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Abstract

In this paper, we provide a dataset that gives visual grounding annotations to recipe flow graphs. A recipe flow graph is a representation

of the cooking workflow, which is designed to understand the workflow from natural language processing. Such a workflow will increase

its value when grounded to real-world activities, and visual grounding is a way to do so. Visual grounding is provided as bounding

boxes to image sequences of recipes, and each bounding box is linked to an element of the workflow. Because the workflows are also

linked to the text, this annotation gives visual grounding with workflow’s contextual information between procedural text and visual

observation in an indirect manner. We subsidiarily annotated two types of event attributes with each bounding box: “doing-the-action,”

or “done-the-action”. As a result of the annotation, we got 2,300 bounding boxes in 272 flow graph recipes. Various experiments showed

that the proposed dataset enables us to estimate contextual information described in recipe flow graphs from an image sequence.

Keywords: Procedural Text, Bounding Box, Flow Graph, Visual Grounding

1 Introduction

Procedural texts are suitable for the target of natural lan-

guage understanding (NLU) because they are goal-oriented

descriptions and we can almost define the understanding

of their goals. Some studies have proposed the framework

of understanding procedural texts with graphs, which

can represent the entire workflow (Mori et al., 2014;

Jermsurawong and Habash, 2014; Kiddon et al., 2015).

These frameworks would be helpful for real-world systems,

such as smart kitchen (Hashimoto et al., 2008) and cooking

robot (Bollini et al., 2013), to understand the context of

these workflows and execute next actions. Therefore, it is

essential to ground visual observations (images or videos)

with procedural texts.

Visual grounding is one of the solutions to help computers

to understand which objects are aligned with textual

descriptions. In the previous studies, they targetted the

pair of general texts and visual observations. MSCOCO

(Lin et al., 2014), Flickr30k (Plummer et al., 2015), and

YouTube-BoundingBox (Real et al., 2017) are typical

datasets for such tasks. They reported that annotating

bounding boxes with a textual description helps computers

to know which objects they have to pay attention to for

image captioning (Xu et al., 2015; Cornia et al., 2019),

visual question answering (VQA) (Fukui et al., 2016), and

some other visual grounding tasks (Huang et al., 2017;

Bojanowski et al., 2015; Zhang and Lu, 2018). Compared

with such general visual grounding tasks, a dataset with

procedural texts is differentiated by an additional goal of

understanding the context information, i.e., a model should

consider the entire workflow of a procedural text. We call

this task contextual visual grounding.

In this background, this paper focuses on the domain of

cooking recipes and provides a new dataset that has vi-

sual grounding annotation of contextual information rep-

resented in recipe flow graph (r-FG) (Mori et al., 2014),

which can represent a structured workflow described in a

procedural text. Figure 1 shows an overview of our anno-

tation scheme. Given a procedural text with its image se-

quence and flow graph, annotators put a bounding box of

an object in an image, which is linked to a node of the flow

graph. This annotation enables us to link visual objects to

contextual information directly. Through the process, as a

subsidiary contribution, we found that visual objects repre-

sent roughly in either of the following two events: “doing-”

and “done-the-action.” In the dataset, we also provide at-

tribute labels for these events. For example, in the “step 1”

in Figure 1, the chef is just dicing the broccoli, whereas the

chef has done the dicing action in the “step 2” of Figure 1.

To make it obvious whether an action to a visual object is in

performance or has already been performed, we annotated

each bounding box with an event attribute.

As a result of the annotation, we built an r-FG bounding box

(r-FG-BB) dataset, which consists of 2,300 bounding boxes

in 272 r-FGs. In the experiments, we confirmed that, with

our dataset, we could obtain a model that grounds bounding

boxes with nodes in a flow graph, which gives a connection

between the bounding boxes of images, while classifying

event attributes correctly.

Our dataset allows contextual visual grounding research.

Grounded caption generation is a typical usage of our

dataset, where the pairs of a node in the flow graph



4276

Figure 1: An overview of our annotation.

