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Abstract
Out-of-vocabulary words are still a challenge in cross-lingual Natural Language Processing tasks, for which transliteration from source to
target language or script is one of the solutions. In this study, we collect a personal name dataset in 445 Wikidata languages (37 scripts),
train Transformer-based multilingual transliteration models on 6 high- and 4 less-resourced languages, compare them with bilingual
models from (Merhav and Ash, 2018) and determine that multilingual models perform better for less-resourced languages. We discover
that intrinsic evaluation, i.e comparison to a single gold standard, might not be appropriate in the task of transliteration due to its high
variability. For this reason, we propose using extrinsic evaluation of transliteration via the cross-lingual named entity list search task (e.g.
personal name search in contacts list). Our code and datasets are publicly available online.
Keywords:Natural Language Processing, Transliteration, Named Entity Transliteration, Cross-Lingual, Multilingual, Transformer

1. Introduction
Transliteration, being a common way to adapt the out-of-
vocabulary words, such as named entities of any types, from
one language (script) to another, is an important component
in many language processing tasks. A popular way to ap-
proach transliteration is to consider it a specific case of ma-
chine translation. Transliteration faces ambiguity problem
due to large amount of language-specific phonetic varia-
tions. Another challenge, mostly specific for rare or less-
resourced languages, lies in the field of data collection.

In this study1, we apply a Transformer-based solution for
multilingual transliteration as a core technology, and eval-
uate it in a cross-lingual named entity list search task. The
contributions in this paper are summarized as follows:

• We collect and release a multilingual personal name
dataset obtained fromWikidata, which covers 445 lan-
guages and 37 scripts. Scripts for basic pre-processing
and train, dev, test split are supplied.

• We propose multilingual transliteration models which
outperform bilingual models presented in (Mer-
hav and Ash, 2018)2 in English→target lan-
guage transliteration experiment on multiple lan-
guage pairs: English→Hebrew, English→Japanese,
English→Katakana3, English→Korean. We also test
the models on 4 new less-resourced languages (Belaru-
sian, Odia, Punjabi, Telugu) and obtain better results
with multilingual models than with bilingual.

• We provide a linguistic analysis of the transliteration
model predictions and reveal significant task-specific
problems related to transliteration variability.

1Current article repository: https://github.com/perspective-
Alex/NE-transliteration-and-search.

2(Merhav and Ash, 2018) article repository:
https://github.com/steveash/NETransliteration-COLING2018/

3Detailed information on the choice to separate out personal
names Katakana is provided in Section 3.2

• We propose the cross-lingual named entity list search
task, prepare use case-specific evaluation datasets, and
use the devised transliteration model to solve it.

The rest of the paper is organized as follows: Section 2 gives
the review of the previous work in the field of enabling mul-
tilingual translation/transliteration and using it as a search
sub-task. Section 3 introduces our methods of collecting
and processing data and gives a detailed description of the
named entity transliteration datasets we are releasing with
this paper. Section 4 describes our experimental setup, pro-
vides in-depth information on the conducted experiments
in multilingual named entity transliteration, introduces the
evaluation metrics, and combines the results of our experi-
ments and transliteration error analysis. Section 5 presents
named entity list search task definition, datasets, evaluation
metrics and results. Finally, Section 6 presents our conclu-
sion and determines the direction for future work.

2. Related Work
First, it is necessary to distinguish transliteration from other
similar NLP tasks it can be easily confused with, which are
transcription and translation.

Transcription is traditionally approached by researchers as a
part of a speech-to-text problem, involving the transforma-
tion from the spoken language (sound) to its written form
through a standardized sound representation (e.g. Interna-
tional Phonetic Alphabet). Thus, the goal of transcription
is to capture phonetic or phonemic form of the word. For
example, phonetic transcription of the English word tree is
[tôi:] using IPA.

