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Abstract
We perform a comparative study for automatic term extraction from domain-specific language using a PageRank model with different
edge-weighting methods. We vary vector space representations within the PageRank graph algorithm, and we go beyond standard
co-occurrence and investigate the influence of measures of association strength and first- vs. second-order co-occurrence. In addition,
we incorporate meaning shifts from general to domain-specific language as personalized vectors, in order to distinguish between
termhood strengths of ambiguous words across word senses. Our study is performed for two domain-specific English corpora: ACL and
do-it-yourself (DIY); and a domain-specific German corpus: cooking. The models are assessed by applying average precision and the
roc score as evaluation metrices.
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1. Introduction
Terms are linguistic expressions which characterize a do-
main, i.e., words and phrases which are typical of a docu-
ment or a corpus from a specific domain (in contrast to gen-
eral language usage). The automatic recognition of terms
represents an important basis for further Natural Language
Processing (NLP) tasks, such as thesaurus creation, auto-
matic translation, and, in general, for domain knowledge
acquisition and comprehension. Approaches for automatic
term extraction can broadly be classified into four cate-
gories: linguistic (Justeson and Katz, 1995; Basili et al.,
1997), statistical (Schäfer et al., 2015), hybrid (Frantzi et
al., 1998; Maynard and Ananiadou, 1999) and machine-
learning approaches (da Silva Conrado et al., 2013). Re-
cently, word vector and deep learning approaches have
emerged (Zadeh and Handschuh, 2014b; Amjadian et al.,
2016; Wang et al., 2016).
A niche of approaches is represented by graph-based sta-
tistical methods. In particular, we only find a handful of
ideas for how to exploit the PageRank algorithm for auto-
matic term extraction. The underlying motivation is that
graph-based ranking algorithms –relying on graphs whose
vertices represent the vocabulary of a corpus and whose
edges represent some relationship between the words in the
vocabulary– have the potential to inform about the relative
importance of vertices in a graph, and that important ver-
tices are likely to represent terms. For example, Mihal-
cea and Tarau (2004) used co-occurrence counts as edge
weights in a graph; Khan et al. (2016) used embedding
similarity for the same purpose. Zhanga et al. (2017) incor-
porated semantic relatedness via a personalized PageRank
algorithm for extracting terms from the corpus.
In this study, we present a comparison of vector space
representations within a PageRank graph algorithm for
automatic term extraction. We go beyond standard co-
occurrence and investigate the influence of measures of as-
sociation strength (Evert, 2005) and first- vs. second-order
co-occurrence (Rapp, 2002; Sahlgren, 2006; Schlechtweg

et al., 2019) as basis for connecting vocabulary words in
domain-specific and general-language graphs with varying
types of edge weights. Our study is performed for the
domain-specific ACL corpus and a do-it-yourself (DIY)
corpus for English, and a domain-specific German cooking
corpus. For the German term extraction we further integrate
meaning shift values suggested in a previous study (Hätty
et al., 2019) to create personalized representations and to
thus distinguish between termhood strengths of ambiguous
words across word senses.

2. Related Work
The term extraction in Mihalcea and Tarau (2004) was
probably the first approach to apply the PageRank algo-
rithm. In a graph-based ranking model the terms extracted
from the natural language text with a co-occurrence value
within an n-sized window are represented as an undirected
graph with nodes as single terms and co-occurrence values
as unweighted edges. In their implementation the larger the
text, the more terms were found.
Personalized PageRank (PPR) biases the graph network by
using seed terms which enhance the process of the random
walk. For example, De Groc et al. (2011) use a boot-
strapping procedure which selects seed terms provided by
the user and creates search queries that find the appropriate
documents. The PPR algorithm is used to extract the terms
from the documents. The process is iterative until it gets
the highest ranking terms. Figure 1 shows the complete
process of the algorithm. Florescu and Caragea (2017)
hypothesized that adding keyword positions improves the
term extraction, because intuitively the most important key-
words tend to be further ahead in the dataset. Their graph
is represented by words (nodes) and co-occurrences (edge
weights). The teleport vector in PPR is biased over the first
position of the keyword in the document (i.e. value 1/po-
sition initialized and normalized over all); frequent occur-
rences were averaged.
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Khan et al. (2016) extend the work of (Mihalcea and Tarau,
2004) using frequency-based methods such as the C-value
(Frantzi et al., 2000) and tf-idf (Salton and McGill, 1983)
for ranking the terms according to their relevance. Figure 2
shows the baseline model of the Term Ranker. It first finds
all the noun phrases with a specific part-of-speech pattern
and then creates an initial ranking of term candidates us-
ing a combined measure of the C-value and tf-idf (as ter-
mhood measures). It generates the term map by finding
similar/overlapping terms, e.g. Nozzle Guide Vane, Guide
Vane, Outlet Guide Vane, to later on merge similar nodes in
the graph. The embedding is learnt from skip-grams using
SWTs and MWTs, after preprocessing the MWTs as one
word, e.g. Nozzle_Guide_Vane.