Concept tag Meaning Frequency

F Food 12.37

T Tool 3.59

D Duration 0.73

Q Quantity 0.74

Ac Action by the chef 13.21

Af Action by foods 2.67

Sf State of foods 3.03

St State of tools 0.31

Total – 36.65

Table 1: Recipe named entity (r-NE) tags and frequencies

per recipe in our r-FG-BB dataset.

and bounding boxes help a model understand which re-

gion they have to pay attention to at decoding a sentence.

One may leverage the pairs for multimodal state track-

ing (Yagcioglu et al., 2018; Amac et al., 2019) by tracing

nodes via arcs in the flow graphs.

2 Recipe Flow Graph Corpus

The language part of our r-FG-BB dataset is compatible

with the r-FG corpus (Mori et al., 2014). The r-FG cor-

pus consists of cooking recipe texts (or simply “recipes”

hereafter) annotated with flow graphs connecting important

terms in the texts. Our r-FG-BB dataset is an extension con-

necting some of the important terms to bounding boxes in

the image attached to each step in the text. In this section,

we explain cooking recipe texts and flow graphs of the r-FG

corpus.

2.1 Cooking Recipe Text

A recipe describes instructions for a dish. The left part of

Figure 1 shows an example in Japanese with its English

translation. A recipe has a sequence of steps, and a step

consists of instruction sentences. The recipes in the r-FG

corpus are randomly selected from a dataset consisting of

recipes downloaded from the recipe hosting service Cook-

pad1. In addition to texts, Cookpad allows users to attach

an image to each step to explain it better (see the image se-

quence column in Figure 1 for example). In our r-FG-BB

dataset, we capitalize on these characteristics.

2.2 Directed Acyclic Graph Representation

In a recipe, the order of the instructions is not fully but only

partially specified. For example, a chef needs to dice car-

rots before boiling them but does not need to dice pota-

toes to boil carrots. In this case, the action “dicing carrots”

has an order relationship with the action “boiling carrots,”

but not with the action “dicing potatoes.” Moreover, the

diced carrots and boiled carrots are identical. A directed

acyclic graph (DAG) is suitable for representing such rela-

tionships. The r-FG is a DAG whose nodes correspond to

important terms (word sequences) with a type in the recipe.

The arcs represent the relationships between two nodes. All

the nodes are connected indirectly to a single special node,

root, corresponding to the final dish. Thus a meaning of a

recipe in the r-FG corpus is represented as a rooted DAG.

2.2.1 Nodes

The nodes of an r-FG are the important terms appearing in

the sentences with a type. Table 1 lists the types and their

1https://cookpad.com/ (Accessed on 2019/Nov/25)
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Arc label Meaning Frequency

Agent Action agent 2.58

Targ Action target 14.50

Dest Action destination 5.65

F-comp Food complement 0.44

T-comp Tool complement 1.31

F-eq Food equality 2.59

F-part-of Food part-of 3.25

F-set Food set 0.26

T-eq Tool equality 0.23

T-part-of Tool part-of 0.45

A-eq Action equality 0.58

V-tm Head of a clause for timing 1.15

other-mod Other relationships 5.23

Total – 38.21

Table 2: Arc labels and their frequencies per recipe in our

r-FG-BB dataset.

frequencies per a recipe in the r-FG-BB dataset. An im-

portant term is a sequence of words annotated with a type

among a pre-defined set. This definition is similar to that

of named entities (NE) except for the type set. Thus in the

r-FG corpus, it is called recipe NE (r-NE). Each node of a

flow graph corresponds to an r-NE in the text. As we de-

scribed above, there is a special node, root, corresponding

to the completed dish. In Figure 1, the root is the node

whose r-NE is “/ready to eat/Af.”

Our r-FG-BB dataset extends the r-FG corpus by annotating

bounding boxes in the images. We assume that each step in

the recipes of our dataset has an image. We annotate some

objects in the image with a bounding box and a link to the r-

NE in the corresponding step. As a first trial we limited the

r-NE types into F (Food), T (Tool), and Ac (Action by the

chef) among eight types listed in Table 1. The reason why

we excluded the others is that they are difficult or almost

impossible to be recognized from an image. In addition,

the statistics in Table 1 indicate that the three types occupy

approximately 79.6%. Thus we decided to take these three

visually obvious types, F, T, and Ac, leaving others for a

future challenge.