Translation may be defined as a task of conveying the orig-
inal meaning of a word in a given language by the lexical
means of another language. Returning to the previous ex-
ample, the translation for the English word tree into Russian
is дерево [djerjIv@]. Note that phonetic representations of
the English and Russian words are completely different.
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Transliteration is the process of text conversion from one or-
thographic system, or script, to another (Rosca and Breuel,
2016), often, but not always, including the phonetic trans-
lation of the words in a source language to the equivalent
words in the target language (Le and Sadat, 2018). The En-
glish tree (Latin script) could be transliterated into Russian
as три [trji] (Cyrillic script). Transliteration could be con-
sidered a special case of translation, even though several
transliteration systems can be adopted by a single language.
For example, Revised Romanization, McCune-Reischauer
and Yale Romanization are different transliteration systems
representing Korean language in Latin script and English
language specifically. For named entities, the distinction
between translation and transliteration is especially thin be-
cause phonetic forms of proper names in source and target
languages are similar, apart from the cases of historically es-
tablished name equivalents (e.g. the Pope John Paul I’s name
in the Latin language is Ioannes Paulus I). We define our
task as transliteration following the tradition of shared tasks
within the Named Entity Workshops (Chen et al., 2018).

The earliest works in the field of automatic transliteration
involved the pre-defined set of rules designed to convert the
phonetic representation of proper nouns from one script to
another (Knight and Graehl, 1997), following the example
of rule-based machine translation. This approach, however,
was inefficient in theway of handling language ambiguity. In
the early work (Joshi et al., 2008) transliteration and trans-
lation were separated to achieve better performance in the
task of cross-lingual location search; a combination of these
was used to generate candidates for fuzzy search across the
list of multilingual entities of ”Location” type, covering the
number of languages in different scripts. As shown in the
mentioned paper, this approach helps to achieve maximum
coverage despite transliteration ambiguity. (Jacquet et al.,
2016) reports on a cross-lingual resource-based approach
to the task of linking named entity acronyms and their ex-
tensions across languages. As only Roman-script languages
were used, the number of possible common acronymsmakes
it possible to use string similarity distance for monolingual
clustering. Translation probabilities obtained by a statisti-
cal machine translation model are used to handle entities
having different written forms across languages via cross-
lingual cluster aggregation.

With the rise of neural network-based methods in Natural
Language Processing, a number of novel techniques have
been proposed; for instance, a Neural Machine Translation
(NMT) model proposed by (Johnson et al., 2016) intro-
duces the idea of handling the translation between multiple
languages by a single model; multilinguality is enabled by
introducing a target language token at the beginning of the
input sentence. Adding multilinguality boosts the model
performance on less-resourced languages compared to the
corresponding bilingual models. However, further exper-
iments on multilingual NMT (Arivazhagan et al., 2019)
show that for high-resourced languages multilingual mod-
els perform slightly worse than bilingual models. In (Roller
et al., 2018) many-to-one translation enabled by sharing the
encoder across multiple languages is an optional step in the
task of cross-lingual biomedical term search.

Finally, (Merhav andAsh, 2018) introduce the newest Trans-
former method to the named entity transliteration task and
prove its effectiveness by comparing its performance with
an LSTM model and a traditional WFST model (Novak et
al., 2012). Additionally, (Merhav and Ash, 2018) release a
dataset consisting of named entities of person-type for 7 lan-
guage pairs. We are building on the work done in (Merhav
and Ash, 2018) by enabling multilinguality and expanding
the target language pool.

3. Data

3.1. Wikidata
Wikidata entity labels in different languages were used to
construct train, dev and test sets of personal names. Lan-
guage labels were extracted from the latest at the time json
Wikidata dump4. Only instances of humans were consid-
ered. The resulting dataset consisting of Wikidata IDs for
human entities with corresponding names in different lan-
guages is available in the article repository. Below is a brief
description of the dataset.

Altogether, there are more than 5 million entries of human
entities with labels in 445 languages in our dataset. On aver-
age, entities have 11 labels in different languages (median =
7, std = 18.63). The minimal number of labels is 0 (for 433
entities), and the maximum is 413 (17 entities). Unfortu-
nately, the large number of different language labels in most
cases is achieved by copying English (or other prominent
language) labels for all other languages, as is the case with,
for example, Claude Vaucher, for whom all 413 labels are
exactly the same.

If we count only labels which differ from one another at
least by one symbol, the numbers are much less impressive:
1.87 different labels per entity (median = 1, std = 2.15).
Jesus Christ has the largest number of different labels —
184. This presents a challenge in constructing datasets for
the transliteration task: we cannot take a particular language
label at face value and need to at least check whether the
label is in the corresponding script. This step was performed
for all experimental languages in this article.

On average, languages have labels for 130K people (median
= 22,903, std = 501,017.6), however the variation is huge.
Six languages are represented by only one label; there are
more than 4 million labels in English, which is the largest
language in Wikipedia. The list of the 30 largest languages
by the number of labels for human entities is presented in
Table 4 (Appendix A).