Figure 1: Components of the GRAWTCQ algorithm
(De Groc et al., 2011).

Figure 2: TermRanker graph based on re-ranking approach
(Khan et al., 2016).

Existing ATE methods are extended by incorporating se-
mantic relatedness. Zhanga et al. (2017) evaluated 13
state-of-the-art term extraction methods and re-ranked the
already existing term candidate ranking. They compute the
semantic relatedness semrel(w,z) for a word w based on
pairs of w and other words z:

semrel(w,z) = cosine similarity of two word embdeddings

relrank(w) = returns similarity ranking of all words from
term candidate set to target word w, based on semrel

The nodes in the graph represent the words from the term
set connected with undirected edges. All the x top-ranked
words from relrank(w) are connected with the target word
w via edges. The approach incorporates the word embed-
dings into PPR to compute semantic importance scores for
candidate terms from the semantic-relation graph.
The final term ranking is the medium of Base-TE score and
the new PageRank/semantic relatedness score. The seman-
tic importance score consists of two parts: (i) On the doc-
ument level the PageRank scores are calculated and added
for all occurrences of the word in the corpus; and (ii) on
the corpus level semantic relatedness is calculated on word
vectors trained on the whole corpus.

3. Motivation
General motivation. The PageRank algorithm has been
used for term and keyphrase extraction in the past, but up
to date there is no comparison of different edge-weighting
methods. So far, Mihalcea and Tarau (2004) used co-
occurences while Khan et al. (2016) and Zhanga et al.
(2017) used embedding similarity.
Personalization/teleport-vectors have been used to "bias"
the PageRank algorithm in the correct direction. Florescu
and Caragea (2017) for keyphrase extraction used tele-
port vectors which contain {1/first_position_in_document}.
The assumption is that keyphrases occur early in the docu-
ment. Zhanga et al. (2017) created a set of seed terms and
assigned a word to 1 if it belonged to the set of seed terms,
and 0 otherwise.

Motivation for shift values. We created a new approach
to bias the personalization vector by placing more weight
on univocal words: we do this by using shift values as
weighting. By predicting meaning shifts from general to
domain-specific language in the cooking domain, we get
a gradual score with clearly univocal words at one end of
the range, and ambiguous or highly versatile words at the
other end. We find univocal terms at the first end of the
range; the randomly crawled general-language corpus con-
tains some small amount of cooking content as well, and
domain-specific and univocal cooking terms receive a low
meaning shift value. We wanted to exploit this effect for
the PageRank algorithm: by using the shift values within
the personalization vector, we could bias the PageRank al-
gorithm accordingly. With our method, it is biased more
strongly for univocal words and less strongly against am-
biguous or highly versatile words. Since we use a context-
based approach for edge weighting, it should be beneficial
that the algorithm gets less deviated from the correct paths.
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4. Task and Data
Our study uses PageRank values for term extraction from
a domain-specific corpus in comparison to a general-
language corpus. The main aim of this paper is to per-
form a comparative study of the domain-specific and gen-
eral corpus using different edge-weighting methods and us-
ing meaning shift predictions as values for the personaliza-
tion vector in order to bias the network.

4.1. Corpora
DIY is an English domain-specific corpus extracted
from do-it-yourself instructions on an English Bosch-
empowered DIY homepage.1

Figure 3: Terms in DIY corpus as word cloud.

COOK is a German domain-specific corpus. We crawled
cooking-related texts across several categories (recipes,
ingredients, cookware and cooking techniques) and the
cooking recipe websites kochwiki.de and Wikibooks
kochbuch2.

Figure 4: Terms in COOK corpus as word cloud.

ACL is an English corpus consisting of publications in the
domain of computational linguistics. The corpus was cre-
ated by (Zadeh and Handschuh, 2014a).