2.2.2 Arcs

An arc between two nodes indicates that they have a certain

relationship. The type of relationship is denoted by a label

of the arc. Table 2 lists the arc labels and their frequencies

per a recipe in our r-FG-BB dataset. Unlike an arc in a de-

pendency parsing, an arc in an r-FG may connect two nodes

in different sentences. For example, in Figure 1, the r-NE

node “boil” in step 1 and “eggs” in step 3 are connected by

the F-eq arc indicating that the eggs in step 3 are identical

to the result of the action “boil the eggs hard”.

In our r-FG-BB dataset, all the bounding boxes are con-

nected directly or indirectly by arcs in the r-FG. This char-

acteristic distinguishes our r-FG-BB dataset from other ex-

isting visual datasets.

3 Dataset Annotation Standard

In this section, we explain our annotation framework in de-

tail. As mentioned in Section 1, we performed two types of

Figure 2: Annotation examples.

annotations: bounding boxes with nodes in the flow graph

and event attributes with bounding boxes. We describe

these annotations in the subsequent sections.

3.1 Bounding Box Annotation

Similar to other visually annotated datasets, we annotate

some objects in images with a bounding box. The edges

of a bounding box are parallel to the vertical or horizontal

edge of the image (assumed to be a rectangle). A bound-

ing box, specified by two corner points, is the smallest area

covering the target object completely. In our r-FG-BB, we

limited the target objects into those having a corresponding

r-NE in the flow graph, that had been manually annotated

to a recipe. We also annotate each bounding box with a link

to the corresponding r-NE. And some bounding boxes may

be linked to the same r-NE because the object can be mul-

tiple or separated in the image. Thus the relationship from

bounding boxes to r-NEs is so-called one-to-many. These

links are the source of all the interesting points of this work.

For example, there are two bounding boxes contouring the

eggs in the image at the top left of Figure 2 and they are

connected to a single r-NE “eggs.” By the linguistic anno-

tation in the r-FG part, we can say many things about the

relationships of this object with others.

A node of type F has a tendency to be linked to bound-

ing boxes for unprocessed ingredients (see Figure 2). Here,

“unprocessed ingredient” indicates a food item to which the

chef has not performed any action yet (thus diced potatoes

and grilled chicken is not “unprocessed”). In some cases,

processed food is specified by a noun phrase correspond-

ing to some bounding boxes. A node of type T should be

linked to the bounding box of a tool. We also annotate tools

appearing only partially in an image with a bounding box

spreading to the edge of the image. Different from F and T,

the bounding box of an Ac is not defined in a straightfor-

ward way. It can be a bounding box of the tool to be used

or that of the processed food, which shows the result of the

action Ac.

3.2 Event Attribute Annotation

In addition to the link between an Ac and a bounding box,

we annotate the link with an attribute indicating that the
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Figure 3: Annotation screen of developed web tool.

image shows an on-going action (Acing ) or a completed one

(Aced ). Note that this attribute is only for Ac. We call this

an event attribute. For example, at the top right in Figure 2,

the link between the action “Dice” in the text below and

the blue bounding box should have an event attribute Acing
indicating that the action is on-going. And at the bottom

right, the link between the action “Cut” in the text below

and the blue bounding box would have the attribute Aced
that indicates that the action is completed. In some cases, it

is unclear whether the action is on-going or completed. We

allow an annotator to label such a case with Acunc .

3.3 Annotation Web Tool

To facilitate annotation, we developed a web tool. Figure 3

shows a screenshot. On the left-hand side, the tool shows

an image corresponding to a step. On the right-hand side,

the tool shows all the steps of a recipe with all F, T, and Ac

nodes highlighted with a color depending on the type.

The annotator checks all r-NEs from the first to the last

in the step whose image is shown on the left-hand side

whether the image shows the corresponding object of the

focused r-NE or not. If it shows the object, the annotator

draws its bounding box in the image. The tool allows the

annotator to adjust the box by moving or rescaling it. The

tool also has a function to delete a bounding box.