Transliteration is particularly interesting when the source
and target languages are represented by different scripts.
Transliteration within one script is still reasonable. For ex-
ample, within the Latin script, Jesus Christ (English) is
Ježiš Kristus in Slovak, and within Cyrillic, Iсус Хрыстос
in Belarusian and Иисус Христос in Russian. However,
the Slovak version of the Latin script is readable to English
speakers, and Russian is readable to Belarusian. Therefore,

4https://dumps.wikimedia.org/wikidatawiki/entities/, October
2019.
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efforts in transliteration have mostly been focused on con-
verting one script into another.

We used Unicode character ranges5 to check which scripts
were used in the collected Wikidata entity labels. Alto-
gether, there are more than 800 combinations of different
scripts and character types — apart from writing system
symbols themselves, also punctuation, numbers, diacritics
and all kinds of extensions and supplements. The number
of entity labels for 30 largest scripts is presented in Table 5
in Appendix A. Combinations of scripts (e.g. Latin, CJK6

and Hiragana inMonday満ちる) were not counted. Scripts
with less than 100 entity labels include Unified Canadian
Aboriginal Syllabics (82), Cherokee (42), NKo (9), Tifinagh
(4), Meetei Mayek (3), Mongolian (1) and Bopomofo (1).

The script counts illustrate the problemof usingWikidata la-
bels for transliteration to and from less-resourced languages.
For example, although there are nominally more than 20K
entity labels for Cherokee language, only 42 of them are in
Cherokee script — the rest are in Latin. At the same time,
if a model were devised for transliteration from Latin script
(English) to Cherokee, the data could be enriched greatly.
In this article, we focus on less sparse languages and scripts,
and leave this challenge for future researchers.

3.2. Transliteration Dataset
For the transliteration task, we took existing datasets
of paired (source language→target language) single-word
named entities from (Merhav and Ash, 2018) for desig-
nated high-resource languages—Arabic (ar), Chinese (zh),
Hebrew (he), Japanese (ja), Katakana (kat), Korean (ko),
Russian (ru). Names written in Katakana syllabary were
analyzed separately, as well as inside the Japanese dataset,
due to expected significant difference between translitera-
tion quality for logographic characters (e. g. Chinese hanzi),
syllabic (Japanese kana), and alphabetic (Latin letters) char-
acters. From now on we refer to Katakana as ’language’ for
the sake of uniformity and brevity. We chose not to augment
the (Merhav and Ash, 2018) datasets with newly acquired
data for the purpose of direct comparison. To evaluate our
models on less-resourced languages, we extracted paired
(English→target language) personal names from the Wiki-
data dataset in four languages with relatively few human
entity labels: Belarusian (be), Odia (or), Punjabi (pa), Tel-
ugu (te). Basic pre-processing was applied to names in all
experimental languages:

• As a method of alignment, only pairs of personal name
labels with the same number of words in English and
the target languages were used.

• If a label contained a comma, everything before the
comma was moved to the end of the label, and the
comma itself was deleted (relevant for the surname,
first name label format).

• Various punctuation marks were deleted from the
paired labels.

5https://www.unicode.org/Public/UCD/latest/ucd/NamesList.txt.
6Chinese, Japanese, Korean and Vietnamese characters.

• Korean (Hangul) syllabic blocks were split into jamos
with jamotools.

The splits between train (64%), dev (16%) and test (20%)
datasets are presented in Table 1.

4. Neural Approach to Transliteration
Transliteration task, as mentioned above, could be consid-
ered a sequence-to-sequence transformation task. Thus we
apply the Transformer architecture (Vaswani et al., 2017)
following (Merhav and Ash, 2018). Transformer was im-
plemented using Tensorflow Keras API.

In this architecture, the model is represented with a set of
encoder and decoder layers. Encoder layers get a sequence
of characters (letters for alphabetic or syllables for syllabic
writing systems) of a named entity and transform it into
internal representation which is fed into a decoder. Final
transliteration is produced from the last decoder layer one
character at a time considering previous timesteps. As usual
in such tasks, the model minimizes negative log likelihood
loss.