We chose the three domain corpora COOK, ACL and DIY to
cover two languages and dissimilar domains, with one sci-
entific (ACL) and two non-scientific (DIY & COOK). The
technical terms are referred to as domain-specific terms.
Furthermore, registers are diverse, the corpora cover formal
technical text as well as user-written text.

1An example instruction can be found here: https:
//www.bosch-do-it.com/za/en/diy/knowledge/
project-guides/wooden-deck-73489.jsp

2de.wikibooks.org/wiki/Kochbuch

Figure 5: Terms in ACL corpus as word cloud.

4.2. Data Pre-processing
We applied the following pre-processing steps:

• Removal of stopwords.

• Removal of pairs with character length ≤2.

• Removal of pairs with co-occurrence counts of 1.

• Removal of words with special characters.

4.3. Gold Standards and Evaluation
We used three term extraction gold standard datasets:

DIY: The gold standard is created by looking up the words
of the DIY corpus in a set of term list from the web.34

We allowed overlap with words in term lists, and to some
extent tried to find the best size of overlap and minimal
word length with reasonable results.

COOK: The gold standard is created by looking up those
1,125 words in PONS, Langenscheidt, Wiktionary and
Wikipedia that were obtained from computing meaning
shift for all the nouns, verbs and adjectives in the cooking
corpus with frequency greater equal to 50. If a word
entry contained "Gastronomie", "Kochkunst", "Kochen" or
"Kochkunst and Gastronomie" (depending on tags in the
respective dictionaries) it was considered a cooking term.

ACL: The gold standard created by (Zadeh and Handschuh,
2014a). It consists of single and multiword expressions
taken from ACL publications. We confine to single words
for our work. Furthermore, the gold standard distinguishes
between two kinds of terms, which we cumulate to a single
term class.

The gold standard datasets of the DIY, ACL, and
COOK corpora are used to assess the correctness of our
model predictions by applying average precision and the
roc score as evaluation metrices.

Table 1 shows the binary class distribution in the gold stan-
dard datasets which represents 0 (non-term) as class 1 and
1 (term) as class 2.

3https://www.bosch-do-it.com/gb/en/diy/
knowledge/encyclopaedia/

4https://en.wikipedia.org/wiki/Power_tool

 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/wooden-deck-73489.jsp
 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/wooden-deck-73489.jsp
 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/wooden-deck-73489.jsp
de.wikibooks.org/wiki/Kochbuch
 https://www.bosch-do-it.com/gb/en/diy/knowledge/encyclopaedia/
 https://www.bosch-do-it.com/gb/en/diy/knowledge/encyclopaedia/
 https://en.wikipedia.org/wiki/Power_tool
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Dataset 0 1
ACL 12,676 1,033
DIY 2,461 336
COOK 600 525

Table 1: Gold standard data distribution.

5. PageRank: Graph Construction and
Edge Weighting

5.1. Graph Construction
The PageRank algorithm (Page et al., 1999) is used to com-
pute the importance of the nodes in a graph connected with
the edges. The algorithm works on the principle that each
page holds a certain weight which depends on the links (for-
ward and backward links) to that page. The PageRank PR
of a given page A is computed as follows.5

PR(A) = (1−d)+d(PR(T1)/C(T1)+. . .+PR(Tn)/C(Tn))

where PR(A) refers to PageRank for page A, d denotes
the dangling factor which can be set between 0 and 1,
C(A) denotes the number of outgoing edges from page A
and T1 . . . Tn are the pages pointing to page A.

Graph edges are created by word co-occurrences, i.e. an
edge is created between two words if they co-occur within a
window of words. We use matrix M to represent this, where
the value of each matrix cell Mi,j represents the number of
co-occurrences of the word wi and the context cj: #(wi,cj).
We set the concrete window size to 20, i.e. computing the
co-occurrence value within the window of size 20 between
the word wi and context cj.

5.2. Edge Weighting
For edge weighting, we use the following measures:

Point-wise Mutual Information (PMI). In PMI represen-
tations the co-occurrence counts in each matrix cell Mi,j are
weighted by the mutual information of target wi and con-
text cj reflecting their degree of association. The values of
the transformed matrix are

M i,j
PMI = log

(
#(wi, cj)

∑
c #(c)

#(wi)#(cj)

)

Local Mutual Information (LMI). In LMI representa-
tions the co-occurrence counts in each matrix cell Mi,j

are weighted by the local mutual information of target wi

and context cj reflecting their degree of association (Evert,
2005). The values of the transformed matrix are

M i,j
LMI = #(wi, cj) ∗ log

(
#(wi, cj)

∑
c #(c)

#(wi)#(cj)

)
5www.cs.princeton.edu/~chazelle/courses/

BIB/pagerank.htm

Cosine Similarity. In cosine similarity representations,
each matrix cell is weighted by the cosine distance of tar-
get wi and context cj word vectors reflecting their degree of
association. The values of the transformed matrix are:

M i,j
Cosine =

~wi ~ci√
~wi

2
√

~ci
2

We used pre-trained fastText6 vectors for German as basis.