After annotating a bounding box, the annotator connects it

with a link to the node in the flow graph. If the node is

an Ac, the annotator is forced to select one event attribute

from three categories (Aced , Acing , and Acunc) listed in the

pull-down menu.

A typical case for Acunc is an instruction “/Add/Ac salt to

boiling water” with an image of boiling water only. From

the image, it is almost impossible to judge if the salt has

been added or not yet. The label Acunc allows the annotator

to avoid making a difficult decision.

4 Annotation Statistics

As the recipes for our r-FG-BB dataset, we selected, from

the r-FG corpus, those having an image to each step. As a

result, we had 70 recipes. To increase the number of recipes

in our corpus, we also selected 202 recipes randomly from

those consisting of 3 to 10 steps in the Cookpad Image

#Steps #Sent. #r-NEs #Words #Char.

#Leaves #Non-Leaves

4.97 7.34 36.65 113.99 173.91

13.48 23.16

Table 3: Per-recipe statistics of our r-FG-BB corpus of 272

recipes.

F T Ac Total

Agreement rate 0.81 0.88 0.76 0.79

Table 4: Agreement rate between two annotators

Dataset (Harashima et al., 2017) under the same condition.

The r-FG for each recipe was annotated carefully by the

same annotators as the r-FG corpus. Combining the above

two sources, we obtained 272 recipes and their r-FG an-

notations. Table 3 shows the statistics of the r-FG part of

our r-FG-BB dataset. Then two annotators drew bounding

boxes in the images of these recipes and connected them to

r-NEs.

In this section, we first report the agreement rates between

the two annotators decomposing the annotation into bound-

ing boxes, selections of r-NEs connected to them, and event

attributes. Then we describe the procedure we have exe-

cuted to build our r-FG-BB dataset considering the agree-

ment rate. Finally, we show its statistics.

4.1 Agreement Rate

We calculated the agreement rates of r-NEs and bound-

ing boxes (selection problems) like other image datasets.

The agreement rate is defined as the intersection over union

(IoU) calculated by the following formula:

IoU(SA, SB) =
|SA ∩ SB |

|SA ∪ SB |
, (1)

where SA and SB are the sets of annotations by the anno-

tator A and B, respectively.

For an evaluation of event attribute annotation (a classifica-

tion problem), we calculated the confusion matrix.

4.1.1 r-NE

In the r-NE case, an element of the set S is an r-NE selected

to connect to bounding boxes. We calculated the agreement

rate of selected r-NEs between two annotators for each type

and in total.

Table 4 shows the result. We see that the agreement rate is

highest for T and lowest for Ac. The reason is that tools

(T) are solid and do not change the shape, but the object

corresponding to an Ac tends to be processed food, which

is sometimes difficult to be identified completely. We see

that the total IoU of 79% can be seen relatively high to build

a dataset.

4.1.2 Bounding Box

In the case of bounding boxes annotation, an element of the

set S is an area specified by the bounding box. We first

calculated the pixel-wise IoU for each pair of the bound-

ing boxes annotated by the two annotators. We limited the

bounding boxes to those connected to an r-NE selected by

both the annotators. In some cases, an annotator gives more
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Figure 4: Event attribute confusion matrix between two an-

notators.

F T Ac (Acing , Aced ) Total

#r-NEs 0.16 1.28 2.44 ( 0.62, 1.82) 3.88

#BBs/#r-NEs 2.00 2.00 2.28 ( 2.59, 2.18) 2.18

Table 5: Numbers of r-NEs connected to bounding boxes

(BBs) per recipe and numbers of bounding boxes per r-NE.

than one bounding box corresponding to the same r-NE.

Thus we calculated IoU scores of all the combinations of

the bounding boxes connected to the same r-NE. Then we

calculate the average IoU.

The average IoU was 0.772. In the computer vision

community, researchers build their datasets with bound-

ing boxes that have IoUs larger than 0.5 (Su et al., 2012;

Papadopoulos et al., 2017). Therefore, we can say that

many annotated bounding boxes are suitable for the dataset.