Themodel has a certain number of hyperparameters. Firstly,
there are architecture-oriented ones: number of layers in en-
coder and decoder, number of heads used in each layer’s
multi-head attention component, and hidden size. Secondly,
there are training-oriented hyperparameters, such as learn-
ing rate schedule and level of regularization through dropout
and "l2" weights regularization. Dropout is used in three dif-
ferent places excluding repeated encoder or decoder layers:
after the embedding layers (embedding dropout), after
the attention layers (attention dropout), and inside fully
connected layers (relu dropout).We use double-size hid-
den dimension inside the fully connected layer.

Our experiments were not purposefully focused on hyperpa-
rameter optimization. We varied 2 levels of regularization,
3 levels of learning rate value (with 5 times difference)
used with Adam optimizer (Kingma and Ba, 2014) (de-
fault for Tensorflow implementation parameters: β1 = 0.9,
β2 = 0.999, ε = 1e−08) with the following update strategy:
1 epoch of linear warmup and further constant value. We
also tried different number of layers and attention heads.
Setup for our best models is described in Section 4.3

4.1. Main Experimental Setup

Transliteration task implies transformation between two lan-
guages, but it is possible to allow transformation from one
to multiple languages at the same time. Accordingly, we
use English as the source language and the high- and less-
resourced languages described in Section 3.2 as target lan-
guages. Let us denote this setup as the English2All ex-
periment. Enabling multilinguality requires the following
changes in the model.

Firstly, instead of traditional <start> token, we pass source
and target language tokens to the encoder and decoder re-
spectively. They are equally represented as <language>.
The source language token could help the encoder to dis-
tinguish languages/syllabaries that potentially share a script
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Target language Ar He Ja Kat Ko Ru Zh Be Or Pa Te
Train 42K 32K 64K 63K 31K 105K 39K 13K 4.7K 5.8K 6.8K
Dev 10K 8K 16K 16K 8K 26K 10K 3.2K 1.2K 1.4K 1.7K
Test 13K 10K 20K 20K 10K 33K 12K 4.1K 1.5K 1.8K 2.2K

Table 1: Size of the train, dev and test datasets for each language.

(in our case, Japanese language and Katakana syllabary, or
Belarusian and Russian languages). The target language to-
ken helps the decoder to determine which part of the mixed
target vocabulary has to be used during per-token generation
of the target sequence. It serves as the only source of this
information.

Secondly, we have to combine our train bilingual datasets
into single train set. We use different techniques:

• default: bilingual train sets remain unchanged;

• addition of sample duplicates: we identify the
length of the largest bilingual train dataset (En-
glish→Russian) and add duplicates of samples in other
bilingual datasets up to this bound;

• slicing: we identify the length of the smallest bilingual
train dataset (English→Odia) and slice other bilingual
train sets down to this bound.

After applying one of these techniques, we combine datasets
together and shuffle before training. Finally, we increase the
default batch size (25) by the number of times equal to the
number of used target languages.

In order to compare the train data combination effect on
model performance, we trained models with each of these
techniques. Moreover, assuming the potential sensitivity of
the learning rate to the different amount of observed data
in each epoch, we tried three variations of learning rate
value for each of the techniques. For these 9 training pro-
cedures, we set the approximately equal number of weights
update steps per epoch using different batch sizes. Results
are shown in Section 4.3.

It is worth noting that our strategy allows to set up the
reverse experiment: All2English. As we have not sufficiently
consideredmodel performance for the reverse transliteration
directions, we do not provide any results. However, this is
the immediate focus for our future work.

4.2. Evaluation Metrics
The main transliteration metric we use to compare the mod-
els on test sets is explicit accuracy, computed as the per-
centage of samples where prediction exactly equals the cor-
responding ground truth label. In other words, explicit ac-
curacy (EA) = 1−WE R, whereWE R stands for word error
ratemetric used in (Merhav andAsh, 2018). The k-best met-
rics are defined as the percentage of samples where ground
truth could be found in top k predictions, which are obtained
using the beam search algorithm.

Explicit accuracy might be a too strict metric to measure
actual performance in case of sequence generation tasks —

particularly, in transliteration, which allowsmultiple equally
correct variations. This issue is further discussed in Section
4.4. For this reason, we inspected another accuracy metric
on the character (or token, from the model point of view)
level. For each sample, let us denote token accuracy as the
percentage of correctly matched corresponding tokens in
prediction and ground truth. For k-best case, the maximum
value across k predictions is taken. Averaging the results
across all samples we get the final value. Token accuracy
metric proved to be more robust and stable on the adjacent
epochs than explicit accuracy.