5.3. Shift Values
The shift values were used to bias the network by forming
personalization vector. The personalization vector was cre-
ated as:

PV [v] =

{
float(abs(1− float(SD[v]))), if v in SD.

0, otherwise.
(1)

where PV is the personalization vector of the type dictio-
nary, and SD is the dictionary of a word and its shift value.

5.4. Degree of Association
We further distinguish between two degrees of word
association resulting from how matrix M is created.

First-order Association: The matrix M is constructed
between the nearby words within a n-sized window, as
described above.

Second-order Association The matrix M is constructed
between context words of nearby words within a n-sized
window.
The idea for second-order co-occurrence vectors was first
introduced by Schütze (1998) for word sense discrimina-
tion and has since then been extended and applied to a
variety of tasks (Rapp, 2002; Sahlgren, 2006; Schulte im
Walde, 2010; Zhuang et al., 2018; Schlechtweg et al.,
2019). The basic idea is to represent a word w not by a vec-
tor of the counts of context words it directly co-occurs with,
but instead by a count vector of the context words of the
context words. The second-order co-occurrence provides
the list of words which are contextually similar but not di-
rectly related within the corpus, i.e. context words sharing
common list of words within a given threshold, therefore
allowing to measure contextual similarity between higher
order co-occurrences within the corpus. The second-order
co-occurrence vectors are considered less sparse and more
robust than first-order vectors (Schütze, 1998).

6. Results and Discussion

6.1. A Comparative Study
We perform a comparative study for different edge-
weighting techniques using the PageRank algorithm.

6https://fasttext.cc/docs/en/
crawl-vectors.html

www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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6.2. Baselines

Table 2 shows our baseline results for each domain which
was computed by shuffling the target words and using the
resulting random ranking to compute average precision
(AP) and the ROC score. We did three runs and averaged.
We can see that the results are much better for COOK in
contrast to DIY and ACL for average precision. We relate
this to the fact that the COOK gold standard is more bal-
anced for terms and non-terms than DIY and ACL.

6.3. Edge-Weighting Experiments

For these experiments, we computed the PageRank values
by using different edge weights in order to find out which
weight performs best. These first experiments were con-
ducted without biasing the network by employing a person-
alization vector. Table 3 shows the resulting scores for all
datasets with different edge weights. As a first observa-
tion, all results clearly outperform the respective baselines.
In general, we find that co-occurrence and cosine behave
similarly in their results, as do PMI and LMI. For cook-
ing and DIY co-occurrence and cosine perform better than
PMI and LMI, while for ACL it is the other way round. The
preferred weighting method does not seem to be language-
dependent.
As it was the case for the baselines, we also see a perfor-
mance drop from COOK to DIY and ACL for the PageR-
ank results. We attribute these differences to imbalance re-
garding terms vs. non-terms in the datasets. To analyse
this assumption for the decrease in performance, we calcu-
lated P@k (’precision at k’) where k denotes the number of
terms. By computing P@k, we want to reduce the impact
of length and imbalance of the gold standards. In Table 5
we can see that as the value of k increases for the corpora,
the performance of the model decreases, which is expected.
But also none of the results for the top k for DIY and ACL
reach the results for COOK. Thus, the worse results for DIY
and ACL cannot solely be attributed to imbalance. Our best
guess is that the drop in performance then might be due to
a difference between English and German. Since German
contains a lot of closed compounds, i.e. one-word expres-
sions that are composed of several simpler words, a lot of
more specific terms are contained in the gold standard and
the corpus. These specific terms might be less ambiguous
or generic, and they might have less diverse contexts and
are thus easier to identify for PageRank.

6.4. Shift-Value Experiments

In the last experiment, we used meaning shift predictions as
values for the personalization vector in order to bias Page
Rank towards less ambiguous terms. Table 4 compares the
results for the COOK dataset with and without shift values
for all the edge-weighting methods. We find an overall ben-
eficial effect, all results improve when using the meaning
shift values. We conclude that the meaning shifts are effec-
tive in biasing the network. Applying the meaning shift per-
sonalization vector has the highest effect on LMI weight,
which achieved lowest scores without shift values. Cosine
and co-occurrence still are the best-performing measures.

