattern, which is distinctive from other number
patterns. The ability to predict Last Names does also not
change considerably for each iteration after a while. The
biggest improvements can be seen for Health Care Unit
and Location, where the model starts considerably lower
than for the other classes. These are also the classes with
the most variation in form and context. No organisations
are found. This is likely because there is only one instance
of an organisation in the training data.
Additionally, the Unigram Tagger is used as an additional
baseline. As can be seen in Table 1, the precision is overall
is 92.82%, while the recall is much lower at 44.55%. The
precision of the Unigram Tagger is generally high. Since
the tagger tags all previously unseen tokens as non-PHI,
the lower recall is expected.
In the self-training experiment, the precision decreased, as
can be seen in Table 3 compared to when training on only
manually labelled data. The recall is increased slightly
more than the precision is decreased, resulting in a higher
F1 score. The biggest drops in precision can be seen for Lo-
cation and First Name, with low increases in the recall in
comparison. There is a slight drop in precision for Health
Care Unit and Phone Number as well, but with increased
recall. The recall increases for Date Part, Last Name as
well, while it stays the same for Full Date and Age
Including automatically labelled data which meets the se-
lection criteria performs significantly different than training
on only manually labelled data according to McNemar’s
test (McNemar, 1947) with a Yates correction of 1.0. The

Figure 2: Micro-averaged results when iteratively adding
10% of L to training and then testing.

Figure 3: Recall for each class when iteratively adding 10%
of L to training and then testing.

Yates correction is used since McNemar’s test has an up-
wards bias, making results larger than they should be.
Comparing the self-trained model with a selection algo-
rithm in Table 3 and a self-trained model with no selection
algorithm presented in Table 4, the model with the selection
criteria performs marginally better. The models perform
similarly in regards to precision, while the model with the
selection criteria gains higher recall. There is, however, no
significant differences between using all the automatically
labelled data, NS, or with a selection criterion.
As can be seen in Table 5, there is an increase of tokens
labelled as identifiable between L and S. The biggest rel-
ative increase can be seen for the class Location, and the
smallest if for Phone Number. The next smallest increase
is for Health Care Units. Comparing the difference in la-
bels added for S and NS, a conclusion can be drawn that
these classes also are two classes linked to lower marginal
probability scores.

5. Error analysis
While there is not a great difference in precision for most
classes, there is a substantial decrease in precision for the
identification of location in the self-training model. There
is also a decrease for full dates.
While Location has low precision, no non-PHI is acciden-
tally labelled as sensitive data. Despite the increase of ex-
amples labelled with Location, only one more Location is
found. The issue is rather that health care units or part of
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Unigram
Tagger

Baseline trained
on labelled data L

Non-selection Selection

Precision 92.82% 95.80% 94.14% 94.20%
Recall 44.55% 84.93% 88.16% 89.20%
F1 76.29 90.04 91.05 91.63
Leakage 33.90% 12.84% 9.40% 8.16%

Table 1: Comparison of precision, recall, F1 and leakage for all four models. The Unigram Tagger is described in subsection
3.3. Training Baseline is the model with only manually labelled data from L, with results further presented in Table 2.
Selection is the semi-supervised model described in subsection 3.4, with results further presented in Table 3. Non-selection
(NS) is the model where all automatically data is included and is further described in Table 4.

Precision % Recall % F1
Age 100.00 64.52 78.43
Date Part 97.73 90.15 93.79
First Name 94.12 95.24 94.67
Full Date 95.83 97.87 96.84
Health Care Unit 95.01 72.88 82.49
Last Name 96.62 94.14 95.36
Location 78.12 80.65 79.37
Organisation 0.00 0.00 0.00
Phone Number 100.00 85.96 92.45
Overall 95.73 84.75 89.90

Table 2: Results from the token-based evaluation on the
model based on the model with only manually labelled data,
L.

Precision % Recall % F1
Age 100.00 64.52 78.43
Date Part 97.85 94.93 96.36
First Name 89.94 95.83 92.80
Full Date 97.18 97.87 97.53
Health Care Unit 92.57 80.87 86.32
Last Name 97.39 95.60 96.49
Location 70.27 83.87 76.47
Organisation 0.00 0.00 0.00
Phone Number 92.86 91.23 92.04
Overall 94.20 89.20 91.63

Table 3: Results from the token-based evaluation on the
model based on self-training with selection criteria, S.

Precision % Recall % F1
Age 100.00 64.52 78.43
Date Part 96.54 91.64 94.03
First Name 93.02 95.24 94.12
Full Date 98.58 98.58 98.58
Health Care Unit 91.38 79.37 84.95
Last Name 97.05 96.34 96.69
Location 75.00 87.10 80.60
Organisation 0.00 0.00 0.00
Phone Number 94.55 91.23 92.86
Overall 94.14 88.16 91.05

Table 4: Results from the token-based evaluation on the
model based on self-training without any selection criteria,
NS.