4.3. Results

Train data combination methods comparison. As men-
tioned in Section 4.1, we tried different train data combi-
nation techniques during the English2All experiment. As
expected, slicing method gives poor results in our case be-
cause the size of the smallest train set (Odia) is 20 times
smaller than of the largest (Russian). The model is faced
with the lack of training data.

We identified two best models (across overall 9) that are
comparable in quality on the dev sets for each language pair.
They have the same hyperparameters, including learning
rate equal to 1e-4. The models differ only in the train data
combination method: (default and addition of duplicates).
Comparison is summarized in Figure 1.

The model which used the addition of duplicates method
performed the same or better on 7 high- and less-resources
languages and worse on 4 high-resourced languages: Rus-
sian, Katakana, Japanese and Korean. The possible reason
might be the train size difference between the languages. As
mentioned before, the maximum size is 20 times higher than
the minimum. Consequently, during 1 epoch for 1 sample
in, for example, Russian as the target language, the model
sees 20 samples in Odia. The model is trained harder on
less-resourced languages than on high-resourced. This rea-
son probably explains another fact: the addition of dupli-
catesmodel performed better on 4 less-resourced languages
(right-most in Figure 1), because the default model saw
samples from these languages quite rarely during 1 epoch.

For further usage for our best model, we chose the addition
of duplicates method aiming to get better results on less-
resourced languages.

Bilingual versus Multilingual model performance. Top-
1, 2 and 3 explicit accuracies (EA) on test sets for each
target language are provided in Table 2. We compare re-
sults of bilingual models from (Merhav and Ash, 2018)
(reproduced using the article’s code) and our multilingual
models with addition of duplicates train data combina-
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Figure 1: Comparison of multilingual models performance
using default and addition of duplicates train data combi-
nation methods.

tion method in 2 versions: with 7 high-resourced target
languages (Multilingual-7) and its expanded version with
4 less-resourced target languages (Multilingual-11). Multi-
lingual models were both trained during 200 epochswith the
following hyperparameters: dropout (all - embedding, atten-
tion and relu) 0.2, "l2" lambda coefficient equal to 1e-5, 2
heads inside each attention layer, 2 layers for both decoder
and encoder, 128 hidden size, learning rate during constant
stage of update strategy equal to 1e-4.

The best result for each language pair is bolded (apart from
Arabic, for which the model performance did not differ
significantly). The multilingual model with 7 incorporated
target languages achieves equal to the bilingual (Merhav
and Ash, 2018) results for Russian, Arabic and Chinese,
and outperforms the bilingual model for Hebrew, Katakana,
Japanese and Korean. TheMultilingual-11model surpasses
the bilingual on all less-resourced languages.

Multilingual models comparison. Figure 2 compares the
Multilingual-7 and Multilingual-11 model performance
for 7 high-resourced languages. For each target language
apart from Arabic, top-1 explicit accuracy is lower for
Multilingual-11 than Multilingual-7. For Arabic, the ac-
curacies are approximately the same.

The multilingual models were trained with the same hy-
perparameters and number of training epochs. The same
tendency could be observed in loss dynamics graphs on dev
sets during training for each target language: Multilingual
11 trains slower even though we provided equal number of
gradient updates per epoch for each training procedure. Ev-
idently, the addition of 4 new languages requires changes to
the training procedure (more training epochs, more optimal

Figure 2: Comparison of Multilingual-7 and Multilingual-
11 models performance on 7 high-resourced languages.

learning rate schedule) and most likely increasing the model
capacity. For instance, it is possible that decoder starts to
suffer from the lack of trainable parameters while trying to
provide equally decent result for all languages. Increasing
the hidden size, the number of decoder layers and attention
heads could be useful even without careful search of more
optimal hyperparameters.

4.4. Error analysis

To analyse the model errors, we have sampled 200 random
name pairs (English-Korean andEnglish-Russian) forwhich
themost probable three predictions of themodel did not con-
tain ground truth, i.e. the erroneous predictions according
to the top-3 accuracy metric. We looked at 10 predictions
for each of the pairs. Below we describe the most frequent
reasons underlying the errors.