Baseline
Dataset AP ROC
COOK 0.50 0.52
DIY 0.15 0.52
ACL 0.14 0.51

Table 2: Average baseline results for all three datasets.

6.5. First-Order vs. Second-Order Association
The results from Table 6 illustrate the performance mea-
sures for different edge-weighting methods using second-
order co-occurrence vectors, in comparison to Table 3 re-
lying on first-order co-occurrence vectors. We observe
a slight performance drop compared to first-order co-
occurrence.
We also compared the second-order co-occurrence vectors
to the first-order vectors regarding meaning shift predic-
tions: Table 7 compares the results for the COOK dataset
with and without shift values for all the edge-weighting
methods using second-order co-occurrence vectors, in con-
trast to the respective results with first-order co-occurrence
vectors in Table 4. We see an improvement in performance
for the COOK dataset using second-order co-occurrence
vectors, so we conclude that integrating the meaning shifts
is effective with both first-order and second-order associa-
tions.

7. Conclusion
We presented a systematic comparison of term extraction
variants using the PageRank model with different edge-
weighting approaches. Results on the COOK corpus were
found to be far better in constrast to the DIY and ACL
corpora, which at first we assumed to happen because
the COOK gold standard is more balanced regarding the
term/non-term proportions than the two English gold stan-
dards.
In a first set of experiments, co-occurrence and cosine per-
formed better for COOK and DIY in comparison to LMI
and PMI. The imbalance in the gold standard was evalu-
ated using P@K (’precision at k’). The results were worse
for DIY and ACL across k, so we concluded that the drop
in performance could be related to differences between En-
glish and German, e.g., because German contains many
closed compounds that are potentially less ambiguous than
simplex words and thus easier to identify for PageRank.
In a second set of experiments, we used meaning shift pre-
dictions as values for personalization vectors to bias PageR-
ank over less ambiguous terms. We achieved an uplift in the
performance measure demonstrating that the use of mean-
ing shifts can effectively bias the network.
We further investigated the influence of association on
performance by comparing first-order co-occurrence and
second-order co-occurrence vectors, and saw that the use of
meaning shift predictions can effectively improve the per-
formance measure for both association types.
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Co-occurrence Cosine PMI LMI
AP ROC AP ROC AP ROC AP ROC

COOK 0.65 0.68 0.65 0.68 0.57 0.59 0.57 0.59
DIY 0.22 0.57 0.22 0.57 0.15 0.52 0.15 0.52
ACL 0.16 0.54 0.16 0.55 0.22 0.59 0.22 0.59

Table 3: Evaluation scores for all datasets using different edge-weighting methods and first-order co-occurrence.

COOK Co-occurrence Cosine PMI LMI
AP ROC AP ROC AP ROC AP ROC

Without shift values 0.65 0.68 0.65 0.68 0.57 0.59 0.57 0.59
With shift values 0.67 0.69 0.67 0.69 0.63 0.65 0.70 0.69

Table 4: Performance evaluation with and without shift values for COOK and first-order co-occurrence.

COOK DIY ACL
P@50 0.82 0.26 0.32
P@100 0.79 0.24 0.27
P@300 0.66 0.20 0.18
P@500 0.60 0.16 0.14
P@1000 0.50 0.14 0.14

Table 5: Precision at k (P@k) for five segments (k=50,100,300,500,1000) on all datasets.

Co-occurrence Cosine PMI LMI
AP ROC AP ROC AP ROC AP ROC

COOK 0.64 0.68 0.63 0.67 0.56 0.59 0.54 0.57
DIY 0.21 0.60 0.21 0.60 0.20 0.60 0.20 0.60
ACL 0.15 0.58 0.15 0.59 0.24 0.59 0.24 0.59

Table 6: Evaluation scores for all datasets with different edge-weighting methods using second-order co-occurrence.

COOK Co-occurrence Cosine PMI LMI
AP ROC AP ROC AP ROC AP ROC

Without shift values 0.64 0.68 0.63 0.67 0.56 0.59 0.54 0.57
With shift values 0.72 0.72 0.72 0.72 0.71 0.69 0.69 0.67

Table 7: Performance evaluation with and without shift values for COOK and second-order co-occurrence.
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