4.1.3 Event Attribute

As we described, if the connected r-NE type is Ac, the an-

notator chooses one event attribute among Acing , Aced , and

Acunc . We limited the Acs to those selected by both the an-

notators. Since the numbers of total annotations by the two

annotators are the same, we calculated the confusion ma-

trix. Figure 4 shows the result. As we see from the table,

87% (= 859/990) of the event attributes agreed. In terms of

Acunc , there are very few tags selected by each annotator.

The most frequent attribute that two annotators agreed is

Aced . This may be because the recipe authors need to clean

up their hands to use the camera and from processed foods,

it is obvious that the action has been completed.

4.2 Dataset Construction

After the annotation, we applied the following two filtering

processes to construct our r-FG-BB dataset.

1. We selected pairs of an r-NE and bounding boxes from

the annotation result only when the two annotators are

in agreement. As a result, 79.3% of the annotated r-

NEs are extracted as shown in Table 4. Then, we fil-

tered out the pairs of an Ac and bounding boxes when

its event attribute is Acunc .

2. We further filtered out pairs of an r-NE and bounding

boxes if the IoU of the bounding boxes is over 0.7.

Finally, we obtained 2,300 pairs of an r-NE and bounding

boxes for our r-NE-BB dataset consisting of 272 recipes.

Table 5 shows the numbers of r-NEs connected to bounding

boxes per recipe and its average numbers of the bounding

boxes. The bounding boxes from the two annotators are

counted independently. Hence, some regions are double-

counted. In this table, the numbers of Acing and Aced are

counted only when the two annotators are in agreement. We

see that the number of F is very small because raw ingredi-

ents are rarely photographed.

5 Experimental Evaluation

To investigate the usefulness of our dataset, we propose

three tasks based on its most interesting characteristics:

symbol grounding, bounding box linking prediction, and

event attribute classification. In this section, we define these

tasks, give a preliminary solution to each one, and report the

experimental results.

5.1 Symbol Grounding

5.1.1 Task Definition

Contextual visual grounding is a visual grounding task that

requires a model to understand contextual information de-

scribed in a procedural text. Given a bounding box in an

image and the corresponding step to the image, the task is

to select an r-NE (F, T, or Ac) in the step. Formally, let a

step be W = (w1, w2, . . . , wn, . . . , wN ), where wn is the

n-th word and N is the number of words in the step, and the

r-NEs in the step be R = (r1, r2, . . . , rk, . . . , rK), where

K is the number of r-NEs in the step. The goal of this task

is to select one r-NE r̂k among R given a bounding box and

the word sequence of the step corresponding to the image

W . To investigate whether the flow graph is effective or

not, we allow some models to refer to the flow graph of the

entire recipe.

5.1.2 Proposed Model

To build a model for the symbol grounding task, we have

to consider that the step W contains each r-NEs R. Thus

we adopted an embedding-based approach, which enables

us to calculate the similarity between all combinations of

the bounding box and candidate r-NEs. The r-NE that has

the highest score is selected to be the answer.

Figure 5 shows an overview of our approach. (i) We con-

vert the bounding box and candidate r-NEs into feature vec-

tors. For the bounding box, the image encoder calculates

the image vector v. Similarly for the corresponding step

W the textual encoder outputs the sequence of word em-

bedding vectors W = (w1,w2, . . . ,wn, . . . ,wN ). Then,

we calculate the embedding vector of the k-th r-NE as the

average of the vectors of the words consisting that r-NE:

R = (r1, r2, . . . , rk, . . . , rK). (ii) For models referring

to the flow graph, we concatenate two vectors to rk. One

is the preceding context vector r
p
k calculated as the aver-

age of the vectors of all the r-NEs in-coming to the k-th

r-NE in the flow graph. The other is the following con-

text vector r
f
k calculated as the average of the vectors of

all the r-NEs to which the k-th r-NE is out-going in the

flow graph. If the k-th r-NE is a leaf or the root, we set

random values to all the elements of r
p
k or r

f
k , respec-

tively. These vectors are expected to represent the context

information. Thus, the enhanced r-NE vectors are given
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Figure 5: An overview of our symbol grounding model.