The biggest challenge in the transliteration task is that letters
(or sounds) of one script (or language) could be transformed
into another in many different ways — there is no one-to-
one correspondence between languages (and scripts). For
example,Maples in English corresponds toМэйплс in Rus-
sian for Holly Maples, toМэйплз forMarla Maples, and to
Мейплс for Dillon Maples. All of the transliteration vari-
ants are valid; the only difference is that historically each
option was attached to a particular person. Moreover, these
are not all possible options for the transliteration of the
nameMaples— there are about 20 of them if we only try to
approximate English pronunciation, and many more if we
suppose that Maples is actually a non-English name. How-
ever, in our dataset only few of the variations are present.
This fact explains the majority of errors of the model.

Another challenge is that sometimes a name in one language
is barely recognisable in another — in this case, it is more
accurate to talk about translation. For example, James in
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Source and target languages Model 1-best EA 2-best EA 3-best EA
Bilingual 0.55 0.7 0.76
Multilingual 7 0.55 0.69 0.76English→Arabic
Multilingual 11 0.55 0.69 0.75
Bilingual 0.22 0.33 0.39
Multilingual 7 0.23 0.33 0.39English→Chinese
Multilingual 11 0.22 0.33 0.38
Bilingual 0.56 0.72 0.78
Multilingual 7 0.58 0.74 0.79English→Hebrew
Multilingual 11 0.57 0.72 0.78
Bilingual 0.48 0.64 0.7
Multilingual 7 0.51 0.67 0.74English→Japanese
Multilingual 11 0.48 0.64 0.71
Bilingual 0.49 0.64 0.71
Multilingual 7 0.53 0.68 0.74English→Katakana
Multilingual 11 0.5 0.65 0.72
Bilingual 0.62 0.75 0.81
Multilingual 7 0.64 0.77 0.82English→Korean
Multilingual 11 0.62 0.75 0.8
Bilingual 0.65 0.78 0.83
Multilingual 7 0.65 0.77 0.82English→Russian
Multilingual 11 0.63 0.76 0.81
Bilingual 0.52 0.66 0.72English→Belarusian Multilingual 11 0.55 0.71 0.76
Bilingual 0.37 0.5 0.58English→Odia Multilingual 11 0.38 0.53 0.6
Bilingual 0.35 0.49 0.56English→Punjabi Multilingual 11 0.39 0.53 0.61
Bilingual 0.37 0.5 0.57English→Telugu Multilingual 11 0.39 0.54 0.61

Table 2: Bilingual and multilingual model comparison according to the k-best exact accuracy (EA) metric in English2All
experiment.

English corresponds to Джакомо [d z5kom@] in Russian
for the name James Salomoni due to the person’s Italian
origin. Other times, the name’s phonetic form is reproduced
in the target language: Foucault in English corresponds to
Фуко [fUko] in Russian and푸코 [puko] in Korean. This is a
highly language-specific process. The name’s exact phonetic
form cannot be determined by its graphical form alone,
without the information about the person’s (or the name’s)
origin.

Sometimes, not the whole name is “translated” into another
language (script), but a part of it which carries separate
meaning (i.e. morpheme). For example, Kazakh suffix for
the masculine patronymic -uly corresponds to Russian -
вич: Jurynuly [ zurınulı] —Журинович [ zurinovitS]. The
synonymous morphemes rarely have similar phonetic form,
unless the languages in question are related. That is why
the model would most probably be mistaken in such cases.
However, sometimes the model is able to handle them. For
example, for the Polish surname Bohuszewiczówna [bOxu-
SEvitSuvna] (which is a feminine form of the surname
Bohuszewicz [bOxuSEvitS] for an unmarried woman), the
ground truth Russian label is Богушевич [boguSEvitS]. Pol-
ish surnames are evidently translated into Russian without
the feminine suffix.Thefirst prediction of themodel is the di-

rect transliteration Богушевичовна [boguSEvitSovna]; the
seventh, however, is Богушевич — the correct one.

Around one tenth of the inspected errors in the English-
Russian pairs constitute wrongly aligned names where, for
example, in the English label the first name follows the
surname, and in the Russian— the surname follows the first
name (Syuji Takahara — Такахара Сюдзи). Most of these
cases pertain to the names of Japanese origin. There were
almost no such cases for English-Korean pairs.

5. Cross-lingual named entity list search
Task. We propose the cross-lingual named entity list search
task as another application for the transliteration technology.
The task comprises searching for an entity given in a source
language (script) in a list of target language (script) named
entities. The real-world use case for such a task would be
personal name search in phone or social network contacts
or geographical name search in geographical databases.