Used sets L S NS
Age 28 565 613
Date Part 328 5,984 6,725
First Name 589 7,779 10,416
Full Date 297 4,140 4,404
Health Care Unit 771 6,213 9,035
Last Name 627 7,995 11,184
Location 51 1,642 2,257
Phone Number 104 243 461
Overall 2,795 34,561 40,695

Table 5: The table presents the amount of annotated tokens
in the original dataset (L), as well as the amount in the au-
tomatically labelled dataset with thresholds (S) and without
thresholds.

health care units are mislabelled as locations. Since there
are few Location annotations, small classification differ-
ences affects the precision and recall scores higher than
for classes with more instances. The self-trained selection
model classifies two more Health Care Unit tokens as Lo-
cation and one more than the non-selection model. The
misclassified health care units are referred to by their lo-
cation, for example: "Schedule a return visit to Danderyd
for discussion", where Danderyd refers to Danderyd’s hos-
pital in Danderyd. The non-selection model finds 55 more
health care units than the baseline model, which may also
affect this. In the automatically identified set, these types
of references to Health Care Units are mislabelled as loca-
tions as well, which may cause further difficulty making a
distinction between them for the model trained.
Out of the 138 identifiable tokens which are not found to be
identifiable by the self-trained model with selection, 70%
belong to the Health Care Unit class. This class is the most
common class and the most variation with longer entities
and short forms. It is also the class with the least clear
boundaries. An example of this is for example "Urologen
på St Göran", which could both be "The Urology depart-
ment at St Göran" and "The urologist at St Göran". It is also
somewhat unclear where the boundary for being identify-
ing information should be set. In the automatically labelled
for the selection model, unidentified Health Care Units are
also included as non-PHI to a greater degree than for other
classes.
The self-training model does not change the prediction abil-
ity. There is only one case in the original training data
where an age n does not follow the format of ”n-åring”
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- so the model only learns to identify age by this.

6. Discussion
In de-identification research, the recall and precision are
occasionally compared with each other and it is said that
recall most often is more important than precision (Ferrán-
dez et al., 2012). Both these could, however, to some degree
be altered, even if they are dependent on each other. This
result does, however, to some degree indicate that it is pos-
sible to alter one without significantly harming the other. It
is necessary to discuss how the goal of de-identification dif-
fers from the goal of named entity recognition in general.
There is a need to further investigate how low-precision
de-identification affects text mining research. Obeid et al.
(2019) showed that de-identification with a system with
demonstrated precision of 93% and a recall of 76% does
not impact other text mining tasks. If the effect is low, it is
an argument that techniques for increasing recall and sac-
rificing precision might be viable in situations where the
desired recall is not fully met. Examples of this may not
only be methods like the one proposed in this paper, but
ensemble methods favouring recall over precision as well.
There have been previous discussions of how much scrub-
bing is enough, and where an accuracy of 95% is discussed
(Stubbs et al., 2017). There is, however, still a need for
some other type of risk assessment that takes into account
the specificity and uniqueness of the information that is not
found. All personally identifiable information is not equally
identifying. A system which finds and masks 95% of the
identifiable information but leaks the phone number of one
patient’s husband may breach patient privacy to a greater
degree than a system that finds only finds 85% of the iden-
tifiable information, but where the information not found
consists of general health care units, ages under 90 and date
parts.
The use of self-training with unlabelled data does improve
the system compared to using either a smaller amount of
manually annotated medical data or a lot of out of domain
data, as was carried out in Berg and Dalianis (2019). This
may be due to the amount of identifiable information in the
automatically labelled dataset combined with the domain
similarities, or that the automatically labelled data complies
with the guidelines in the Stockholm EPR PHI dataset to a
greater degree than the general text source or smaller do-
main data.

7. Conclusion and Future Research
In this paper the research question addressed was whether it
was possible to use semi-supervised learning to obtain more
high-quality training data. The answer is: Yes, adding au-
tomatically labelled data based increases the model’s abil-
ity to correctly identify identifiable information, without
substantially affecting the precision. No difference could
however be seen between including automatically labelled
data in the training data and iteratively adding based on
marginal probability scores. This paper also wants to high-
light the need for measurements and techniques adapted for
de-identification, beyond general techniques for named en-
tity recognition.

We presented a method to machine annotate 40,000 tokens
and preserve the high-quality of the produced data to be
used as new training data. To manually annotate 40,000
tokens takes from 60 to 180 hours depending on if one has
access to a pre-annotation method or not. It is a question
of future research to investigate the quality of the machine
annotated data and how it compares to human labelled data.
The method adds a large amount of additional data, without
considering which data is the most useful. In future work,
investigating which data is necessary to include and not
might prove important. Another possible direction would
be to investigate other methods which do not require anno-
tated data, including other semi-supervised techniques as
co-training, or utilising transfer learning and word embed-
dings.
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