We used the pre-trained neural networks for the image and

textual encoder.

random baseline Recall Precision F1

F 0.023 0.250 0.042

T 0.091 0.039 0.054

Ac 0.429 0.221 0.291

Total 0.189 0.174 0.181

LSTM w/o flow graph

F 0.250 0.250 0.250

T 0.480 0.461 0.471

Ac 0.634 0.662 0.648

Total 0.580 0.592 0.586

LSTM w/ flow graph

F 0.125 0.250 0.167

T 0.772 0.654 0.708

Ac 0.612 0.603 0.607

Total 0.608 0.602 0.605

BERT w/o flow graph

F 0.000 0.000 0.000

T 0.720 0.750 0.734

Ac 0.762 0.716 0.739

Total 0.733 0.717 0.725

BERT w/ flow graph

F 0.000 0.000 0.000

T 0.782 0.750 0.766

Ac 0.785 0.761 0.772

Total 0.734 0.750 0.742

Table 6: Result of the symbol grounding experiment.

as uk = concat(rpk, rf , r
h
k), where connat(·) is the vec-

tor concatenation function. When we do not use the flow

graph representation, we skipped this phase. Thus r-NE

vectors are given as uk = rk. (iii) We trained the two

neural networks, f from the textual branch and g from

the image branch, jointly to calculate the common map-

ping space from the r-NE vectors and the image vectors.

The goal is to train these networks to embed a given r-

NE/bounding box pair at closer positions while others in

the distance. To achieve this, we used the triplet margin

loss (Balntas et al., 2016) with the distance function as the

cosine distance.

5.1.3 Results

To perform this experiment, we used all the pairs of an

r-NE and a bounding box in our r-FG-BB dataset. We

Figure 6: An outline of our bounding box linking classi-

fier. The image encoder and textual encoder are the same

models to Section 5.1.

split the dataset into 80% for training, 10% for valida-

tion, and 10% for test. As the image encoder, we used

ResNet-50 (He and Sun, 2016) pre-trained with ImageNet

(Deng et al., 2009), which is one of the state-of-the-art

image classifiers. We used the classifier after removing

the last layer with softmax; thus, the output layer di-

mension is 2048. For the textual encoder, we prepared

two choices: LSTM and BERT (Devlin et al., 2019). We

trained them using 0.5 million recipes from the Cookpad

Dataset (Harashima et al., 2016). For training LSTM, we

used the tokenizer KyTea2 (Neubig et al., 2011). We re-

placed words appearing less than three times with an un-

known word symbol to have a 17,982-word vocabulary

for the LSTM. The perplexity was 29.16. For the BERT-

based model, we employed a pre-trained BERT model on

the Wikipedia corpus. Then, we fine-tuned the model with

recipes in the same manner as the LSTM training. The vo-

cabulary size of BERT is 32,000 after converting words into

sub-word units (Sennrich et al., 2016).

Table 6 shows the results. Independently from the textual

encoder, methods referring to the flow graph performed bet-

ter than those without flow graph reference. This suggests

that the context information from the flow graph helps them

model link a bounding box in an image and a named entity

in the corresponding text. We also see that BERT-based

models performed better than those based on LSTM. This

is consistent with other tasks in natural language process-

ing.

5.2 Bounding Box Linking Prediction

5.2.1 Task Definition

In our r-FG-BB dataset, some bounding boxes are con-

nected through the flow graph. Thus we can try an inter-

esting novel task: bounding box linking. We defined the

task as a classification task to predict whether there is a

link or not between a given pair of bounding boxes in two

subsequent bounding boxes.