Data. For this task, a pool of paired (English→target lan-
guage) personal names was formed from the newly acquired
Wikidata human entity labels for each of the ten languages
discussed above (Japanese andKatakana were distinguished
as before). The names any part of whichwas used in the train
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Target language

Exact match accuracy Fuzzy match accuracy
Bilingual Multilingual-11 Bilingual Multilingual-11
mean, std mean, std p-value mean, std mean, std p-value

Arabic 0.25, 0.04 0.26, 0.04 0.022 0.88, 0.03 0.88, 0.04 0.099
Chinese 0.06, 0.02 0.06, 0.02 0.439 0.42, 0.05 0.41, 0.05 0.064
Hebrew 0.30, 0.05 0.31, 0.04 0.052 0.83, 0.04 0.83, 0.04 0.641
Japanese 0.20, 0.04 0.21, 0.04 0.057 0.56, 0.05 0.58, 0.05 <0.001
Katakana 0.26, 0.04 0.27, 0.04 0.119 0.75, 0.04 0.75, 0.04 0.873
Korean 0.31, 0.05 0.31, 0.04 0.289 0.66, 0.05 0.67, 0.04 <0.001
Russian 0.42, 0.05 0.42, 0.05 0.908 0.86, 0.03 0.86, 0.04 0.075
Belarusian 0.36, 0.04 0.37, 0.05 0.002 0.78, 0.03 0.83, 0.04 <0.001
Odia 0.25, 0.03 0.27, 0.03 <0.001 0.74, 0.04 0.76, 0.03 <0.001
Punjabi 0.24, 0.04 0.27, 0.04 <0.001 0.75, 0.04 0.78, 0.03 <0.001
Telugu 0.28, 0.04 0.28, 0.04 0.897 0.75, 0.04 0.77, 0.04 <0.001

Table 3: Bilingual (Merhav and Ash, 2018) and Multilingual-11 models accuracy comparison on contacts datasets for
different target languages.

or development samples of the transliteration task were fil-
tered out. Personal names could be single- or multi-word:
the name length varied from 1 to 6, with mean 1.82 words
and median 2. The resulting size of the name pool for each
target language is presented in Table 6 in Appendix A). 100
lists of 100 names were randomly sampled from each pool
without replacement. All lists of names are available in the
article repository. These name lists model the personal con-
tacts use case of the task, thereby we define them as contact
lists.

Procedure. A probability-ordered list of ten transliteration
candidates from English to target language was obtained
separately for each word of the names in each of the lists
using two transliteration models: bilingual from (Merhav
and Ash, 2018) and the 11-language multilingual model
discussed in this article.

While the chosen transliteration models were both trained
on single-word names, named entity list search task im-
plies mostly multi-word name search. One of the possible
ways to obtain a ranked list of multi-word predictions is to
multiply prediction probabilities of each word to simulate
multi-word prediction probability. However, the bilingual
model from (Merhav and Ash, 2018) returns predictions
ranked by probability in descending order, but doesn’t re-
turn actual probability values. That is why, for the sake of
model comparison, we use a simpler method to get top k
multi-word predictions: single-word predictions of one rank
were combined to create a multi-word prediction with the
same rank.

After getting multi-word transliteration candidates, we
searched for these candidates in the target language list us-
ing two modes: exact matching and fuzzy matching. For ex-
act match, the transliteration candidate and the ground truth
namewerematched if the candidate was found in the list and
matched the true name exactly. For fuzzymatch, the translit-
eration candidate and the ground truth name were matched
if the candidate could be obtained from ground truth by
performing no more than one edit operation (delete, add or
substitute character) upon each constituting word. For ex-

ample, the candidate Юри Долгарукий was matched with
the ground truth nameЮрий Долгорукий (English source:
Yuri Dolgorukiy). Accuracy is defined as the percentage of
correctly matched names in the list.

Results. Mean and standard deviation of the exact match
and fuzzy match accuracies across 100 lists for each target
language are presented in Table 3. The differences between
match accuracies for bilingual andmultilingualmodels were
checked for normality with D’Agostino and Pearson’s nor-
mality test with α=0.001 (normaltest from the scipy
package). All difference distributions were found to be nor-
mal. The significance of the differences between match ac-
curacies for bilingual and multilingual models was tested
with Student’s paired t-test with α=0.001 (ttest_rel from
the scipy package).

Several tendencies could be observed:

• Performing fuzzy match search greatly increases the
chances of finding the name. The biggest accuracy in-
crease of 63 pp was reached for Arabic.

• Bilingual and multilingual models demonstrate more
differences for less-resourced languages than for high-
resourced languages.

• The match accuracy was higher for the multilingual
model compared to bilingual when the target languages
were Korean, Japanese, Belarusian and Telugu (fuzzy
match), Odia and Punjabi (exact and fuzzy match).

• The comparatively large increase in match accuracy
for Belarusian could potentially be due to transfer from
Russian, as the languages share Cyrillic script.

The above-mentioned differences are statistically signifi-
cant. However, relatively large standard deviations of the
metrics should be taken into account.

Besides correctly found names, there could potentially be
incorrectly matched ones in our lists for very similar names.
For example, Mari and Marie could have the same Rus-
sian transliterationМари, and therefore could be incorrectly
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matched. However, the number of these cases was extremely
small: usually 0, maximum was reached for Chinese with
the mean 3% incorrectly matched names. Most of the names
contained two ormorewords and the probability of incorrect
match falls with each additional word in the name.

6. Conclusion

According to our contribution points, we provide a large
multilingual and multiscript person-type named entity
dataset, which could be used for various purposes, includ-
ing named entity transliteration. Using multilingual translit-
eration models, we improve results on test datasets for
high-resourced languages from (Merhav and Ash, 2018)
and introduce benchmarks for 4 new less-resourced lan-
guages. We provide analysis of transliteration errors which
explains some considerable task-specific problems. We pro-
pose a new point of view on the cross-lingual named entity
search task based on transliteration. In this task, the mul-
tilingual model demonstrates performance comparable to
the bilingual model on most high-resourced languages, and
slightly outperforms the bilingual model on less-resourced
languages. While some improvement could be reached with
the multilingual approach, it does not, evidently, solve the
problem of small training sets.

An immediate future focus for our work could be imple-
mentation of language-specific regularization inside multi-
lingual transliteration models. This might prevent the model
from overfitting on some language pairs and underfitting on
others.
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Appendices
A. Data tables

# Language Count # Language Count # Language Count
1 English 4,754,826 11 Swedish 1,074,287 21 Traditional Chinese 542,060
2 Asturian 4,594,059 12 Danish 978,685 22 Finnish 531,716
3 Spanish 4,378,313 13 Bokmål 960,716 23 Arabic 497,619
4 Dutch 4,273,706 14 Nynorsk 861,414 24 Japanese 491,018
5 French 2,936,057 15 Irish 804,269 25 Classical Chinese 422,375
6 Slovene 2,394,331 16 Russian 798,517 26 Welsh 406,156
7 German 2,333,118 17 Portuguese 789,861 27 Galician 335,131
8 Catalan 1,951,776 18 Chinese 750,801 28 Czech 310,812
9 Italian 1,456,619 19 Hungarian 685,701 29 Brazilian Portuguese 277,547
10 Albanian 1,257,632 20 Polish 566,614 30 Romanian 274,172

Table 4: The largest languages by the number of labels for
human entities.

# Script Count # Script Count # Script Count
1 Latin 52,546,892 11 Bengali 54,146 21 Gujarati 2,456
2 CJK 2,151,368 12 Thai 31,535 22 Hiragana 2,212
3 Cyrillic 1,280,738 13 Georgian 24,208 23 Sinhala 1,825
4 Arabic 813,467 14 Tamil 23,390 24 Ethiopic 1,785
5 Katakana 238,443 15 Malayalam 16,484 25 Tibetan 795
6 Hebrew 126,187 16 Telugu 14,745 26 Khmer 594
7 Hangul 120,036 17 Gurmukhi 8,818 27 Lao 502
8 Greek and Coptic 76,604 18 Oriya 8,589 28 Ol Chiki 460
9 Armenian 63,342 19 Kannada 8,434 29 Thaana 231
10 Devanagari 56,442 20 Myanmar 2,779 30 Syriac 134

Table 5: The largest scripts by the number of labels for
human entities.

Target language Ar Be He Ja Kat Ko Or Pa Ru Te Zh
Name pool size, words 12,153 684 3,691 13,513 10,334 5,865 308 419 12,656 623 28,470

Table 6: The number of personal names in the sample pool
per language for the named entity list search task.
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