5.2.2 Proposed Model

Figure 6 shows an overview of our proposed approach. The

inputs are two bounding boxes in subsequent images cor-

responding to the k-th and (k + 1)-th steps. (i) Similar to

2http://www.phontron.com/kytea/
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Baseline Accuracy

Random 0.483

Cosine similarity (α = 0.8) 0.533

Proposed method

Image 0.667

Image + LSTM 0.583

Image + BERT 0.817

Table 7: Accuracies of bounding box linking classification.

the previous task, we converted the bounding boxes into the

image vectors, v1andv2. Then we calculated the step vec-

tors, s1ands2, as the average vectors of the words in the

step. (ii) We concatenated them and obtain the feature vec-

tor u = concat(v1,v2, s1, s2). Finally, the feature vec-

tor u is fed to a classifier h, which is a fully-connected

two-layer network followed by a sigmoid activator. In the

classification phase we take argmax to output whether there

is a link (y = 1) or not (y = 0). In the training phase, we

minimized the binary cross-entropy loss with the Adam op-

timizer (Kingma and Ba, 2015).

5.2.3 Results

To perform this experiment, first, we split the r-FG-BB

dataset into 80% for training, 10% for validation, and 10%

for test. Then we extracted pairs of bounding boxes from

each of two subsequent steps. Finally we checked whether

the two bounding boxes have a link or not in the flow graph

to prepare the label (y = 1 or 0).

In this experiment, we employed two baselines: random

and cosine similarity. The random baseline investigates

whether the link label is biased or not. In “cosine simi-

larity,” the model calculates the cosine similarity between

the image vectors v1 and v2 and judges that there is a link

if the score is higher than a threshold α, which were set to

0.8. Note that two image vectors are L2 normalized.

Table 7 shows the results of these two baselines and the

proposed methods. The result of the random baseline shows

that the task is a difficult binary classification problem with-

out the model. The accuracy of the “cosine similarity” is

slightly higher than that of the random This indicates that

this task is not so simple to be able to be answered correctly

without textual information. Compared with the baselines,

the proposed models could predict bounding box linking

more correctly. In the proposed method, the model learned

with only images achieved the highest precision, but that

learned with texts using BERT in addition to the images

achieved the highest recall and F1. In contrast, the result

of the model using LSTM was even worse than that trained

with only images. This indicates that a sophisticated textual

representation is necessary to solve this task.

5.3 Event Attribute Classification

5.3.1 Task Definition

Each bounding box has two event attributes, “doing the ac-

tion” and “done the action”. It is important for a computer

to be able to distinguish between these two from visual and

textual information because real-world systems require a

model to know the status of actions. Our dataset has an

event attribute for each bounding box connected to an ac-

Figure 7: An overview of our event attribute classification

model. The encoders are also the same model to the symbol

grounding models described in Section 5.1.

Accuracy

Image 0.750

+ LSTM w/o flow graph 0.839

+ LSTM w/ flow graph 0.893

+ BERT w/o flow graph 0.839

+ BERT w/ flow graph 0.875

Table 8: Accuracies of event attribute classification.

tion node Ac. The labels are Acing for on-going action and

Aced for a completed one. Thus our dataset allows us to test

methods for this classification as well. We formulated this

problem as a binary classification task. Given a bounding

box connected to Ac along with the step, we train mod-

els to classify whether the action is on-going or completed

(y = Acingor Aced ).

5.3.2 Proposed Model

Figure 7 shows an outline of our event attribute classifi-

cation model. (i) Through the encoders, we get the image

embedding vector v and the r-NE vector r. (ii) If the model

is allowed to refer to a flow graph, we concatenated the pre-

ceding and following context vectors rp, rf to the r in the

same manner as Section 5.1. We get the feature vector by

conncatenating them: u = concat(v, rp, r, rf ). Then, we

provide it to a fully-connected two-layer network followed

by a sigmoid activator. The network outputs whether the

event attribute is Acing or Aced . In the training phase, we

searched for the parameters that minimize the binary cross-

entropy loss by Adam optimizer. (Kingma and Ba, 2015).

5.3.3 Results

To perform this experiment, we extracted pairs of an Ac

and bounding box whose event attributes is Acing or Aced .

Then, we split the data into 80% for training, 10% for val-

idation, and 10% for test. Table 8 shows the results of

the models. Before this experiment, we anticipated that

the model could tell them apart only from image informa-

tion because object appearance is significantly different be-

tween visual information annotated with Acing and Aced .

The model could distinguish them to a certain extent (accu-

racy: 75%), but the result revealed that incorporating tex-

tual encoders such as BERT and LSTM contributed to a

higher score. From this result, we can safely say that lin-
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guistic information is effective for event attribute classifi-

cation. Compared with the models without reference to the

flow graph, the models with it perform better with both tex-

tual encoders, LSTM and BERT. This result indicates that

the flow graph representation also helps the model to solve

this task.

6 Application

Our r-FG-BB dataset has many potential applications. In

this section, we describe two typical usages of our dataset.

6.1 Grounded Image Captioning

Grounded image captioning is an essential problem in the

computer vision and natural language communities. In

this field, to output grounded caption, many researchers

have incorporated the attention mechanism into a model

(Xu et al., 2015; Cornia et al., 2019). This attention mech-

anism encourages models to know which objects and re-

gions they have to pay attention to when decoding words,

and it helps them to generate visually grounded captions.

Our dataset provides researchers with pairs of an r-NE

and bounding boxes, which leads a model to decode vi-

sually grounded words correctly. Moreover, we would

like to emphasize that the text part is not a general text

but a procedural text. Procedural text generation from

an image sequence is a prominent area because it re-

quires a model to consider the context and the output

coherency (Nishimura et al., 2019; Chandu et al., 2019).

Thus these studies focused on generating grounded cap-

tions: incorporating a structure into the model implicitly

(Chandu et al., 2019) and preferentially decoding impor-

tant terms (Nishimura et al., 2019). Our dataset acceler-

ates this research because pairs of an r-NE and bounding

boxes help a model output these terms, considering the en-

tire workflow using the flow graph.

6.2 Multimodal State Tracking

State tracking, which detects changes of an object and

its identicality in a text, is an essential problem for

NLU. Recently, procedural texts are becoming the target

for NLU researchers because their understanding requires

a model to anticipate the implicit causal effects of ac-

tions on entities (Bosselut et al., 2018; Tandon et al., 2018;

Mishra et al., 2018; Yagcioglu et al., 2018). Some re-

searchers tried to build a dataset for procedural text un-

derstanding (Tandon et al., 2018) for the scientific domain,

and other researchers expand them to multimodal version

(Yagcioglu et al., 2018) for the cooking area. Some re-

searcher has proposed a dataset for the understanding of

procedural texts using a “grid,” which represents changes

of an object state using a table format (Tandon et al., 2018;

Mishra et al., 2018). Our dataset provides a flow graph

of a procedural text, which represents an entire workflow

as a rooted DAG, and bounding boxes in an image con-

nected to nodes in the flow graph. Our experimental results

showed that the model could predict which textual descrip-

tion is related to a bounding box and whether there exists

a linking between bounding boxes or not. Thus, sequential

bounding boxes and a flow graph will be useful for mul-

timodal state tracking. It would be interesting to build a

QA dataset, which requires a model to understand not only

flow graphs but also bounding boxes. For example, given

an image showing mixing ingredients in a bowl, the ques-

tion is, “What ingredients are used in it?”. To answer this

question correctly, the model must understand the flow of

all the ingredients and their visual locations.

7 Conclusion

In this paper, we presented details of our r-FG-BB dataset.

Its language part is procedural texts, each of which is anno-

tated with a flow graph whose nodes correspond to impor-

tant terms in the text and are connected to form a DAG. The

visual part of the dataset is bounding boxes in the images

attached to each text. The bounding boxes are connected to

the nodes of the flow graph, allowing the dataset users to

have contextual information of the visual objects.

We performed various experiments. The results showed

that the proposed simple models could ground bounding

boxes with nodes in a flow graph, which gives a linking

between the bounding boxes over images while classifying

event attributes correctly. Therefore, our dataset is useful

for contextual visual grounding.

With our dataset, one can try contextual visual grounding

research using interesting triplets: bounding boxes, proce-

dural text, and its flow graph. This combination would be

effective for understanding the entire workflow of a proce-

dural text, grounding contextual visual information.
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